प्रकाश प्रवर्धक
एक ऑप्टिकल प्रर्वर्धक ऐसा उपकरण है जो सीधे ऑप्टिकल संकेत (सूचना सिद्धांत) को बिना इसे पहले विद्युत संकेत में बदलने की आवश्यकता के बिना बढ़ाता है। ऑप्टिकल प्रर्वर्धक को ऑप्टिकल गुहा के बिना लेजर के रूप में माना जा सकता है, या जिसमें गुहा से प्रतिक्रिया को दबा दिया जाता है। ऑप्टिकल संचार और लेजर भौतिकी में ऑप्टिकल प्रर्वर्धकों महत्वपूर्ण हैं। उन्हें लंबी दूरी के फाइबर ऑप्टिक केबल में ऑप्टिकल रिपीटर के रूप में उपयोग किया जाता है जो दुनिया के अधिकांश दूरसंचार लिंक को ले जाते हैं।
कई अलग -अलग भौतिक तंत्र हैं जिनका उपयोग प्रकाश संकेत को बढ़ाने के लिए किया जा सकता है, जो प्रमुख प्रकार के ऑप्टिकल प्रर्वर्धकों के अनुरूप हैं। डोपेड फाइबर प्रर्वर्धकों और थोक लेज़र में, प्रर्वर्धक के लाभ मध्यम में उत्सर्जन उत्तेजित उत्सर्जन में आने वाले प्रकाश के प्रवर्धन का कारण बनता है। अर्धचालक ऑप्टिकल प्रर्वर्धकों (एसओए) में, इलेक्ट्रॉन-इलेक्ट्रॉन होल वाहक पीढ़ी और पुनर्संयोजन होता है। रमन प्रर्वर्धक में, रमन मध्यम प्राप्त करना के जाली में फोनन के साथ आने वाली प्रकाश के बिखरे हुए फोटोन्स में आने वाले फ़ोनन के साथ सुसंगत फोटॉन का उत्पादन करते हैं। पैरामीट्रिक प्रवर्धक पैरामीट्रिक प्रवर्धन का उपयोग करते हैं।
इतिहास
ऑप्टिकल प्रवर्धन के सिद्धांत का आविष्कार 13 नवंबर, 1957 को गॉर्डन गोल्ड द्वारा किया गया था।[2] उन्होंने 6 अप्रैल, 1959 को पेटेंट नंबर 804,539 दायर किया, जिसका शीर्षक लाइट प्रर्वर्धकों ने जनसंख्या का उत्पादन करने के लिए टकरावों को रोजगार दिया[3] (बाद में भाग में निरंतरता के रूप में संशोधित किया गया और अंत में 4 मई, 1988 को नंबर 4,746,201A के रूप में जारी किया गया)। पेटेंट ने "गैसीय, तरल या ठोस स्थिति में आयनों, परमाणुओं या अणुओं से फोटॉन के उत्तेजित उत्सर्जन द्वारा प्रकाश के प्रवर्धन को कवर किया।"[4] कुल मिलाकर, गोल्ड ने ऑप्टिकल प्रर्वर्धक से संबंधित 48 पेटेंट प्राप्त[5] करने के समय बाजार पर 80% लेजर को कवर किया जाता हैं।[6]
गोल्ड ने ऑप्टिकल दूरसंचार उपकरण फर्म, ऑप्टेलेकॉम इंक की सह-स्थापना की, जिसने अपने पूर्व प्रमुख लाइट ऑप्टिक्स रिसर्च, डेविड ह्यूबर और केविन किम्बर्लिन के साथ सिएना कॉर्प को प्रारंभ करने में सहायता की। सिएना के ह्यूबर और स्टीव अलेक्जेंडर ने दोहरे चरण के ऑप्टिकल प्रर्वर्धक का आविष्कार किया[7] (यूएस पेटेंट 5,159,601) यह पहली घनी लहर डिवीजन मल्टीप्लेक्सिंग (DWDM) प्रणाली की कुंजी थी, जिसे उन्होंने जून 1996 में जारी किया था। इसने ऑप्टिकल नेटवर्किंग की प्रारंभ को चिह्नित किया।[3] इसके महत्व को उस समय ऑप्टिकल अथॉरिटी, शोची सूडो और टेक्नोलॉजी एनालिस्ट, जॉर्ज गिल्डर ने 1997 में मान्यता दी थी, जब सुडो ने लिखा था कि ऑप्टिकल प्रर्वर्धकों ने "दुनिया भर में क्रांति की प्रारंभ की थी, जिसे सूचना युग कहा जाता है"[4]और गिल्डर ने ऑप्टिकल प्रर्वर्धक की तुलना महत्व में एकीकृत सर्किट से की, यह भविष्यवाणी करते हुए कि यह सूचना की उम्र को संभव बना देगा।[8] आज ऑप्टिकल प्रवर्धन WDM प्रणाली सभी स्थानीय, मेट्रो, नेशनल, इंटरकांटिनेंटल और सब्सिएम दूरसंचार नेटवर्क का सामान्य आधार है[9] और इंटरनेट के फाइबर ऑप्टिक बैकबोन के लिए पसंद की विधि (जैसे फाइबर-ऑप्टिक संचार या फाइबर-ऑप्टिक केबल आधुनिक दिन कंप्यूटर नेटवर्क का आधार बनाती है)।
लेजर प्रर्वर्धकों
लगभग कोई भी लेजर सक्रिय लाभ माध्यम लेजर पंपिंग हो सकता है जिससे कि लेजर के तरंग दैर्ध्य पर प्रकाश के लिए लाभ (लेजर) का उत्पादन किया जा सके। इस प्रकार के प्रर्वर्धकों का उपयोग सामान्यतः उच्च शक्ति लेजर प्रणाली का उत्पादन करने के लिए किया जाता है। विशेष प्रकार जैसे पुनर्योजी प्रर्वर्धकों और चिरपेड पल्स प्रवर्धन या चिरपेड पल्स प्रर्वर्धकों का उपयोग अल्ट्रैध्वनि्ट पल्स को बढ़ाने के लिए किया जाता है।
ठोस-स्थिति के प्रर्वर्धक
ठोस स्थिति के प्रर्वर्धक ऐसे ऑप्टिकल प्रर्वर्धक हैं जो डोपेड ठोस लेजर स्थिति की विस्तृत श्रृंखला का उपयोग करते हैं। ऑप्टिकल संकेतों को बढ़ाने के लिए स्लैब, रॉड का उपयोग करते हैं। सामग्री की विविधता विभिन्न तरंग दैर्ध्य के प्रवर्धन की अनुमति देती है जबकि माध्यम का आकार औसत पावर स्केलिंग की ऊर्जा के लिए अधिक उपयुक्त के बीच अंतर कर सकता है।[10] गुरुत्वाकर्षण तरंग का पता लगाने से मौलिक अनुसंधान में उनके उपयोग के अतिरिक्त[11] राष्ट्रीय इग्निशन सुविधा में उच्च ऊर्जा भौतिकी के लिए वे आज के कई अल्ट्रैध्वनि्ट पल्स लेजर में भी पाए जा सकते हैं।[citation needed]
डोपेड फाइबर प्रर्वर्धकों
