प्रस्तावक सूत्र
प्रस्तावपरक तर्क में, एक प्रस्तावात्मक सूत्र एक प्रकार का वाक्य-विन्यास सूत्र (गणितीय तर्क) है जो अच्छी तरह से निर्मित सूत्र है और इसका एक सत्य मूल्य है। यदि किसी प्रस्तावात्मक सूत्र में सभी चरों के मान दिए गए हैं, तो यह एक अद्वितीय सत्य मान निर्धारित करता है। एक प्रस्तावनात्मक सूत्र को एक प्रस्तावक अभिव्यक्ति, एक वाक्य या एक वाक्यात्मक सूत्र भी कहा जा सकता है।
एक प्रस्तावनात्मक सूत्र सरल प्रस्ताव (तर्क) से निर्मित होता है, जैसे कि पाँच तीन से अधिक या प्रस्तावात्मक चर जैसे p और q, कनेक्टिव्स या तार्किक ऑपरेटरों जैसे NOT, AND, OR, का उपयोग करके या निहितार्थ; उदाहरण के लिए:
- (पी और नहीं 'क्यू) तात्पर्य (पी या क्यू)।
गणित में, एक तर्कवाक्य सूत्र को अक्सर अधिक संक्षिप्त रूप से प्रस्ताव के रूप में संदर्भित किया जाता है, लेकिन, अधिक सटीक रूप से, एक प्रस्तावक सूत्र एक प्रस्ताव नहीं है, बल्कि एक औपचारिक अभिव्यक्ति है जो एक प्रस्ताव (गणित) को दर्शाता है, चर्चा के तहत एक औपचारिक वस्तु, जैसे एक अभिव्यक्ति की तरहx + yएक मूल्य नहीं है, लेकिन एक मूल्य को दर्शाता है। कुछ संदर्भों में, भेद बनाए रखना महत्वपूर्ण हो सकता है।
प्रस्ताव
प्रस्तावपरक कलन के प्रयोजनों के लिए, प्रस्ताव (उच्चारण, वाक्य, अभिकथन) को या तो सरल या यौगिक माना जाता है।[1] यौगिक तर्कवाक्यों को वाक्यात्मक संयोजकों द्वारा जुड़ा हुआ माना जाता है, जिनमें से कुछ सबसे सामान्य हैं AND , OR , IF ... THEN ... , NEITHER ... NOR ... , ... IS EQUIVALENT TO ... . लिंकिंग अर्धविराम; , और संयोजी BUT को AND का व्यंजक माना जाता है। असतत वाक्यों के एक क्रम को AND s से जुड़ा हुआ माना जाता है, और औपचारिक विश्लेषण सरल प्रस्तावों के अनुक्रमों के संबंध में एक पुनरावर्ती कोष्ठक नियम लागू करता है (अच्छी तरह से बनाए गए सूत्रों के बारे में अधिक #अच्छी तरह से बनाए गए सूत्र (wffs) देखें)।
- उदाहरण के लिए: कथन: यह गाय नीली है। वह घोड़ा नारंगी रंग का है लेकिन यहां का घोड़ा बैंगनी रंग का है। वास्तव में AND s से जुड़ा एक मिश्रित तर्कवाक्य है: ((यह गाय नीली है और वह घोड़ा नारंगी है) और यह घोड़ा यहाँ बैंगनी है)।
सरल प्रस्ताव प्रकृति में घोषणात्मक होते हैं, अर्थात, वे किसी विशेष वस्तु की अनुभूति की स्थिति या प्रकृति के बारे में दावा करते हैं उदा। यह गाय नीली है, एक कोयोट है! (वह कोयोट वहाँ है, चट्टानों के पीछे।)[2] इस प्रकार सरल आदिम तार्किक कथन विशिष्ट वस्तुओं या मन की विशिष्ट अवस्थाओं के बारे में होने चाहिए। प्रत्येक के पास कम से कम एक विषय (विचार या अवलोकन का एक तत्काल वस्तु), एक क्रिया (सक्रिय आवाज और वर्तमान काल में पसंदीदा), और शायद एक विशेषण या क्रिया विशेषण होना चाहिए। कुत्ता! शायद इसका मतलब है कि मैं एक कुत्ते को देखता हूं लेकिन इसे बहुत अस्पष्ट के रूप में खारिज कर दिया जाना चाहिए।
