आइज़ेंस्टीन पूर्णांक

From Vigyanwiki
Revision as of 15:34, 15 February 2023 by alpha>SimranBisht
सम्मिश्र समतल में त्रिकोणीय जालक के प्रतिच्छेदन बिंदुओं के रूप में ईसेनस्टीन पूर्णांक

गणित में, ईसेनस्टीन पूर्णांक (गोथोल्ड ईसेनस्टीन के नाम पर), कभी-कभी भी जाना जाता है[1]यूलेरियन पूर्णांकों के रूप में (लियोनहार्ड यूलर के बाद), रूप की सम्मिश्र संख्याएँ हैं

कहाँ a और b पूर्णांक हैं और

एकता की जड़ है# सामान्य परिभाषा (इसलिए अवास्तविक) एकता का घनमूल। गौसियन पूर्णांकों के विपरीत, ईसेनस्टीन पूर्णांक जटिल विमान में त्रिकोणीय जालक बनाते हैं, जो जटिल विमान में एक वर्ग जालक बनाते हैं। ईसेनस्टीन पूर्णांक एक गणनीय सेट हैं।

गुण

Eisenstein पूर्णांक बीजगणितीय संख्या क्षेत्र में बीजगणितीय पूर्णांकों का एक क्रमविनिमेय वलय बनाते हैं - तीसरा साइक्लोटोमिक क्षेत्र। यह देखने के लिए कि आइज़ेंस्टीन पूर्णांक बीजगणितीय पूर्णांक हैं, ध्यान दें कि प्रत्येक   z = a + bω  मोनिक बहुपद की जड़ है

विशेष रूप से, ω समीकरण को संतुष्ट करता है

दो ईसेनस्टीन पूर्णांकों का गुणनफल   a + bω  और  c + dω  द्वारा स्पष्ट रूप से दिया गया है

आइज़ेंस्ताइन पूर्णांक का 2-मानक केवल इसका वर्गित मापांक है, और इसके द्वारा दिया जाता है

जो स्पष्ट रूप से एक धनात्मक साधारण (तर्कसंगत) पूर्णांक है।

इसके अलावा, का जटिल संयुग्मन ω संतुष्ट

इस वलय में इकाइयों का समूह जटिल तल में एकता की छठी जड़ों द्वारा गठित चक्रीय समूह है: मानदंड के आइज़ेंस्टीन पूर्णांक 1।

ईसेनस्टीन प्राइम्स

छोटा आइज़ेंस्टीन प्राइम्स।

अगर x और y आइज़ेंस्टीन पूर्णांक हैं, हम कहते हैं कि x विभाजित y यदि कोई आइज़ेंस्टीन पूर्णांक है z ऐसा है कि y = zx. एक गैर-इकाई आइज़ेंस्टीन पूर्णांक x ईसेनस्टीन प्राइम कहा जाता है अगर इसके केवल गैर-इकाई विभाजक फॉर्म के हैं ux, कहाँ u छह इकाइयों में से कोई है।

आइज़ेंस्टीन प्राइम दो प्रकार के होते हैं। सबसे पहले, एक साधारण अभाज्य संख्या (या परिमेय अभाज्य) जो सर्वांगसम है 2 mod 3 एक आइज़ेंस्टीन प्राइम भी है। दूसरा, 3 और प्रत्येक परिमेय अभाज्य सर्वांगसम है 1 mod 3 मानक के बराबर हैं x2xy + y2 आइज़ेंस्टीन पूर्णांक का x + ωy. इस प्रकार, इस तरह के एक अभाज्य के रूप में गुणनखंड किया जा सकता है (x + ωy)(x + ω2y), और ये कारक आइज़ेंस्टीन अभाज्य हैं: वे सटीक रूप से आइज़ेंस्टीन पूर्णांक हैं जिनका मानदंड एक परिमेय अभाज्य है।

यूक्लिडियन डोमेन

ईसेनस्टीन पूर्णांकों का वलय एक यूक्लिडियन डोमेन बनाता है जिसका मानदंड N ऊपर के रूप में वर्ग मापांक द्वारा दिया गया है:

एक विभाजन एल्गोरिथ्म, किसी भी लाभांश पर लागू होता है और भाजक , एक भागफल देता है

 और एक शेष  भाजक से छोटा, संतोषजनक:

यहाँ सभी आइज़ेंस्टीन पूर्णांक हैं। यह एल्गोरिथ्म यूक्लिडियन एल्गोरिथ्म का तात्पर्य है, जो यूक्लिड के लेम्मा और आइज़ेंस्टीन पूर्णांकों के अंकगणित के मौलिक प्रमेय को आइज़ेंस्टीन प्राइम्स में सिद्ध करता है।

एक विभाजन एल्गोरिथ्म इस प्रकार है। पहले जटिल संख्याओं के क्षेत्र में विभाजन करें, और भागफल को ω के संदर्भ में लिखें:

तर्कसंगत के लिए . फिर परिमेय गुणांकों को निकटतम पूर्णांक पर गोल करके आइज़ेंस्टीन पूर्णांक भागफल प्राप्त करें:

यहाँ किसी भी मानक गोलाई-टू-इंटीजर फ़ंक्शन को निरूपित कर सकता है।

कारण यह संतुष्ट करता है , जबकि अधिकांश अन्य द्विघात पूर्णांक रिंगों के लिए अनुरूप प्रक्रिया विफल हो जाती है, इस प्रकार है। आदर्श के लिए एक मौलिक डोमेन , जटिल तल पर अनुवाद द्वारा कार्य करना, 60°–120° समचतुर्भुज है जिसके शीर्ष हैं . कोई भी ईसेनस्टीन पूर्णांक α इस समांतर चतुर्भुज के अनुवादों में से एक और भागफल के अंदर स्थित है इसके शीर्षों में से एक है। शेष α से इस शीर्ष तक वर्ग दूरी है, लेकिन हमारे एल्गोरिदम में अधिकतम संभव दूरी केवल है , इसलिए . (ρ का आकार लेकर थोड़ा कम किया जा सकता है निकटतम कोना होना।)

का भागफल C आइज़ेंस्टीन पूर्णांकों द्वारा

जटिल विमान का भागफल C जालक (समूह) द्वारा सभी ईसेनस्टीन पूर्णांक वास्तविक आयाम 2 का एक जटिल टोरस है। यह ऐसे सभी जटिल टोरी के बीच अधिकतम समरूपता वाले दो तोरी में से एक है।[citation needed] यह टोरस एक नियमित षट्भुज के विपरीत किनारों के तीन जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है। (अन्य अधिकतम सममित टोरस गॉसियन पूर्णांकों के योगात्मक जालक द्वारा जटिल विमान का भागफल है, और एक वर्ग मौलिक डोमेन के विपरीत पक्षों के दो जोड़े में से प्रत्येक की पहचान करके प्राप्त किया जा सकता है, जैसे कि [0,1] × [0,1].)

यह भी देखें

टिप्पणियाँ

  1. Both Surányi, László (1997). Algebra. TYPOTEX. p. 73. and Szalay, Mihály (1991). Számelmélet. Tankönyvkiadó. p. 75. call these numbers "Euler-egészek", that is, Eulerian integers. The latter claims Euler worked with them in a proof.


बाहरी संबंध

Template:Systolic geometry navbox