डोपेड फाइबर प्रर्वर्धकों (डीएफए) ऑप्टिकल प्रर्वर्धकों हैं जो ऑप्टिकल संकेत को बढ़ाने के लिए लाभ माध्यम के रूप में डोपेंट प्रकाशित तंतु का उपयोग करते हैं।[12] वे फाइबर लेजर से संबंधित हैं। संकेत को प्रवर्धित किया जाना और पंप लेजर डोपेड फाइबर में बहुसंकेतन कर रहे हैं, और संकेत को डोपिंग आयनों के साथ बातचीत के माध्यम से प्रवर्धित किया जाता है।
डोपेड फाइबर में डोपेंट आयनों से फोटॉनों के उत्तेजित उत्सर्जन द्वारा प्रवर्धन प्राप्त किया जाता है। पंप लेजर आयनों को उच्च ऊर्जा में उत्तेजित करता है, जहां से वे संकेत वेवलेंथ पर फोटॉन के उत्तेजित उत्सर्जन के माध्यम से कम ऊर्जा स्तर पर वापस आ सकते हैं।उत्साहित आयन भी अनायास (सहज उत्सर्जन) या यहां तक कि गैर -पार्श्विक प्रक्रियाओं के माध्यम से कांच मैट्रिक्स के फोनन के साथ बातचीत से जुड़े हो सकते हैं। ये अंतिम दो क्षय तंत्र प्रकाश प्रवर्धन की दक्षता को कम करने वाले उत्तेजित उत्सर्जन के साथ प्रतिस्पर्धा करते हैं।
एक ऑप्टिकल प्रर्वर्धक की प्रवर्धन विंडो ऑप्टिकल तरंग दैर्ध्य की सीमा है जिसके लिए प्रर्वर्धक उपयोगी लाभ प्राप्त करता है। प्रवर्धन खिड़की डोपेंट आयनों के स्पेक्ट्रोस्कोपिक गुणों, ऑप्टिकल फाइबर की कांच संरचना और पंप लेजर की तरंग दैर्ध्य और शक्ति द्वारा निर्धारित की जाती है।
यद्यपि पृथक आयन के इलेक्ट्रॉनिक संक्रमण को बहुत अच्छी प्रकार से परिभाषित किया जाता है, ऊर्जा के स्तर का व्यापक होना तब होता है जब आयनों को ऑप्टिकल फाइबर के ग्लास में सम्मलित किया जाता है और इस प्रकार प्रवर्धन खिड़की को भी व्यापक किया जाता है।यह चौड़ीकरण दोनों सजातीय चौड़ीकरण है (सभी आयन ही व्यापक स्पेक्ट्रम प्रदर्शित करते हैं) और अमानवीय चौड़ीकरण (विभिन्न ग्लास स्थानों में अलग -अलग आयन अलग -अलग स्पेक्ट्रा प्रदर्शित करते हैं)। सजातीय चौड़ीकरण कांच के फोनन के साथ बातचीत से उत्पन्न होता है, जबकि अमानवीय चौड़ीकरण कांच की साइटों में अंतर के कारण होता है जहां विभिन्न आयनों की मेजबानी की जाती है। विभिन्न साइटें विभिन्न स्थानीय विद्युत क्षेत्रों में आयनों को उजागर करती हैं, जो ऊर्जा के स्तर को स्टार्क प्रभाव के माध्यम से स्थानांतरित करती हैं। इसके अतिरिक्त, स्टार्क प्रभाव भी ऊर्जा स्थितिों की अध: पतन को हटा देता है, जिसमें समान कोणीय गति (क्वांटम नंबर जे द्वारा निर्दिष्ट) होती है।इस प्रकार, उदाहरण के लिए, ट्रिटेंट एर्बियम आयन (Er)3 + ) I j = 15/2 के साथ जमीनी स्थिति होती है, और विद्युत क्षेत्र की उपस्थिति में j + 1/2 = 8 उपपरतों में थोड़ी अलग ऊर्जाओं के साथ विभाजित होता है।पहले उत्साहित स्थिति में j = 13/2 है और इसलिए 7 उप-परत के साथ स्टार्क कई गुना होता है।J = 13/2 उत्साहित स्थिति से J = 15/2 ग्राउंड स्टेट से संक्रमण 1500 NM तरंग दैर्ध्य पर लाभ के लिए जिम्मेदार हैं।EDFA के लाभ स्पेक्ट्रम में कई चोटियाँ हैं जो उपरोक्त चौड़ी तंत्रों द्वारा धब्बा लगाई जाती हैं। शुद्ध परिणाम बहुत व्यापक स्पेक्ट्रम है (30 सिलिका में एनएम, सामान्यतः)। फाइबर प्रर्वर्धकों के व्यापक लाभ-बैंडविड्थ उन्हें तरंग वेवलेंथ डिविज़न मल्टिप्लेक्सिंग में विशेष रूप से उपयोगी बनाते हैं। तरंग दैर्ध्य-डिवीजन मल्टीप्लेक्स कम्युनिकेशंस प्रणाली एकल प्रर्वर्धक के रूप में उपयोग किया जा सकता है, जो फाइबर पर किए जा रहे सभी संकेतों को बढ़ाने के लिए किया जा सकता है और जिनकी तरंग दैर्ध्य लाभ की खिड़की के भीतर गिरती हैं।
एक एर्बियम-डोपेड वेवगाइड प्रर्वर्धक (EDWA) ऑप्टिकल प्रर्वर्धक है जो ऑप्टिकल संकेत को बढ़ावा देने के लिए वेवगाइड का उपयोग करता है।
EDFA का मूल सिद्धांत
प्रकाश के अपेक्षाकृत उच्च शक्ति वाले बीम को तरंग दैर्ध्य चयनात्मक युग्मक (WSC) का उपयोग करके इनपुट संकेत के साथ मिलाया जाता है।इनपुट संकेत और उत्तेजना प्रकाश अधिक अलग -अलग तरंग दैर्ध्य पर होना चाहिए। मिश्रित प्रकाश को कोर में सम्मलित एर्बियम आयनों के साथ फाइबर के खंड में निर्देशित किया जाता है। यह उच्च शक्ति वाली लाइट बीम एर्बियम आयनों को उनके उच्च-ऊर्जा स्थिति में उत्साहित करती है। जब पंप लाइट से अलग तरंग दैर्ध्य पर संकेत से संबंधित फोटॉन उत्साहित एर्बियम आयनों से मिलते हैं, तो एरबियम आयन अपनी ऊर्जा को संकेत में छोड़ देते हैं और अपनी कम-ऊर्जा स्थिति में लौटते हैं।