- उदाहरण: वह बैंगनी कुत्ता दौड़ रहा है, यह गाय नीली है, स्विच M31 बंद है, यह टोपी बंद है, कल शुक्रवार है।
तर्कवाक्य कलन के प्रयोजनों के लिए एक यौगिक तर्कवाक्य को आम तौर पर सरल वाक्यों की एक श्रृंखला में फिर से लिखा जा सकता है, हालांकि परिणाम शायद रुका हुआ लगेगा।
प्रस्तावक और विधेय सूत्रों के बीच संबंध
प्रस्तावों की आंतरिक संरचना के विश्लेषण के लिए विधेय कलन प्रस्तावक कलन की तुलना में एक कदम आगे जाता है[3] यह एक साधारण वाक्य को दो भागों में विभाजित करता है (i) इसका विषय (प्रवचन का वस्तु (एकवचन शब्द या बहुवचन)) और (ii) एक विधेय (व्याकरण) (एक क्रिया या संभवतः क्रिया-खंड जो एक गुण या विशेषता का दावा करता है) वस्तु (ओं)। विधेय कलन तब विषय का सामान्यीकरण करता है। विधेय रूप (जहां प्रतीकों का एक साथ) निम्नलिखित रिक्त-विषय संरचना के साथ एक रूप में होता है।
- उदाहरण: इस नीले सुअर के पंख हैं, प्रस्तावक कलन में दो वाक्य बन जाते हैं: इस सुअर के पंख होते हैं और यह सुअर नीले रंग का होता है, जिसकी आंतरिक संरचना पर विचार नहीं किया जाता है। इसके विपरीत, विधेय कलन में, पहला वाक्य इस सुअर में विषय के रूप में टूट जाता है, और विधेय के रूप में पंख होते हैं। इस प्रकार यह दावा करता है कि वस्तु यह सुअर पंखों वाली चीजों के वर्ग (सेट, संग्रह) का सदस्य है। दूसरा वाक्य इस बात पर जोर देता है कि वस्तु इस सुअर में नीले रंग की विशेषता है और इस प्रकार यह नीली चीजों की श्रेणी का सदस्य है। कोई भी AND से जुड़े दो वाक्यों को इस प्रकार लिखना चुन सकता है:
- पी|डब्ल्यू और पी|बी
इस सुअर के दो वर्गों के (संभावित) सदस्य पंखों वाली चीजों और नीली चीजों के सामान्यीकरण का अर्थ है कि इसका इन दोनों वर्गों के साथ एक सत्य-संबंध है। दूसरे शब्दों में, प्रवचन पंख वाली चीजों का एक डोमेन दिया गया है, पी या तो इस डोमेन का सदस्य पाया जाता है या नहीं। इस प्रकार p (सुअर) और { T, F }, W (p) के बीच एक संबंध W (विंग्डनेस) है, जो { T, F } का मूल्यांकन करता है, जहाँ { T, F } बूलियन डेटा प्रकार सत्य और असत्य का सेट है। इसी तरह बी (नीलापन) और पी (सुअर) और {टी, एफ} के लिए: बी (पी) {टी, एफ} का मूल्यांकन करता है। तो अब कोई जुड़ा हुआ अभिकथन B(p) और W(p) का समग्र सत्य-मूल्य के लिए विश्लेषण कर सकता है, अर्थात:
- (बी(पी) और डब्ल्यू(पी)) { टी, एफ} का मूल्यांकन करता है
