कम द्रव्यमान

From Vigyanwiki
Revision as of 20:22, 6 February 2023 by alpha>Indicwiki (Created page with "{{Short description|Effective inertial mass}} भौतिकी में, न्यूटोनियन यांत्रिकी की दो-शरीर की...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

भौतिकी में, न्यूटोनियन यांत्रिकी की दो-शरीर की समस्या में दिखाई देने वाला प्रभावी द्रव्यमान#जड़त्वीय द्रव्यमान कम किया हुआ द्रव्यमान है। यह एक मात्रा है जो दो-शरीर की समस्या को हल करने की अनुमति देती है जैसे कि यह एक-शरीर की समस्या थी। हालाँकि, ध्यान दें कि गुरुत्वाकर्षण बल का निर्धारण करने वाला द्रव्यमान कम नहीं होता है। गणना में, एक द्रव्यमान को कम द्रव्यमान से बदला जा सकता है, यदि इसकी भरपाई दूसरे द्रव्यमान को दोनों द्रव्यमानों के योग से करके की जाती है। घटे हुए द्रव्यमान को अक्सर द्वारा निरूपित किया जाता है (म्यू (अक्षर)), हालांकि मानक गुरुत्वाकर्षण पैरामीटर को भी निरूपित किया जाता है (जैसे म्यू (अक्षर) #भौतिकी और इंजीनियरिंग)। इसमें द्रव्यमान का आयामी विश्लेषण और SI इकाई किग्रा है।

समीकरण

दो पिंड दिए गए हैं, एक का द्रव्यमान m है1 और दूसरा द्रव्यमान m के साथ2, अज्ञात के रूप में दूसरे के संबंध में एक शरीर की स्थिति के साथ समतुल्य एक-पिंड समस्या, द्रव्यमान के एकल पिंड की है[1][2]

जहां इस द्रव्यमान पर बल दो पिंडों के बीच बल द्वारा दिया जाता है।

गुण

घटा हुआ द्रव्यमान हमेशा प्रत्येक पिंड के द्रव्यमान से कम या उसके बराबर होता है:

और पारस्परिक योज्य संपत्ति है:

जो पुनर्व्यवस्था द्वारा अनुकूल माध्य के आधे के बराबर है।

विशेष मामले में कि :

अगर , तब .

व्युत्पत्ति

समीकरण निम्नानुसार प्राप्त किया जा सकता है।

न्यूटोनियन यांत्रिकी

न्यूटन के दूसरे नियम का उपयोग करते हुए, एक पिंड (कण 2) द्वारा दूसरे पिंड (कण 1) पर लगाया गया बल है:

कण 1 द्वारा कण 2 पर लगाया गया बल है:

न्यूटन के तीसरे नियम के अनुसार, कण 2 कण 1 पर जो बल लगाता है वह कण 1 द्वारा कण 2 पर लगाए गए बल के बराबर और विपरीत होता है:

इसलिए:

सापेक्ष त्वरण एrel दो निकायों के बीच द्वारा दिया गया है:

ध्यान दें कि (चूंकि व्युत्पन्न एक रैखिक ऑपरेटर है) सापेक्ष त्वरण पृथक्करण के त्वरण के बराबर है दो कणों के बीच।

यह सिस्टम के विवरण को एक बल के लिए सरल करता है (चूंकि ), एक समन्वय , और एक द्रव्यमान . इस प्रकार हमने अपनी समस्या को स्वतंत्रता की एक डिग्री तक कम कर दिया है, और हम यह निष्कर्ष निकाल सकते हैं कि कण 1 कण 2 की स्थिति के संबंध में कम द्रव्यमान के बराबर द्रव्यमान के एक कण के रूप में चलता है, .

लग्रंगियन यांत्रिकी

वैकल्पिक रूप से, द्वि-निकाय समस्या का लैग्रैंजियन विवरण एक लैग्रैन्जियन यांत्रिकी देता है

कहाँ द्रव्यमान का स्थिति सदिश है (कण का). स्थितिज ऊर्जा V एक फलन है क्योंकि यह केवल कणों के बीच निरपेक्ष दूरी पर निर्भर है। अगर हम परिभाषित करते हैं

और द्रव्यमान का केंद्र इस संदर्भ फ्रेम में हमारे मूल के साथ मेल खाता है, अर्थात

,

तब

फिर ऊपर प्रतिस्थापित करने से एक नया Lagrangian मिलता है

कहाँ

घटा हुआ द्रव्यमान है। इस प्रकार हमने दो शरीर की समस्या को एक शरीर की समस्या बना दिया है।

अनुप्रयोग

कम द्रव्यमान का उपयोग दो-शरीर की समस्याओं में किया जा सकता है, जहां शास्त्रीय यांत्रिकी लागू होती है।

एक रेखा में दो बिन्दु द्रव्यमानों का जड़त्व आघूर्ण

द्रव्यमान के केंद्र के चारों ओर घूमने वाले दो बिंदु द्रव्यमान।

एक प्रणाली में दो बिंदु द्रव्यमान के साथ और जैसे कि वे सहरेखीय हैं, दो दूरियाँ और घूर्णन अक्ष के साथ पाया जा सकता है

कहाँ दोनों दूरियों का योग है .