एक महत्वपूर्ण बिंदु यह है कि एर्बियम अतिरिक्त फोटॉनों के रूप में अपनी ऊर्जा छोड़ देता है जो बिल्कुल उसी चरण और दिशा में होते हैं जैसे संकेत को प्रवर्धित किया जा रहा है। इसलिए संकेत केवल यात्रा की दिशा में प्रवर्धित है।यह असामान्य नहीं है - जब परमाणु ले जाता है तो यह सदैव ही दिशा में और आने वाली प्रकाश के रूप में चरण में अपनी ऊर्जा को छोड़ देता है। इस प्रकार सभी अतिरिक्त संकेत पावर को इनकमिंग संकेत के समान फाइबर मोड में निर्देशित किया जाता है। ऑप्टिकल अलगावक को सामान्यतः संलग्न फाइबर से लौटने वाले प्रतिबिंबों को रोकने के लिए आउटपुट पर रखा जाता है। इस प्रकार के प्रतिबिंब प्रर्वर्धक ऑपरेशन को बाधित करते हैं और उच्च स्थिति में प्रर्वर्धक को लेजर बनने का कारण बन सकता है।
एर्बियम डोपेड प्रर्वर्धक उच्च लाभ प्रर्वर्धक है।
ध्वनि
DFAs में ध्वनि का प्रमुख स्रोत सहज सहज उत्सर्जन (ASE) को बढ़ाता है, जिसमें प्रर्वर्धक के लाभ स्पेक्ट्रम के समान स्पेक्ट्रम होता है।एक आदर्श DFA में ध्वनि का आंकड़ा 3 db है, जबकि व्यावहारिक प्रर्वर्धकों में ध्वनि आंकड़ा 6-8 db के रूप में बड़ा हो सकता है।
उत्तेजित उत्सर्जन के माध्यम से क्षय के साथ -साथ, ऊपरी ऊर्जा स्तर में इलेक्ट्रॉन भी सहज उत्सर्जन द्वारा क्षय कर सकते हैं, जो कि कांच की संरचना और उलटा स्तर के आधार पर यादृच्छिक रूप से होता है।फोटॉन को सभी दिशाओं में अनायास उत्सर्जित किया जाता है, किन्तु उन लोगों के अनुपात को दिशा में उत्सर्जित किया जाएगा जो फाइबर के संख्यात्मक एपर्चर के भीतर आता है और इस प्रकार फाइबर द्वारा कब्जा कर लिया जाता है और निर्देशित किया जाता है।कैप्चर किए गए उन फोटॉन तब अन्य डोपेंट आयनों के साथ बातचीत कर सकते हैं, और इस प्रकार उत्तेजित उत्सर्जन द्वारा प्रवर्धित होते हैं।प्रारंभिक सहज उत्सर्जन इसलिए संकेतों के समान तरीके से प्रवर्धित होता है, इसलिए यह शब्द सहज रूप से सहज उत्सर्जन को बढ़ाता है।ASE को आगे और रिवर्स दिशाओं दोनों में प्रर्वर्धक द्वारा उत्सर्जित किया जाता है, किन्तु केवल आगे ASE प्रणाली के प्रदर्शन के लिए सीधी चिंता है क्योंकि ध्वनि रिसीवर के संकेत के साथ सह-प्रवर्तित करेगा जहां यह प्रणाली प्रदर्शन को कम करता है।काउंटर-प्रोपिंगिंग एएसई, चूंकि, प्रर्वर्धक के प्रदर्शन में गिरावट का कारण बन सकता है क्योंकि एएसई उलटा स्तर को कम कर सकता है और इस प्रकार प्रर्वर्धक के लाभ को कम कर सकता है और वांछित संकेत लाभ के सापेक्ष उत्पादित ध्वनि को बढ़ा सकता है।
ध्वनि आकृति का विश्लेषण ऑप्टिकल डोमेन और विद्युत डोमेन दोनों में किया जा सकता है।[13] ऑप्टिकल डोमेन में, एएसई की माप, ऑप्टिकल संकेत लाभ, और ऑप्टिकल स्पेक्ट्रम विश्लेषक का उपयोग करके संकेत तरंग दैर्ध्य ध्वनि आकृति की गणना की अनुमति देता है।विद्युत माप विधि के लिए, पता लगाया गया फोटोक्यूरेंट ध्वनि का मूल्यांकन कम-ध्वनि वाले विद्युत स्पेक्ट्रम विश्लेषक के साथ किया जाता है, जो प्रर्वर्धक लाभ के माप के साथ ध्वनि आकृति माप की अनुमति देता है।सामान्यतः, ऑप्टिकल विधि अधिक सरल विधि प्रदान करती है, चूंकि यह विद्युत विधि जैसे बहु-पथ हस्तक्षेप (एमपीआई) ध्वनि उत्पादन द्वारा कैप्चर किए गए अतिरिक्त ध्वनि प्रभावों को सम्मलित नहीं करता है।दोनों तरीकों में, इनपुट संकेत के साथ सहज उत्सर्जन जैसे प्रभावों पर ध्यान देना ध्वनि आकृति की सही माप के लिए महत्वपूर्ण है।
प्राप्त संतृप्ति
डोपेंट आयनों के जनसंख्या उलटा होने के कारण डीएफए में लाभ प्राप्त किया जाता है।एक DFA का उलटा स्तर सेट किया जाता है, मुख्य रूप से, पंप तरंग दैर्ध्य की शक्ति और प्रवर्धित तरंग दैर्ध्य पर शक्ति द्वारा।जैसे -जैसे संकेत पावर बढ़ता है, या पंप पावर कम हो जाता है, उलटा स्तर कम हो जाएगा और इस प्रकार प्रर्वर्धक का लाभ कम हो जाएगा।इस प्रभाव को लाभ संतृप्ति के रूप में जाना जाता है - जैसे -जैसे संकेत स्तर बढ़ता है, प्रर्वर्धक संतृप्त होता है और किसी भी अधिक आउटपुट पावर का उत्पादन नहीं कर सकता है, और इसलिए लाभ कम हो जाता है।संतृप्ति को सामान्यतः लाभ संपीड़न के रूप में भी जाना जाता है।
इष्टतम ध्वनि प्रदर्शन प्राप्त करने के लिए DFAs को महत्वपूर्ण मात्रा में लाभ संपीड़न (10 DB) के अनुसार संचालित किया जाता है, क्योंकि यह सहज उत्सर्जन की दर को कम करता है, जिससे ASE कम हो जाता है।लाभ संतृप्ति क्षेत्र में डीएफए के संचालन का और लाभ यह है कि इनपुट संकेत पावर में छोटे उतार -चढ़ाव आउटपुट में कम हो जाते हैं, संकेत को कम किया जाता है: छोटे इनपुट संकेत पॉवर्स बड़े (कम संतृप्त) लाभ का अनुभव करते हैं, जबकि बड़े इनपुट शक्तियां कम लाभ देखते हैं।
पल्स के प्रमुख किनारे को प्रवर्धित किया जाता है, जब तक कि लाभ माध्यम की संतृप्ति ऊर्जा नहीं पहुंच जाती।कुछ हालत में, पल्स की चौड़ाई (fwhm) कम हो जाती है।[14]
अमानवीय चौड़ी प्रभाव