विशेष रूप से, सरल वाक्य जो तार्किक परिमाणक कहलाने वाले सभी, कुछ, कुछ, एक, आदि की धारणाओं को नियोजित करते हैं, विधेय कलन द्वारा व्यवहार किए जाते हैं। नए फ़ंक्शन प्रतीकवाद F(x) के साथ दो नए प्रतीक पेश किए गए हैं: ∀ (सभी के लिए), और ∃ (वहाँ मौजूद है ..., कम से कम एक ... मौजूद है, आदि)। विधेय कलन, लेकिन प्रस्तावक कलन नहीं, निम्नलिखित कथन की औपचारिक वैधता स्थापित कर सकता है:
- सभी नीले सूअरों के पंख होते हैं लेकिन कुछ सूअरों के पंख नहीं होते हैं, इसलिए कुछ सूअर नीले नहीं होते हैं।
पहचान
तर्स्की का दावा है कि पहचान की धारणा (तार्किक समानता से अलग) प्रस्ताविक कलन के बाहर है; हालाँकि, वह नोट करता है कि यदि किसी तर्क को गणित और विज्ञान के लिए उपयोग करना है तो उसमें पहचान का सिद्धांत होना चाहिए।[4] कुछ लेखक इस विस्तार पर जोर देने के लिए पहचान के साथ विधेय तर्क का उल्लेख करते हैं। इसके बारे में और नीचे देखें।
प्रस्तावों का एक बीजगणित, प्रस्तावपरक कलन
एक बीजगणित (और कई अलग-अलग हैं), शिथिल रूप से परिभाषित, एक ऐसी विधि है जिसके द्वारा कुछ अन्य प्रतीकों जैसे कोष्ठक (,) और कुछ उप-प्रतीकों जैसे कि *, +, ~ के साथ चर नामक प्रतीकों का एक संग्रह होता है। , &, ∨, =, ≡, ∧, ¬ नियमों की एक प्रणाली के भीतर हेरफेर किया जाता है। कहा जाता है कि ये प्रतीक, और इनके अच्छी तरह से बने तार वस्तुओं का प्रतिनिधित्व करते हैं, लेकिन एक विशिष्ट बीजगणितीय प्रणाली में इन वस्तुओं का कोई अर्थ नहीं होता है। इस प्रकार बीजगणित के अंदर कार्य प्रतीकों के शब्दार्थ (अर्थ) के बजाय बीजगणित के वाक्य - विन्यास (प्रतीक-गठन) के कुछ कानूनों (नियमों) का पालन करने का एक अभ्यास बन जाता है। अर्थ बीजगणित के बाहर पाए जाते हैं।
बीजगणित में प्रतीकों के एक अच्छी तरह से गठित अनुक्रम के लिए - एक सूत्र - बीजगणित के बाहर कुछ उपयोगिता रखने के लिए प्रतीकों को अर्थ निर्दिष्ट किया जाता है और अंततः चर को मान निर्दिष्ट किया जाता है; फिर नियमों की एक श्रृंखला द्वारा सूत्र का मूल्यांकन किया जाता है।
जब मान केवल दो तक सीमित होते हैं और साधारण वाक्यों (जैसे बोले गए उच्चारण या लिखित अभिकथन) की धारणा पर लागू होते हैं, जो प्रस्तावक संयोजकों से जुड़े होते हैं, तो प्रतीकों और नियमों और मूल्यांकन-पद्धतियों की इस पूरी बीजगणितीय प्रणाली को आमतौर पर प्रस्तावात्मक कलन या वाक्यगत कलन कहा जाता है। .
जबकि अंकगणित बीजगणित के कुछ परिचित नियम प्रस्तावों के बीजगणित में बने रहते हैं (उदाहरण के लिए AND और OR के लिए क्रमविनिमेय और साहचर्य कानून), कुछ नहीं (उदाहरण के लिए AND, OR और NOT के लिए वितरण कानून)।
प्रस्तावात्मक सूत्रों की उपयोगिता
विश्लेषण: निगमनात्मक तर्क में, दार्शनिक, बयानबाजी करने वाले और गणितज्ञ तर्कों को सूत्रों तक कम करते हैं और फिर शुद्धता (सुदृढ़ता) के लिए उनका (आमतौर पर सत्य तालिकाओं के साथ) अध्ययन करते हैं। उदाहरण के लिए: क्या निम्नलिखित तर्क सही है?
