बोह्र त्रिज्या
Symbol | a0 or rBohr |
---|---|
Named after | Niels Bohr |
Approximate values (to three significant digits) | |
SI units | 5.29×10−11 m |
natural units | 3.27×1024 ℓP |
बोह्र त्रिज्या (ए0) एक भौतिक स्थिरांक है, जो लगभग परमाणु नाभिक और हाइड्रोजन परमाणु में इसकी जमीनी अवस्था में इलेक्ट्रॉन के बीच की सबसे संभावित दूरी के बराबर है। परमाणु के बोहर मॉडल में इसकी भूमिका के कारण इसका नाम नील्स बोह्र के नाम पर रखा गया है। इसका मूल्य है 5.29177210903(80)×10−11 m.[1][2]
परिभाषा और मूल्य
बोह्र त्रिज्या के रूप में परिभाषित किया गया है[3]
- मुक्त स्थान की पारगम्यता है,
- घटी हुई प्लैंक स्थिरांक है,
- इलेक्ट्रॉन बाकी द्रव्यमान है,
- प्राथमिक शुल्क है,
- निर्वात में प्रकाश की गति है, और
- ठीक-संरचना स्थिरांक है।
बोह्र त्रिज्या (SI इकाइयों में) का CODATA मान है 5.29177210903(80)×10−11 m.[1]
इतिहास
1913 में नील्स बोह्र द्वारा प्रस्तावित परमाणु संरचना के बोह्र मॉडल में, इलेक्ट्रोस्टैटिक आकर्षण के तहत इलेक्ट्रॉन एक केंद्रीय परमाणु नाभिक की परिक्रमा करते हैं। मूल व्युत्पत्ति ने माना कि इलेक्ट्रॉनों में कम प्लैंक स्थिरांक के पूर्णांक गुणकों में कक्षीय कोणीय गति होती है, जो इन स्तरों में से प्रत्येक के लिए एक निश्चित त्रिज्या की भविष्यवाणी के साथ-साथ उत्सर्जन स्पेक्ट्रा में असतत ऊर्जा स्तरों के अवलोकन से सफलतापूर्वक मेल खाती है। सबसे सरल परमाणु, हाइड्रोजन में, एक एकल इलेक्ट्रॉन नाभिक की परिक्रमा करता है, और इसकी सबसे छोटी संभव कक्षा, सबसे कम ऊर्जा के साथ, बोह्र त्रिज्या के लगभग बराबर कक्षीय त्रिज्या होती है। (यह कम द्रव्यमान के कारण बोह्र त्रिज्या नहीं है। वे लगभग 0.05% भिन्न हैं।)
1926 में प्रकाशित श्रोडिंगर समीकरण का पालन करते हुए परमाणु के बोह्र मॉडल को एक इलेक्ट्रॉन संभाव्यता बादल द्वारा हटा दिया गया था। यह ठीक संरचना और अतिसूक्ष्म संरचना का उत्पादन करने के लिए स्पिन और क्वांटम वैक्यूम प्रभावों से और जटिल है। फिर भी, बोह्र त्रिज्या सूत्र परमाणु भौतिकी गणना में केंद्रीय रहता है, मौलिक स्थिरांक के साथ अपने सरल संबंध के कारण (यही कारण है कि इसे कम द्रव्यमान के बजाय वास्तविक इलेक्ट्रॉन द्रव्यमान का उपयोग करके परिभाषित किया गया है, जैसा कि ऊपर उल्लेख किया गया है)। इस प्रकार, यह परमाणु इकाइयों में लम्बाई की इकाई बन गया।
श्रोडिंगर के हाइड्रोजन परमाणु के क्वांटम-मैकेनिकल सिद्धांत में, बोह्र त्रिज्या रेडियल समन्वय का मान है जिसके लिए इलेक्ट्रॉन स्थिति की रेडियल संभाव्यता घनत्व उच्चतम है। इसके विपरीत, इलेक्ट्रॉन की रेडियल दूरी का अपेक्षित मान, is 3/2a0.[4]
संबंधित स्थिरांक