डोपेंट आयनों के लाइनविड्थ चौड़ीकरण के अमानवीय हिस्से के कारण, लाभ स्पेक्ट्रम में अमानवीय घटक होता है और कुछ हद तक अमानवीय तरीके से लाभ संतृप्ति होती है। इस प्रभाव को स्पेक्ट्रल होल बर्निंग के रूप में जाना जाता है क्योंकि तरंग दैर्ध्य पर उच्च शक्ति संकेत अमानवीय रूप से व्यापक आयनों की संतृप्ति द्वारा उस संकेत के निकट तरंग दैर्ध्य के लिए लाभ में छेद को 'जल' कर सकता है।स्पेक्ट्रल होल चौड़ाई में ऑप्टिकल फाइबर की विशेषताओं और जलते संकेत की शक्ति के आधार पर भिन्न होते हैं, किन्तु सामान्यतः सी-बैंड के छोटे तरंग दैर्ध्य अंत में 1 से कम होते हैं, और लंबी तरंग दैर्ध्य पर कुछ एनएम होते हैं। सी-बैंड के आखिरी छेद की गहराई बहुत छोटी है, चूंकि, व्यवहार में इसका निरीक्षण करना कठिन होता है।
ध्रुवीकरण प्रभाव
यद्यपि DFA अनिवार्य रूप से ध्रुवीकरण स्वतंत्र प्रर्वर्धक है, डोपेंट आयनों का छोटा अनुपात कुछ ध्रुवीकरण के साथ अधिमानतः बातचीत करता है और इनपुट संकेत के ध्रुवीकरण पर छोटी निर्भरता हो सकती है (सामान्यतः <0.5 DB)। इसे ध्रुवीकरण आश्रित लाभ (पीडीजी) कहा जाता है। आयनों के अवशोषण और उत्सर्जन क्रॉस सेक्शन को अलग -अलग कांच की साइटों में सभी दिशाओं में यादृच्छिक रूप से गठबंधन किए गए प्रमुख अक्षों के साथ दीर्घवृत्त के रूप में मॉडल किया जा सकता है। गिलास में दीर्घवृत्त के उन्मुखीकरण का यादृच्छिक वितरण मैक्रोस्कोपिक रूप से आइसोट्रोपिक माध्यम का उत्पादन करता है, किन्तु मजबूत पंप लेजर उन आयनों को श्रेष्ठतम रूप से रोमांचक द्वारा अनिसोट्रोपिक वितरण को प्रेरित करता है जो पंप के ऑप्टिकल फील्ड वेक्टर के साथ अधिक संरेखित होते हैं। इसके अतिरिक्त, संकेत क्षेत्र के साथ गठबंधन किए गए उन उत्साहित आयनों ने अधिक उत्तेजित उत्सर्जन का उत्पादन किया। लाभ में परिवर्तन इस प्रकार पंप और संकेत लेज़रों के ध्रुवीकरण के संरेखण पर निर्भर है-अर्थात दो लेजर डोपेंट आयनों के ही उप-सेट के साथ बातचीत कर रहे हैं या नहीं। आदर्श डोपेड फाइबर में बिना बर्डिफ़्रिंग के, पीडीजी असुविधाजनक रूप से बड़ा होगा।सौभाग्य से, ऑप्टिकल फाइबर में छोटी मात्रा में बायरफ्रिंग सदैव सम्मलित होते हैं और इसके अतिरिक्त, फाइबर की लंबाई के साथ तेज और धीमी कुल्हाड़ी बेतरतीब ढंग से भिन्न होती हैं।एक विशिष्ट DFA में कई दसियों मीटर होते हैं, जो पहले से ही बायर फ्रिग्रेंस अक्षों की इस यादृच्छिकता को दिखाने के लिए पर्याप्त है।ये दो संयुक्त प्रभाव (जो फाइबर स्थानांतरण में ध्रुवीकरण मोड फैलाव को जन्म देते हैं) संकेत के सापेक्ष ध्रुवीकरण और फाइबर के साथ पंप लेज़रों के मिसलिग्न्मेंट का उत्पादन करते हैं, इस प्रकार पीडीजी को औसत करने के लिए प्रवृत्त होते हैं।इसका परिणाम यह है कि पीडीजी एकल प्रर्वर्धक में निरीक्षण करना बहुत कठिनाई है (किन्तु कई कैस्केड प्रर्वर्धकों के साथ लिंक में ध्यान देने योग्य है)।
एर्बियम-डोपेड ऑप्टिकल फाइबर प्रर्वर्धकों
एर्बियम-डॉप्ड फाइबर प्रर्वर्धक (EDFA) सबसे नियत फाइबर प्रर्वर्धक है क्योंकि इसकी प्रवर्धन विंडो सिलिका-आधारित ऑप्टिकल फाइबर की तीसरी ट्रांसमिशन विंडो के साथ मेल खाती है।एक सिलिका फाइबर के कोर को ट्राइवलेंट एर्बियम आयनों (एर) के साथ डोप किया जाता है3+) और कुशलता से 980 नैनोमीटर और 1480 nm के तरंग दैर्ध्य पर या उसके पास लेजर के साथ पंप किया जा सकता है, और लाभ 1550 nm क्षेत्र में प्रदर्शित किया गया है।EDFA प्रवर्धन क्षेत्र आवेदन से आवेदन तक भिन्न होता है और कुछ NM से ~ 80nm तक कहीं भी हो सकता है।पारंपरिक, या सी-बैंड प्रर्वर्धकों (~ 1525 एनएम से ~ 1565 एनएम) या लंबे, या एल-बैंड प्रर्वर्धकों (~ 1565 एनएम से ~ 1610 एनएम तक) के लिए दूरसंचार कॉल में EDFA का विशिष्ट उपयोग।इन दोनों बैंडों को EDFAS द्वारा प्रवर्धित किया जा सकता है, किन्तु दो अलग -अलग प्रर्वर्धकों का उपयोग करना सामान्य है, प्रत्येक बैंड के लिए अनुकूलित है।
C- और L-बैंड प्रर्वर्धकों के बीच प्रमुख अंतर यह है कि L-बैंड प्रर्वर्धकों में डोपेड फाइबर की लंबी लंबाई का उपयोग किया जाता है।फाइबर की लंबी लंबाई कम उलटा स्तर का उपयोग करने की अनुमति देती है, जिससे लंबे समय तक तरंग दैर्ध्य (सिलिका में एर्बियम के बैंड-संरचना के कारण) पर उत्सर्जन होता है, जबकि अभी भी उपयोगी मात्रा प्रदान करता है।[citation needed] EDFAS में दो सामान्यतः उपयोग किए जाने वाले पंपिंग बैंड हैं - 980 NM और 1480 nm या 980 NM बैंड में उच्च अवशोषण क्रॉस-सेक्शन होता है और सामान्यतः उपयोग किया जाता है जहां कम-ध्वनि प्रदर्शन की आवश्यकता होती है।अवशोषण बैंड अपेक्षाकृत संकीर्ण है और इसलिए तरंग दैर्ध्य स्थिर लेजर स्रोतों की आवश्यकता होती है। 1480 NM बैंड में कम, किन्तु व्यापक, अवशोषण क्रॉस-सेक्शन होता है और सामान्यतः उच्च शक्ति वाले प्रर्वर्धकों के लिए उपयोग किया जाता है। 980 NM और 1480 NM पंपिंग का संयोजन सामान्यतः प्रर्वर्धकों में उपयोग किया जाता है।