- यह देखते हुए कि एक कृत्रिम बुद्धि के लिए चेतना पर्याप्त है और केवल सचेत संस्थाएं ट्यूरिंग टेस्ट पास कर सकती हैं, इससे पहले कि हम यह निष्कर्ष निकाल सकें कि रोबोट एक कृत्रिम बुद्धि है, रोबोट को ट्यूरिंग टेस्ट पास करना होगा।
इंजीनियर तर्क सर्किट का विश्लेषण करते हैं जिसे उन्होंने संश्लेषण तकनीकों का उपयोग करके डिजाइन किया है और फिर उनके डिजाइन को सरल बनाने के लिए विभिन्न कटौती और न्यूनीकरण तकनीकों को लागू करते हैं।
संश्लेषण: इंजीनियर विशेष रूप से सत्य तालिकाओं से प्रस्तावन सूत्र (जो अंततः प्रतीकों के सर्किट के रूप में समाप्त होते हैं) को संश्लेषित करते हैं। उदाहरण के लिए, एक सत्य तालिका लिख सकता है कि बाइनरी जोड़ को कैसे व्यवहार करना चाहिए, चर b और a और कैरी_इन सीआई के अतिरिक्त, और परिणाम कैरी_आउट सह और योग Σ:
- उदाहरण: पंक्ति 5 में, ((बी+ए) + सीआई) = ((1+0) + 1) = संख्या 2। इसे बाइनरी नंबर के रूप में लिखा जाता है, यह 10 है2, जहाँ co =1 और Σ=0 जैसा कि सबसे दाएँ कॉलम में दिखाया गया है।
row | b | a | ci | (b+a)+ci | co | Σ | |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 1 | 1 | 0 | 1 | |
2 | 0 | 1 | 0 | 1 | 0 | 1 | |
3 | 0 | 1 | 1 | 2 | 1 | 0 | |
4 | 1 | 0 | 0 | 1 | 0 | 1 | |
5 | 1 | 0 | 1 | 2 | 1 | 0 | |
6 | 1 | 1 | 0 | 2 | 1 | 0 | |
7 | 1 | 1 | 1 | 3 | 1 | 1 |
प्रस्ताव चर
प्रस्तावात्मक सूत्र का सबसे सरल प्रकार एक प्रस्तावक चर है। प्रस्ताव जो सरल (परमाणु सूत्र) हैं, प्रतीकात्मक अभिव्यक्ति अक्सर p, q, या P, Q, आदि नाम के चर द्वारा दर्शाए जाते हैं। एक परमाणु प्रस्ताव (अभिकथन) का प्रतिनिधित्व करते हैं, जैसे कि यह शनिवार है = p (यहाँ प्रतीक = का अर्थ है ... नाम का चर निर्दिष्ट किया गया है ...) या मैं केवल सोमवार को फिल्मों में जाता हूँ = q ।
सत्य-मूल्य असाइनमेंट, सूत्र मूल्यांकन
एक प्रस्तावक सूत्र का मूल्यांकन प्रत्येक चर के लिए एक सत्य मान के असाइनमेंट से शुरू होता है। क्योंकि प्रत्येक चर एक सरल वाक्य का प्रतिनिधित्व करता है, इन सरल वाक्यों की सत्यता या असत्यता पर सत्य मान लागू किए जा रहे हैं।
बयानबाजी, दर्शन और गणित में सत्य मूल्य
