अनंत पर बिंदु

From Vigyanwiki
Revision as of 15:48, 28 November 2022 by alpha>Abhishek (Abhishek moved page अनंत पर इंगित करें to अनंत पर बिंदु without leaving a redirect)
अनंत पर बिंदु के साथ वास्तविक रेखा; इसे वास्तविक प्रक्षेप्य रेखा कहा जाता है।

ज्यामिति में, अनंत या आदर्श बिंदु पर एक बिंदु प्रत्येक रेखा के अंत में एक आदर्शित सीमित बिंदु होता है।

affine विमान (यूक्लिडियन विमान सहित) के मामले में, प्लेन की समानांतर रेखाओं के प्रत्येक पेंसिल (गणित) के लिए एक आदर्श बिंदु होता है। इन बिंदुओं से जुड़कर एक प्रक्षेपी तल का निर्माण होता है, जिसमें कोई बिंदु अलग नहीं किया जा सकता है, अगर हम भूल जाते हैं कि कौन से बिंदु जोड़े गए थे। यह किसी भी क्षेत्र (गणित) पर एक ज्यामिति के लिए है, और आमतौर पर किसी भी विभाजन की अंगूठी पर।[1] वास्तविक मामले में, अनंत पर एक बिंदु एक स्थलीय रूप से बंद वक्र में एक रेखा को पूरा करता है। उच्च आयामों में, अनंत पर सभी बिंदु एक आयाम के एक प्रक्षेपी उप-स्थान का निर्माण करते हैं, जो पूरे प्रक्षेपी स्थान से कम होता है, जिससे वे संबंधित होते हैं। अनंत पर एक बिंदु को जटिल रेखा (जिसे जटिल विमान के रूप में माना जा सकता है) में भी जोड़ा जा सकता है, जिससे इसे एक बंद सतह में बदल दिया जाता है जिसे जटिल प्रक्षेपी रेखा, सीपी के रूप में जाना जाता है।1, जिसे रीमैन क्षेत्र भी कहा जाता है (जब जटिल संख्याओं को प्रत्येक बिंदु पर मैप किया जाता है)।

अतिशयोक्तिपूर्ण स्थान के मामले में, प्रत्येक पंक्ति में दो विशिष्ट आदर्श बिंदु होते हैं। यहाँ, आदर्श बिंदुओं का समुच्चय एक द्विघात (प्रक्षेपी ज्यामिति) का रूप ले लेता है।

Affine ज्यामिति

उच्च आयाम के affine अंतरिक्ष या यूक्लिडियन अंतरिक्ष में, अनंत पर बिंदु वे बिंदु होते हैं जो प्रोजेक्टिव स्पेस प्राप्त करने के लिए अंतरिक्ष में जोड़े जाते हैं। अनंत पर बिंदुओं के सेट को अंतरिक्ष के आयाम के आधार पर, अनंत पर रेखा, अनंत पर समतल या अनंत पर हाइपरप्लेन कहा जाता है, सभी मामलों में एक कम आयाम का प्रक्षेपी स्थान।

एक क्षेत्र पर एक प्रक्षेपण स्थान एक चिकनी बीजगणितीय विविधता के रूप में है, वही अनंत पर बिंदुओं के सेट के लिए सच है। इसी तरह, यदि जमीनी क्षेत्र वास्तविक या जटिल क्षेत्र है, तो अनंत पर बिंदुओं का समूह कई गुना होता है।

परिप्रेक्ष्य

कलात्मक आरेखण और तकनीकी परिप्रेक्ष्य में, समानांतर रेखाओं के एक वर्ग के अनंत पर बिंदु के चित्र तल पर प्रक्षेपण को उनका लुप्त बिंदु कहा जाता है।

अतिशयोक्तिपूर्ण ज्यामिति

अतिशयोक्तिपूर्ण ज्यामिति में, अनंत पर बिंदुओं को आमतौर पर आदर्श बिंदु कहा जाता है। यूक्लिडियन ज्यामिति और अण्डाकार ज्यामिति ज्यामिति के विपरीत, प्रत्येक पंक्ति में अनंत पर दो बिंदु होते हैं: एक रेखा l और एक बिंदु P दिया गया है जो l पर नहीं है, दाएं और बाएं-सीमित समानांतर अभिसरण ( गणित) असीमित रूप से अनंत पर विभिन्न बिंदुओं के लिए।