एरबियम-डोप किए गए फाइबर में लाभ और लेसिंग को पहली बार 1986-87 में दो समूहों द्वारा प्रदर्शित किया गया था डेविड एन पायने, रॉबर्ट जे मियर्स सहित ए मियर्स, आई एम जौन्सी और एल रीकी, साउथेम्प्टन विश्वविद्यालय से[15][16] और एटी एंड टी बेल लेबोरेटरीज से, जिसमें ई डेसुरवायर, पी बेकर और जे सिम्पसन सम्मलित हैं।[17] ड्यूल-स्टेज ऑप्टिकल प्रर्वर्धक जिसने डेंस वेव डिवीजन मल्टीप्लेक्सिंग (DWDM) को सक्षम किया, इसका आविष्कार स्टीफन बी। अलेक्जेंडर ने सीयेना कोर्पोरेशन में किया था।[18][19]
अन्य तरंग दैर्ध्य सीमाओं के लिए डोपेड फाइबर प्रर्वर्धकों
देहाती डोपेड फाइबर प्रर्वर्धकों का उपयोग एस बैंड (1450-1490 nm) और प्रासेओडाईमियम डोपेड प्रर्वर्धकों में 1300 NM क्षेत्र में किया गया है। चूंकि, उन क्षेत्रों ने अब तक कोई महत्वपूर्ण व्यावसायिक उपयोग नहीं देखा है और इसलिए उन प्रर्वर्धकों ने ईडीएफए के रूप में अधिक विकास का विषय नहीं किया है। चूंकि, यिट्टेरबियम डोपेड फाइबर लेजर और प्रर्वर्धकों, 1 माइक्रोमीटर तरंग दैर्ध्य के पास काम कर रहे हैं, सामग्री के औद्योगिक प्रसंस्करण में कई अनुप्रयोग हैं, क्योंकि इन उपकरणों को अत्यधिक उच्च आउटपुट पावर (दसियों किलोवाट) के साथ बनाया जा सकता है।
अर्धचालक ऑप्टिकल प्रर्वर्धक
अर्धचालक ऑप्टिकल प्रर्वर्धकों (एसओए) प्रर्वर्धकों हैं जो लाभ माध्यम प्रदान करने के लिए अर्धचालक का उपयोग करते हैं।[20] इन प्रर्वर्धकों में फैब्री-पेरोट लेजर डायोड के लिए समान संरचना होती है, किन्तु अंत चेहरों पर एंटी-रिफ्लेक्शन डिज़ाइन तत्वों के साथ।हाल के डिजाइनों में एंटी-रिफ्लेक्टिव कोटिंग्स और टिल्टेड तरंग मार्गदर्शिका और विंडो क्षेत्र सम्मलित हैं जो अंत चेहरे के प्रतिबिंब को 0.001%से कम कर सकते हैं।चूंकि यह गुहा से शक्ति का हानि उत्पन्न करता है जो कि लाभ से अधिक है, यह प्रर्वर्धक को लेजर के रूप में कार्य करने से रोकता है।एक अन्य प्रकार के SOA में दो क्षेत्र होते हैं।एक भाग में फैब्री-पेरोट लेजर डायोड की संरचना होती है और दूसरे में आउटपुट पहलू पर विद्युत घनत्व को कम करने के लिए पतला ज्यामिति होती है।
अर्धचालक ऑप्टिकल प्रर्वर्धकों को सामान्यतः समूह III-V यौगिक अर्धचालक जैसे GAAS/एलगास, इनीडियम फासफाइड/इनगास, इनीडियम फासफाइड/इनगासP और इनीडियम फासफाइड/इनएलगास से बनाया जाता है, चूंकि II-VI जैसे किसी भी प्रत्यक्ष बैंड गैप अर्धचालक का उपयोग किया जा सकता है।इस प्रकार के प्रर्वर्धकों का उपयोग प्रायः फाइबर-पिगेटेड घटकों के रूप में दूरसंचार प्रणालियों में किया जाता है, जो 850 NM और 1600 NM के बीच संकेत वेवलेंथ पर काम कर रहा है और 30 DB तक का लाभ उत्पन्न करता है।
अर्धचालक ऑप्टिकल प्रर्वर्धक छोटे आकार और विद्युत रूप से पंप किया जाता है। यह EDFA की तुलना में संभावित रूप से कम महंगा हो सकता है और इसे अर्धचालक लेजर, मॉड्यूलेटर आदि के साथ एकीकृत किया जा सकता है, चूंकि, प्रदर्शन अभी भी EDFA के साथ तुलनीय नहीं है।एसओए में उच्च ध्वनि, कम लाभ, मध्यम ध्रुवीकरण निर्भरता और तेजी से क्षणिक समय के साथ उच्च नॉनलाइनर ऑप्टिक्सिटी है। SOA का मुख्य लाभ यह है कि सभी चार प्रकार के नानलीनियर संचालन (क्रॉस गेन मॉड्यूलेशन, क्रॉस चरण मॉड्यूलेशन, तरंग दैर्ध्य रूपांतरण और चार तरंग मिश्रण) आयोजित किए जा सकते हैं।इसके अतिरिक्त, SOA को कम पावर लेजर के साथ चलाया जा सकता है।[21] यह लघु नैनोसेकंड या कम ऊपरी स्थिति जीवनकाल से उत्पन्न होता है, जिससे कि लाभ पंप या संकेत पावर के परिवर्तन के लिए तेजी से प्रतिक्रिया करता है और लाभ के परिवर्तन भी चरण परिवर्तन का कारण बनते हैं जो संकेतों को विकृत कर सकते हैं। यह नानलीनियरिटी ऑप्टिकल संचार अनुप्रयोगों के लिए सबसे गंभीर समस्या प्रस्तुत करता है। चूंकि यह EDFA से विभिन्न तरंग दैर्ध्य क्षेत्रों में लाभ की संभावना प्रदान करता है। लाभ-क्लैंपिंग विधिों का उपयोग करके रैखिक ऑप्टिकल प्रर्वर्धकों को विकसित किया गया है।
उच्च ऑप्टिकल नानलीनियरिटी ऑल-ऑप्टिकल स्विचिंग और तरंग दैर्ध्य रूपांतरण जैसे सभी ऑप्टिकल संकेत प्रोसेसिंग के लिए अर्धचालक प्रर्वर्धकों को आकर्षक बनाता है। अर्धचालक ऑप्टिकल प्रर्वर्धकों पर ऑप्टिकल संकेत प्रोसेसिंग, तरंग दैर्ध्य रूपांतरण, घड़ी वसूली, संकेत डेमल्टिप्लेक्सिंग और पैटर्न मान्यता के लिए तत्वों के रूप में बहुत शोध किया गया है।
ऊर्ध्वाधर-गुहा SOA