सत्य मान केवल दो हैं: {सत्य टी, असत्य एफ}। एक अनुभववादी सभी प्रस्तावों को दो व्यापक वर्गों में रखता है: विश्लेषणात्मक—सच्चा कोई फर्क नहीं पड़ता (उदाहरण के लिए टॉटोलॉजी (तर्क)), और सिंथेटिक—अनुभव से व्युत्पन्न और इस तरह तीसरे पक्ष द्वारा पुष्टि के लिए अतिसंवेदनशील (सत्यापन सिद्धांत) अर्थ का)।[5] अनुभवजन्य मानते हैं कि, सामान्य रूप से, एक सिंथेटिक प्रस्ताव के सत्य-मूल्य पर पहुंचने के लिए, अर्थ (पैटर्न-मिलान वाले टेम्पलेट्स) को पहले शब्दों पर लागू किया जाना चाहिए, और फिर इन अर्थ-सांचे को जो कुछ भी हो रहा है, उसके खिलाफ मिलान किया जाना चाहिए। दावा किया। जैसे मेरा कथन है कि गाय हैblue! क्या यह कथन सत्य है? सच में मैंने कहा था। और शायद मैं एक नीली गाय को देख रहा हूं - जब तक कि मैं झूठ नहीं बोल रहा हूं, मेरा कथन मेरी (शायद त्रुटिपूर्ण) धारणा के उद्देश्य के सापेक्ष एक सत्य है। लेकिन क्या वाकई में नीली गाय होती है? जब आप उसी खिड़की से बाहर देखते हैं तो आप क्या देखते हैं? सत्यापन के साथ आगे बढ़ने के लिए, आपको गाय और गाय दोनों की पूर्व धारणा (एक टेम्पलेट) की आवश्यकता होगीblue, और सनसनी की वस्तु के खिलाफ टेम्पलेट्स से मिलान करने की क्षमता (यदि वास्तव में कोई है)।[citation needed] इंजीनियरिंग में सत्य मूल्य
इंजीनियर सत्य और असत्य की धारणाओं से बचने की कोशिश करते हैं जो दार्शनिकों को शैतानी करते हैं, लेकिन अंतिम विश्लेषण में इंजीनियरों को अपने मापने वाले उपकरणों पर भरोसा करना चाहिए। मजबूत आँकड़ों की अपनी खोज में, इंजीनियर एक छोटे पुस्तकालय से ज्ञात वस्तुओं को खींचना पसंद करते हैं - ऐसी वस्तुएँ जिनमें बड़े संयोजनों में भी अच्छी तरह से परिभाषित, पूर्वानुमेय व्यवहार होता है, (इसलिए उनका नाम प्रस्ताविक कलन के लिए है: संयोजक तर्क)। किसी एक वस्तु के सबसे कम व्यवहार दो हैं (जैसे {ऑफ, ऑन}, {ओपन, शट}, {यूपी, डाउन} आदि), और इन्हें {0, 1} के अनुरूप रखा गया है। ऐसे तत्वों को डिजिटल डेटा कहा जाता है; व्यवहारों की एक सतत श्रृंखला वाले एनालॉग संकेत कहलाते हैं। जब भी किसी एनालॉग सिस्टम में निर्णय लेने होते हैं, तो अक्सर एक इंजीनियर एक तुलनित्र के उपयोग से एक एनालॉग व्यवहार (दरवाजा 45.32146% यूपी है) को डिजिटल (जैसे DOWN=0 ) में परिवर्तित कर देगा।