यह द्रव्यमान के केंद्र के चारों ओर घूमने के लिए है। इस अक्ष के चारों ओर जड़ता के क्षण को सरल बनाया जा सकता है


कणों का टकराव

पुनर्स्थापना ई के गुणांक के साथ टकराव में, गतिज ऊर्जा में परिवर्तन के रूप में लिखा जा सकता है

,

जहां विrel टक्कर से पहले पिंडों का सापेक्ष वेग है।

परमाणु भौतिकी में विशिष्ट अनुप्रयोगों के लिए, जहां एक कण का द्रव्यमान दूसरे की तुलना में बहुत बड़ा होता है, कम द्रव्यमान को सिस्टम के छोटे द्रव्यमान के रूप में अनुमानित किया जा सकता है। कम द्रव्यमान सूत्र की सीमा जब एक द्रव्यमान अनंत तक जाता है तो छोटा द्रव्यमान होता है, इस प्रकार गणना को आसान बनाने के लिए इस सन्निकटन का उपयोग किया जाता है, खासकर जब बड़े कण का सटीक द्रव्यमान ज्ञात नहीं होता है।

उनके गुरुत्वाकर्षण आकर्षण के तहत दो विशाल पिंडों की गति

गुरुत्वाकर्षण संभावित ऊर्जा के मामले में

हम पाते हैं कि दूसरे पिंड के संबंध में पहले पिंड की स्थिति उसी अंतर समीकरण द्वारा नियंत्रित होती है, जैसे कि कम द्रव्यमान वाले पिंड की स्थिति, दो द्रव्यमानों के योग के बराबर द्रव्यमान वाले पिंड की परिक्रमा करती है, क्योंकि


गैर-सापेक्ष क्वांटम यांत्रिकी

इलेक्ट्रॉन पर विचार करें (द्रव्यमान me) और प्रोटॉन (द्रव्यमान mp) हाइड्रोजन परमाणु में।[3] वे द्रव्यमान के एक सामान्य केंद्र, दो शरीर की समस्या के बारे में एक दूसरे की परिक्रमा करते हैं। इलेक्ट्रॉन की गति का विश्लेषण करने के लिए, एक-निकाय समस्या, कम द्रव्यमान इलेक्ट्रॉन द्रव्यमान को प्रतिस्थापित करता है

और प्रोटॉन द्रव्यमान दो द्रव्यमानों का योग बन जाता है

इस विचार का उपयोग हाइड्रोजन परमाणु के लिए श्रोडिंगर समीकरण स्थापित करने के लिए किया जाता है।

अन्य उपयोग

कम द्रव्यमान भी आमतौर पर फॉर्म के बीजगणितीय शब्द को संदर्भित कर सकता है[citation needed]

जो फॉर्म के समीकरण को सरल करता है

घटा हुआ द्रव्यमान आमतौर पर समानांतर में दो सिस्टम तत्वों के बीच संबंध के रूप में उपयोग किया जाता है, जैसे प्रतिरोधक; चाहे ये इलेक्ट्रिकल, थर्मल, हाइड्रोलिक या मैकेनिकल डोमेन में हों। लोचदार मापांक के लिए बीम के अनुप्रस्थ कंपन में एक समान अभिव्यक्ति दिखाई देती है।[4] यह संबंध तत्वों के भौतिक गुणों के साथ-साथ उन्हें जोड़ने वाले निरंतरता समीकरण द्वारा निर्धारित किया जाता है।

यह भी देखें

संदर्भ

  1. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) 0-89573-752-3
  2. Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8
  3. Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry (Volume 1), P.W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0
  4. Experimental study of the Timoshenko beam theory predictions, A.Díaz-de-Anda J.Flores, L.Gutiérrez, R.A.Méndez-Sánchez, G.Monsivais, and A.Morales.Journal of Sound and Vibration Volume 331, Issue 26, 17 December 2012, Pages 5732-5744 https://doi.org/10.1016/j.jsv.2012.07.041


बाहरी संबंध