SOA परिवार के लिए हालिया जोड़ ऊर्ध्वाधर-गुहा SOA (VCSOA) है। ये उपकरण संरचना में समान हैं, और कई विशेषताओं के साथ, ऊर्ध्वाधर-कैविटी सतह-उत्सर्जक लेज़रों (vcsels) के साथ साझा करते हैं। VCSOAs और VCSELs की तुलना करते समय प्रमुख अंतर प्रर्वर्धक गुहा में उपयोग किए जाने वाले कम दर्पण परावर्तकता है।VCSOAs के साथ, उपकरण को लासिंग के प्रारंभ तक पहुंचने से रोकने के लिए कम प्रतिक्रिया आवश्यक है। बहुत कम गुहा की लंबाई, और इसी प्रकार के पतले लाभ के माध्यम से, ये उपकरण बहुत कम एकल-पास लाभ (सामान्यतः कुछ प्रतिशत के क्रम पर) और बहुत बड़ी मुक्त वर्णक्रमीय सीमा (एफएसआर) का प्रदर्शन करते हैं। छोटे एकल-पास लाभ को कुल संकेत लाभ को बढ़ावा देने के लिए अपेक्षाकृत उच्च दर्पण परावर्तन की आवश्यकता होती है। कुल संकेत लाभ को बढ़ावा देने के अतिरिक्त, दोलित्र गुहा संरचना के उपयोग के परिणामस्वरूप बहुत ही संकीर्ण लाभ बैंडविड्थ होता है;ऑप्टिकल गुहा के बड़े एफएसआर के साथ युग्मित, यह प्रभावी रूप से वीसीएसओए के संचालन को एकल-चैनल प्रवर्धन तक सीमित करता है। इस प्रकार, VCSOA को एम्पलीफाइंग फिल्टर के रूप में देखा जा सकता है।
उनके ऊर्ध्वाधर-कैविटी ज्यामिति को देखते हुए, VCSOAs दोलित्र गुहा ऑप्टिकल प्रर्वर्धकों हैं जो इनपुट/आउटपुट संकेत के साथ काम करते हैं जो वेफर सतह पर सामान्य रूप से प्रवेश करते हैं/बाहर निकलते हैं। उनके छोटे आकार के अतिरिक्त, वीसीएसओएएस की सतह के सामान्य संचालन से कई फायदे होते हैं, जिनमें कम विद्युत की खपत, कम ध्वनि आकृति, ध्रुवीकरण असंवेदनशील लाभ, और एकल अर्धचालक चिप पर उच्च भरण कारक दो-आयामी सरणियों को गढ़ने की क्षमता सम्मलित है। ये उपकरण अभी भी अनुसंधान के प्रारंभिक चरणों में हैं, चूंकि आशाजनक प्रस्तावनाकर्ता परिणामों का प्रदर्शन किया गया है। VCSOA प्रौद्योगिकी के लिए और विस्तार वेवलेंथ ट्यून करने योग्य उपकरणों का प्रदर्शन है। ये MEMS-ट्यूनेबल वर्टिकल-कैविटी SOAs प्रर्वर्धक के पीक गेन वेवलेंथ के व्यापक और निरंतर ट्यूनिंग के लिए माइक्रोइलेक्ट्रोमैकेनिक प्रणाली (माइक्रो विद्युत यांत्रिकी प्रणाली) आधारित ट्यूनिंग तंत्र का उपयोग करते हैं।[22] SOAs में अधिक तेजी से लाभ प्रतिक्रिया होती है, जो 1 से 100 PS के क्रम में है।
टेप किए गए प्रर्वर्धकों
उच्च आउटपुट पावर और व्यापक तरंग दैर्ध्य रेंज के लिए, टेप किए गए प्रर्वर्धकों का उपयोग किया जाता है। इन प्रर्वर्धकों में पार्श्व एकल-मोड अनुभाग और पतला संरचना के साथ खंड होता है, जहां लेजर प्रकाश को प्रवर्धित किया जाता है।पतला संरचना आउटपुट पहलू पर विद्युत घनत्व में कमी की ओर ले जाती है।
विशिष्ट पैरामीटर:[23]
- तरंग दैर्ध्य रेंज: 633 से 1480 एनएम
- इनपुट पावर: 10 से 50 MW
- आउटपुट पावर: 3 डब्ल्यू तक
रमन प्रर्वर्धक
एक रमन प्रर्वर्धक में, संकेत रमन प्रवर्धन द्वारा तीव्र होता है। EDFA और SOA के विपरीत प्रवर्धन प्रभाव संकेत और ऑप्टिकल फाइबर के भीतर पंप लेजर के बीच नॉनलाइनियर इंटरैक्शन द्वारा प्राप्त किया जाता है। रमन प्रर्वर्धक के दो प्रकार हैं: वितरित और प्रर्वधक। वितरित रमन प्रर्वर्धक वह है जिसमें फाइबर स्थानांतरण का उपयोग संकेत तरंग दैर्ध्य के साथ पंप तरंग दैर्ध्य को गुणा करके लाभ के माध्यम के रूप में किया जाता है, जबकि प्रर्वधक वाला रमन प्रर्वर्धक प्रवर्धन प्रदान करने के लिए फाइबर की समर्पित, छोटी लंबाई का उपयोग करता है।एक प्रर्वधक वाले रमन प्रर्वर्धक के स्थिति में, छोटे कोर के साथ अत्यधिक नॉनलाइनियर फाइबर का उपयोग संकेत और पंप तरंग दैर्ध्य के बीच बातचीत को बढ़ाने के लिए किया जाता है, और इस प्रकार आवश्यक फाइबर की लंबाई कम हो जाता है।
पंप लाइट को उसी दिशा में फाइबर स्थानांतरण में जोड़ा जा सकता है, जैसा कि संकेत (सह-दिशात्मक पंपिंग), विपरीत दिशा (कंट्रा-दिशात्मक पंपिंग) या दोनों में कॉन्ट्रा-दिशात्मक पंपिंग अधिक सामान्य है क्योंकि पंप से संकेत में ध्वनि का हस्तांतरण कम हो जाता है।
रमन प्रवर्धन के लिए आवश्यक पंप शक्ति EDFA द्वारा आवश्यक से अधिक है, जिसमें 500 से अधिक है; वितरित प्रर्वर्धक में लाभ के उपयोगी स्तर प्राप्त करने के लिए MW की आवश्यकता होती है।प्रर्वधक वाले प्रर्वर्धकों, जहां उच्च ऑप्टिकल शक्तियों के सुरक्षा निहितार्थ से बचने के लिए पंप लाइट को सुरक्षित रूप से समाहित किया जा सकता है, ऑप्टिकल पावर के 1 डब्ल्यू से अधिक का उपयोग कर सकते हैं।