[6] इस प्रकार चर और दो मूल्य-प्रतीकों {0, 1} के अर्थ का एक असाइनमेंट सूत्र के बाहर से आता है जो (आमतौर पर) यौगिक वस्तु के व्यवहार का प्रतिनिधित्व करता है। एक उदाहरण एक गेराज दरवाजा है जिसमें दो सीमा स्विच हैं, एक यूपी लेबल वाले SW_U के लिए और एक नीचे लेबल वाले SW_D के लिए, और जो कुछ भी दरवाजे के सर्किटरी में है। सर्किट का निरीक्षण (या तो आरेख या वास्तविक वस्तुएं स्वयं-दरवाजा, स्विच, तार, सर्किट बोर्ड इत्यादि) प्रकट कर सकता है कि सर्किट बोर्ड नोड 22 पर +0 वोल्ट जाता है जब स्विच SW_D के संपर्क यांत्रिक रूप से होते हैं संपर्क (बंद) और दरवाजा नीचे की स्थिति में है (95% नीचे), और नोड 29 +0 वोल्ट पर जाता है जब दरवाजा 95% यूपी होता है और स्विच SW_U के संपर्क यांत्रिक संपर्क (बंद) में होते हैं।[7] इंजीनियर को इन वोल्टेज और सभी संभावित संयोजनों (उनमें से सभी 4) के अर्थ को परिभाषित करना चाहिए, जिसमें बुरे भी शामिल हैं (उदाहरण के लिए दोनों नोड्स 22 और 29 0 वोल्ट पर हैं, जिसका अर्थ है कि दरवाजा एक ही समय में खुला और बंद है)। सर्किट सच्चाई या झूठ, सही या गलत, सुरक्षित या खतरनाक के बारे में किसी भी जागरूकता के बिना जो भी वोल्टेज का अनुभव करता है, बिना सोचे-समझे प्रतिक्रिया करता है।
प्रस्तावित संयोजक
तर्कवाक्य चरों और तार्किक संयोजकों का उपयोग करते हुए अन्य तर्कवाक्य सूत्रों से मनमाना तर्कवाक्य सूत्र बनाए जाते हैं। संयोजकों के उदाहरणों में शामिल हैं:
- एकात्मक निषेध संयोजक। अगर एक सूत्र है, तो एक सूत्र है।
- शास्त्रीय बाइनरी संयोजक . इस प्रकार, उदाहरण के लिए, यदि और सूत्र हैं, इसलिए है .
- अन्य बाइनरी संयोजक, जैसे NAND, NOR, और XOR
- त्रिक संयोजक अगर ... तो ... और ...
- लगातार 0-आरी संयोजक ⊤ और ⊥ (वैकल्पिक रूप से, स्थिरांक { T, F }, { 1, 0 } आदि।)
- सिद्धांत-विस्तार संयोजक EQUALS (वैकल्पिक रूप से, पहचान, या चिन्ह = जैसा कि तार्किक संयोजक से अलग है )
बयानबाजी, दर्शन और गणित के संयोजक
बयानबाजी, दर्शन और गणित के साथ-साथ उनके सत्य तालिकाओं के लिए सामान्य संयोजक निम्नलिखित हैं। उपयोग किए गए प्रतीक लेखक से लेखक और प्रयास के क्षेत्रों के बीच भिन्न होंगे। सामान्य तौर पर संक्षिप्त रूप T और F मूल्यांकनों के लिए खड़े होते हैं सत्य और असत्यता प्रस्तावक सूत्र में चरों पर लागू होते हैं (उदाहरण के लिए दावा: वह गाय नीली है, सत्य के लिए सत्य-मूल्य T या असत्यता के लिए F, जैसा भी मामला हो .).