अनंत पर सभी बिंदु एक साथ केली पूर्ण या हाइपरबॉलिक विमान की सीमा बनाते हैं।

प्रोजेक्टिव ज्यामिति

एक प्रक्षेपी तल में बिंदुओं और रेखाओं की एक समरूपता उत्पन्न होती है: जिस प्रकार बिंदुओं की एक जोड़ी एक रेखा का निर्धारण करती है, उसी प्रकार रेखाओं की एक जोड़ी एक बिंदु का निर्धारण करती है। समानांतर रेखाओं का अस्तित्व अनंत पर एक बिंदु स्थापित करने की ओर ले जाता है जो इन समानांतरों के प्रतिच्छेदन का प्रतिनिधित्व करता है। यह स्वयंसिद्ध समरूपता ग्राफिकल परिप्रेक्ष्य के अध्ययन से विकसित हुई है जहां केंद्रीय प्रक्षेपण के रूप में समानांतर प्रक्षेपण उत्पन्न होता है जहां केंद्र सी अनंत पर एक बिंदु है, या 'लाक्षणिक बिंदु' है।[2] बिंदुओं और रेखाओं की स्वयंसिद्ध समरूपता को द्वैत (प्रक्षेपी ज्यामिति) कहा जाता है।

यद्यपि अनंत पर एक बिंदु को प्रक्षेप्य सीमा के किसी भी अन्य बिंदु के बराबर माना जाता है, प्रोजेक्टिव निर्देशांक वाले बिंदुओं के प्रतिनिधित्व में, भेद नोट किया जाता है: अंतिम बिंदुओं को अंतिम समन्वय में 1 के साथ दर्शाया जाता है जबकि अनंत पर एक बिंदु होता है 0 वहाँ। अनंत पर बिंदुओं का प्रतिनिधित्व करने की आवश्यकता है कि परिमित बिंदुओं के स्थान से परे एक अतिरिक्त समन्वय की आवश्यकता है।

अन्य सामान्यीकरण

इस निर्माण को टोपोलॉजिकल स्पेस के लिए सामान्यीकृत किया जा सकता है। किसी दिए गए स्थान के लिए अलग-अलग कॉम्पैक्टिफिकेशन मौजूद हो सकते हैं, लेकिन मनमाने ढंग से टोपोलॉजिकल स्पेस एलेक्जेंड्रॉफ़ एक्सटेंशन को स्वीकार करता है, जिसे वन-पॉइंट संघनन (गणित)गणित) भी कहा जाता है, जब मूल स्थान स्वयं कॉम्पैक्ट जगह नहीं होता है। प्रोजेक्टिव लाइन (मनमाने क्षेत्र पर) अलेक्जेंड्रॉफ़ एक्सटेंशन है संबंधित क्षेत्र का। इस प्रकार वृत्त वास्तविक रेखा का एक-बिंदु संघनन है, और गोला समतल का एक-बिंदु संघनन है। प्रोजेक्टिव स्पेस पीn के लिए n> 1 नीचे बताए गए कारण के लिए संबंधित affine रिक्त स्थान का एक-बिंदु संघनन नहीं है § Affine geometry, और आदर्श बिंदुओं के साथ अतिशयोक्तिपूर्ण रिक्त स्थान की पूर्णता भी एक-बिंदु संघनन नहीं है।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • वास्तविक प्रक्षेपण रेखा
  • प्रक्षेपी विमान
  • क्वाड्रिक (प्रक्षेपी ज्यामिति)
  • हाइपरप्लेन अनंत पर
  • अनंत पर विमान
  • चिकनी बीजगणितीय किस्म
  • लोपी बिन्दु
  • समानांतर सीमित करना
  • असम्बद्ध रूप से
  • केली निरपेक्ष
  • अतिशयोक्तिपूर्ण विमान
  • अभिसरण (गणित)
  • चित्रमय दृष्टिकोण
  • प्रक्षेपी निर्देशांक

संदर्भ

  1. Weisstein, Eric W. "अनंत पर इंगित करें". mathworld.wolfram.com (in English). Wolfram Research. Retrieved 28 December 2016.
  2. G. B. Halsted (1906) Synthetic Projective Geometry, page 7