रमन प्रवर्धन का प्रमुख लाभ फाइबर स्थानांतरण के भीतर वितरित प्रवर्धन प्रदान करने की क्षमता है, जिससे प्रर्वर्धक और संकेत पुनर्जनन साइटों के बीच स्पैन की लंबाई बढ़ जाती है।रमन प्रर्वर्धकों के प्रवर्धन बैंडविड्थ को उपयोग किए गए पंप तरंग दैर्ध्य द्वारा परिभाषित किया गया है और इसलिए प्रवर्धन को व्यापक रूप से प्रदान किया जा सकता है, और अलग -अलग, अन्य प्रर्वर्धक प्रकारों के साथ संभव हो सकते हैं जो कि प्रवर्धन 'विंडो' को परिभाषित करने के लिए डोपेंट और उपकरण डिजाइन पर विश्वास करते हैं।
रमन प्रर्वर्धकों के कुछ मौलिक लाभ हैं।सबसे पहले, रमन गेन हर फाइबर में सम्मलित है, जो टर्मिनल छोरों से अपग्रेड करने का लागत प्रभावी साधन प्रदान करता है।दूसरा, लाभ नॉनसोनेंट है, जिसका अर्थ है कि लाभ फाइबर के पूरे पारदर्शिता क्षेत्र में लगभग 0.3 से 2 माइक्रोन तक उपलब्ध है।रमन प्रर्वर्धकों का तीसरा लाभ यह है कि लाभ स्पेक्ट्रम को पंप तरंग दैर्ध्य को समायोजित करके सिलवाया जा सकता है।उदाहरण के लिए, ऑप्टिकल बैंडविड्थ को बढ़ाने के लिए कई पंप लाइनों का उपयोग किया जा सकता है, और पंप वितरण लाभ फ्लैटनेस को निर्धारित करता है।रमन प्रवर्धन का और लाभ यह है कि यह बैंडविड्थ 5 टीएचजेड से अधिक होने के साथ अपेक्षाकृत व्यापक-बैंड प्रर्वर्धक है, और लाभ विस्तृत तरंग दैर्ध्य रेंज पर यथोचित सपाट है।[24] चूंकि, रमन प्रर्वर्धकों के लिए कई चुनौतियों ने उनके पहले गोद लेने को रोका।सबसे पहले, ईडीएफए की तुलना में, रमन प्रर्वर्धकों में कम संकेत शक्तियों में अपेक्षाकृत खराब पंपिंग दक्षता होती है। चूंकि हानि, पंप दक्षता की यह कमी भी रमन प्रर्वर्धकों में क्लैम्पिंग को आसान बनाती है।दूसरा, रमन प्रर्वर्धकों को लंबे समय तक फाइबर की आवश्यकता होती है।चूंकि, इस हानि को ही फाइबर में लाभ और फैलाव मुआवजे के संयोजन से कम किया जा सकता है।रमन प्रर्वर्धकों का तीसरा हानि तेज़ प्रतिक्रिया समय है, जो ध्वनि के नए स्रोतों को जन्म देता है, जैसा कि नीचे चर्चा की गई है।अंत में, WDM संकेत चैनलों के लिए प्रर्वर्धक में नॉनलाइनर पेनल्टी की चिंताएं हैं।[24]
नोट: इस लेख के पहले संस्करण का पाठ सार्वजनिक डोमेन संघीय मानक 1037C से लिया गया था।
ऑप्टिकल पैरामीट्रिक प्रवर्धक
एक ऑप्टिकल पैरामीट्रिक प्रर्वर्धक नानलीनियर माध्यम में कमजोर संकेत-इम्पल्स के प्रवर्धन की अनुमति देता है जैसे कि केन्द्राप्रक्षता नॉनलाइनियर माध्यम (जैसे बीटा बेरियम बोरेट (बीबीओ)) या यहां तक कि केर प्रभाव के माध्यम से मानक फ्यूज्ड सिलिका ऑप्टिकल फाइबर में पहले से उल्लिखित प्रर्वर्धकों के विपरीत, जो अधिकतम दूरसंचार वातावरण में उपयोग किए जाते हैं, इस प्रकार ने अल्ट्राफास्ट ठोस स्थिति के लेज़रों (जैसे टीआई-सैफायर लेजर या टीआई: नीलम) की आवृत्ति ट्यूनबिलिटी का विस्तार करने में अपना मुख्य अनुप्रयोग पाया था। एक समरेख इंटरैक्शन ज्यामिति ऑप्टिकल पैरामीट्रिक प्रर्वर्धकों का उपयोग करके बहुत व्यापक प्रवर्धन बैंडविड्थ्स में सक्षम हैं।
हाल की उपलब्धियां
एक औद्योगिक सामग्री प्रसंस्करण उपकरण के रूप में उच्च शक्ति फाइबर लेजर को अपनाना कई वर्षों से जारी है और अब चिकित्सा और वैज्ञानिक बाजारों सहित अन्य बाजारों में विस्तार हो रहा है। वैज्ञानिक बाजार में प्रवेश को सक्षम करने वाली प्रमुख वृद्धि उच्च चालाकी फाइबर प्रर्वर्धकों में सुधार रही है, जो अब उत्कृष्ट बीम गुणवत्ता और स्थिर रैखिक ध्रुवीकृत आउटपुट के साथ एकल आवृत्ति लाइनविड्स (<5 kHz) देने में सक्षम हैं। इन विनिर्देशों को पूरा करने वाले प्रणाली पिछले कुछ वर्षों में आउटपुट पावर के कुछ वाट से निरंतर आगे बढ़े हैं, प्रारंभ में वाट्स के दसियों और अब सैकड़ों वाट्स पावर लेवल में।यह पावर स्केलिंग फाइबर विधि में विकास के साथ प्राप्त की गई है, जैसे कि फाइबर के भीतर उत्तेजित ब्रिलौइन बिखरना (एसबीएस) दमन/शमन विधि को अपनाना, साथ ही साथ बड़े मोड क्षेत्र (एलएमए) फाइबर सहित समग्र प्रर्वर्धक डिजाइन में सुधारकम एपर्चर कोर,[25] सूक्ष्म संरचित रॉड-प्रकार फाइबर [26][27] पेचदार कोर,[28] या चिरैली-युग्मित कोर फाइबर,[29] और टैप किए गए डबल-क्लैड फाइबर (टी-डीसीएफ)।[30] उच्च चालाकी, उच्च शक्ति और स्पंदित लेजर फाइबर प्रर्वर्धकों की नवीनतम पीढ़ी अब वाणिज्यिक ठोस-स्थिति एकल आवृत्ति स्रोतों से उपलब्ध होने वाले विद्युत का स्तर प्रदान करती है और उच्च शक्ति के स्तर और स्थिर अनुकूलित प्रदर्शन के परिणामस्वरूप नए वैज्ञानिक अनुप्रयोगों को खोल रही है।[31]
कार्यान्वयन
कई सिमुलेशन उपकरण हैं जिनका उपयोग ऑप्टिकल प्रर्वर्धकों को डिजाइन करने के लिए किया जा सकता है। लोकप्रिय वाणिज्यिक उपकरण आप्टीतरंग प्रणाली और VPI प्रणाली द्वारा विकसित किए गए हैं।
यह भी देखें
- पुनर्योजी प्रवर्धन
- अर्धचालक लेज़रों का नॉनलाइनियर थ्योरी
संदर्भ
- ↑ "A Guiding Star". Eso.org. European Southern Observatory. Retrieved 29 October 2014.