बोह्र त्रिज्या लंबाई की संबंधित इकाइयों की तिकड़ी में से एक है, अन्य दो इलेक्ट्रॉन की कम कॉम्पटन तरंग दैर्ध्य हैं () और शास्त्रीय इलेक्ट्रॉन त्रिज्या (). इन स्थिरांकों में से किसी एक को फ़ाइन-स्ट्रक्चर स्थिरांक का उपयोग करके किसी भी अन्य के संदर्भ में लिखा जा सकता है :
हाइड्रोजन परमाणु और इसी तरह के सिस्टम
हाइड्रोजन परमाणु में कम द्रव्यमान के प्रभाव सहित बोह्र त्रिज्या द्वारा दिया गया है
कहाँ इलेक्ट्रॉन-प्रोटॉन प्रणाली का कम द्रव्यमान है (के साथ प्रोटॉन का द्रव्यमान होना)। कम द्रव्यमान का उपयोग शास्त्रीय भौतिकी दो-शरीर की समस्या का एक सामान्यीकरण है जब हम इस अनुमान के बाहर हैं कि परिक्रमा करने वाले शरीर के द्रव्यमान की तुलना में परिक्रमा करने वाले शरीर का द्रव्यमान नगण्य है। चूंकि इलेक्ट्रॉन-प्रोटॉन प्रणाली का घटा हुआ द्रव्यमान इलेक्ट्रॉन द्रव्यमान से थोड़ा सा छोटा होता है, कम बोह्र त्रिज्या बोह्र त्रिज्या से थोड़ा बड़ा होता है ( मीटर)।
इस परिणाम को अन्य प्रणालियों के लिए सामान्यीकृत किया जा सकता है, जैसे कि सिस्टम के कम द्रव्यमान का उपयोग करके और चार्ज में संभावित परिवर्तन पर विचार करके पॉजिट्रोनियम (एक पॉज़िट्रॉन की परिक्रमा करने वाला एक इलेक्ट्रॉन) और म्यूओनियम (एक एंटी-म्यूऑन की परिक्रमा करने वाला एक इलेक्ट्रॉन)। आमतौर पर, बोह्र मॉडल संबंधों (त्रिज्या, ऊर्जा, आदि) को इन विदेशी प्रणालियों के लिए आसानी से संशोधित किया जा सकता है (न्यूनतम क्रम तक) सिस्टम के लिए कम द्रव्यमान के साथ इलेक्ट्रॉन द्रव्यमान को बदलकर (साथ ही उचित होने पर चार्ज समायोजित करना) . उदाहरण के लिए, पॉज़िट्रोनियम की त्रिज्या लगभग है , चूंकि पॉज़िट्रोनियम प्रणाली का घटा हुआ द्रव्यमान इलेक्ट्रॉन द्रव्यमान का आधा है ().
एक हाइड्रोजन जैसे परमाणु में एक बोह्र त्रिज्या होगी जो मुख्य रूप से स्केल करती है , साथ नाभिक में प्रोटॉन की संख्या। इस बीच, कम द्रव्यमान () केवल द्वारा बेहतर अनुमानित हो जाता है बढ़ते परमाणु द्रव्यमान की सीमा में। इन परिणामों को समीकरण में संक्षेपित किया गया है
अनुमानित संबंधों की तालिका नीचे दी गई है।
System | Radius |
---|---|
Hydrogen | |
Positronium | |
Muonium | |
He+ | |
Li2+ |
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 "2018 CODATA Value: Bohr radius". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ The number in parenthesis denotes the uncertainty of the last digits.
- ↑ David J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall, 1995, p. 137. ISBN 0-13-124405-1
- ↑ Nave, Rod. "The Most Probable Radius: Hydrogen Ground State". HyperPhysics. Dept. of Physics and Astronomy, Georgia State University. Retrieved 2 October 2021.
The Schrodinger equation confirms the first Bohr radius as the most probable radius.