- ↑ Taylor, Nick (2007). Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War. backinprint.com. p. 69.
- ↑ 3.0 3.1 4704583, Gould, Gordon, "United States Patent: 4704583 - Light amplifiers employing collisions to produce a population inversion", issued November 3, 1987
- ↑ 4.0 4.1 "POLARIZINGAPPARATUS EMPLOYING AN OPTICAL ELEMENT INCLNED AT BREWSTERS ANGLE" (PDF). May 24, 1988. Archived (PDF) from the original on 2022-10-09.
- ↑ Jones, Stacy V. (1987-11-07). "Patents; Inventor Adds to His Laser Total". The New York Times (in English). ISSN 0362-4331. Retrieved 2021-11-03.
- ↑ Taylor, Nick (2007). Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War. Backprint.com. p. 283.
- ↑ USPTO.report. "Method for producing a tunable erbium fiber laser". USPTO.report (in English). Retrieved 2021-11-03.
- ↑ "Fiber Keeps Its Promise - George Gilder Essay". www.panix.com. Retrieved 2021-11-03.
- ↑ Grobe, Klaus; Eiselt, Michael (2013). Wavelength Division Multiplexing: A Practical Engineering Guide. Wiley. p. 2.
- ↑ Frede, Maik (2015). "Catch the Peak". Laser Technik Journal. wiley. 12: 30–33. doi:10.1002/latj.201500001.
- ↑ Frede, Maik (2007). "Fundamental mode, single-frequency laser amplifier for gravitational wave detectors". Optics Express. OSA. 15 (2): 459–65. Bibcode:2007OExpr..15..459F. doi:10.1364/OE.15.000459. hdl:11858/00-001M-0000-0012-BAD8-1. PMID 19532263.
- ↑ Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. Archived from the original on 2021-08-17. Retrieved 2021-02-24.
- ↑ Baney, Douglas, M., Gallion, Philippe, Tucker, Rodney S., ”Theory and Measurement Techniques for the Noise Figure of Optical Amplifiers”, Optical Fiber Technology 6, 122 pp. 122-154 (2000)
- ↑ Paschotta, Rüdiger. "Tutorial on Fiber Amplifiers". RP Photonics. Retrieved 10 October 2013.
- ↑ Mears, R.J. and Reekie, L. and Poole, S.B. and Payne, D.N.: "Low-threshold tunable CW and Q-switched fiber laser operating at 1.55µm", Electron. Lett., 1986, 22, pp.159–160
- ↑ R.J. Mears, L. Reekie, I.M. Jauncey and D. N. Payne: “Low-noise Erbium-doped fiber amplifier at 1.54µm”, Electron. Lett., 1987, 23, pp.1026–1028
- ↑ E. Desurvire, J. Simpson, and P.C. Becker, High-gain erbium-doped traveling-wave fiber amplifier," Optics Letters, vol. 12, No. 11, 1987, pp. 888–890
- ↑ United States Patent Office #5696615; “Wavelength division multiplexed optical communication systems employing uniform gain optical amplifiers.”
- ↑ "Subject: Into the Fibersphere" (TXT). Massis.lcs.mit.edu. Retrieved 2017-08-10.
- ↑ M. J. Connolly, Semiconductor Optical Amplifiers. Boston, MA: Springer-Verlag, 2002. ISBN 978-0-7923-7657-6
- ↑ Ghosh, B.; Mukhopadhyay, S. (2011). "All-Optical Wavelength encoded NAND and NOR Operations exploiting Semiconductor Optical Amplifier based Mach-Zehnder Interferometer Wavelength Converter and Phase Conjugation System". Optics and Photonics Letters. 4 (2): 1–9. doi:10.1142/S1793528811000172.
- ↑ "MEMS-Tunable Vertical-cavity SOA". Engineering.ucsb.edu. Archived from the original on 11 March 2007. Retrieved 10 August 2017.
- ↑ "Tapered amplifiers – available wavelengths and output powers". Hanel Photonics. Retrieved Sep 26, 2014.
- ↑ 24.0 24.1 Team, FiberStore. "Optical Amplifier Tutorial - FS.COM". Fiberstore.com. Retrieved 10 August 2017.
- ↑ Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew (2000-04-01). "Single-mode operation of a coiled multimode fiber amplifier". Optics Letters (in English). 25 (7): 442–444. Bibcode:2000OptL...25..442K. doi:10.1364/OL.25.000442. ISSN 1539-4794. PMID 18064073.
- ↑ Müller, Michael; Kienel, Marco; Klenke, Arno; Gottschall, Thomas; Shestaev, Evgeny; Plötner, Marco; Limpert, Jens; Tünnermann, Andreas (2016-08-01). "1 kW 1 mJ eight-channel ultrafast fiber laser". Optics Letters (in English). 41 (15): 3439–3442. arXiv:2101.08498. Bibcode:2016OptL...41.3439M. doi:10.1364/OL.41.003439. ISSN 1539-4794. PMID 27472588. S2CID 11678581.
- ↑ Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J. (2005-02-21). "High-power rod-type photonic crystal fiber laser". Optics Express (in English). 13 (4): 1055–1058. Bibcode:2005OExpr..13.1055L. doi:10.1364/OPEX.13.001055. ISSN 1094-4087. PMID 19494970.
- ↑ Wang, P.; Cooper, L. J.; Sahu, J. K.; Clarkson, W. A. (2006-01-15). "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser". Optics Letters (in English). 31 (2): 226–228. Bibcode:2006OptL...31..226W. doi:10.1364/OL.31.000226. ISSN 1539-4794. PMID 16441038.
- ↑ Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W. (2011-02-14). "Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber". Optics Express (in English). 19 (4): 3464–3470. Bibcode:2011OExpr..19.3464L. doi:10.1364/OE.19.003464. ISSN 1094-4087. PMC 3135632. PMID 21369169.
- ↑ Filippov, V.; Chamorovskii, Yu; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O. G. (2008-02-04). "Double clad tapered fiber for high power applications". Optics Express (in English). 16 (3): 1929–1944. Bibcode:2008OExpr..16.1929F. doi:10.1364/OE.16.001929. ISSN 1094-4087. PMID 18542272.
- ↑ "Nufern > Library> Article". Nufern.com. Retrieved 10 August 2017.