संयोजक कई अलग-अलग शब्द-प्रयोगों से चलते हैं, उदा। a का अर्थ है b को IF a THEN b भी कहा जाता है। इनमें से कुछ तालिका में दिखाए गए हैं।
b only if a | |||||||||||
b IS SUFFICIENT FOR a | b PRECISELY WHEN a | ||||||||||
a IS NECESSARY FOR b | b IF AND ONLY IF a; b IFF a | ||||||||||
inclusive OR | IF b THEN a | b IS NECESSARY AND SUFFICIENT FOR a | |||||||||
negation | negation | conjunction | disjunction | implication | biconditional | ||||||
variables | NOT b | NOT a | b AND a | b OR a | b IMPLIES a | b IS logically equivalent TO a *** | f IS A tautology | NEITHER a NOR b | b stroke a | exclusive OR | |
---|---|---|---|---|---|---|---|---|---|---|---|
b | a | ¬(b) | ¬(a) | (b ∧ a) | (b ∨ a) | (b → a) | (b ↔ a) | (f = formula) | (a NOR b) | (b|a) | various |
F | F | T | T | F | F | T | T | T | T | T | F |
F | T | T | F | F | T | T | F | T | F | T | T |
T | F | F | T | F | T | F | F | T | F | T | T |
T | T | F | F | T | T | T | T | T | F | F | F |
इंजीनियरिंग संयोजक
सामान्य तौर पर, इंजीनियरिंग संयोजक गणित के संयोजकों के समान ही होते हैं सिवाय इसके कि वे 1 = T और 0 = F के साथ मूल्यांकन करते हैं। यह minterms और कर्णघ मानचित्रों (नीचे देखें) की धारणा के उपयोग से विश्लेषण/न्यूनीकरण और सूत्रों के संश्लेषण के उद्देश्यों के लिए किया जाता है। इंजीनियर बूलियन की धारणा (a*a = a) से 'तार्किक उत्पाद' और विलियम स्टेनली जेवन्स की धारणा (a+a = a) से 'तार्किक योग' शब्दों का भी उपयोग करते हैं।[8]
logical product | logical sum | half-adder (no carry) | |||||||
---|---|---|---|---|---|---|---|---|---|
exclusive OR | |||||||||
row number | variables | NOT | NOT | AND | OR | NAND | NOR | XOR | |
b*21+a*20 | b | a | ~(b) | ~(a) | (b & a) | (b ∨ a) | ~(b & a) | ~(b ∨ a) | ⊕ |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
2 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
3 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
केस कनेक्टिव: अगर ... तो ... और ...
IF ... THEN ... ELSE ... संयोजी पुनरावर्तन सिद्धांत और संगणना सिद्धांत के CASE संचालक के सरलतम रूप के रूप में प्रकट होता है और सशर्त गोटो (कूदता है, शाखाओं) के लिए जिम्मेदार संयोजी है। इस एक संयोजी से अन्य सभी संयोजकों का निर्माण किया जा सकता है (नीचे और देखें)। यद्यपि IF c THEN b ELSE a एक निहितार्थ की तरह लगता है, यह अपने सबसे कम रूप में है, एक स्विच जो निर्णय लेता है और परिणाम के रूप में केवल दो विकल्पों में से एक या b प्रदान करता है (इसलिए C में नाम स्विच स्टेटमेंट (प्रोग्रामिंग भाषा) ) प्रोग्रामिंग भाषा)।[9] निम्नलिखित तीन तर्कवाक्य समतुल्य हैं (जैसा कि तार्किक तुल्यता चिह्न ≡ द्वारा इंगित किया गया है):
- (यदि 'काउंटर शून्य है' तो 'निर्देश बी पर जाएं' या 'अनुदेश पर जाएं') ≡
- ((सी → बी) और (~सी → ए)) ≡ ((यदि 'काउंटर शून्य है' तो 'निर्देश बी' पर जाएं) और (यदि 'यह मामला नहीं है कि काउंटर शून्य है' तो 'पर जाएं निर्देश ए) ≡
- ((सी और बी) ∨ (~सी और ए)) ≡ ('काउंटर शून्य है' और 'निर्देश बी पर जाएं) या ('ऐसा नहीं है कि 'काउंटर शून्य है' और 'निर्देश ए पर जाएं)
इस प्रकार IF ... THEN ... ELSE - निहितार्थ के विपरीत - एक अस्पष्ट सत्य का मूल्यांकन नहीं करता है जब पहला प्रस्ताव झूठा होता है यानी c = F in (c → b)। उदाहरण के लिए, अधिकांश लोग निम्नलिखित संयुक्त तर्कवाक्य को निरर्थक गैर अनुगामी के रूप में अस्वीकार कर देंगे क्योंकि दूसरा वाक्य अर्थ में पहले से जुड़ा नहीं है।[10]
- उदाहरण: प्रस्ताव यदि 'विंस्टन चर्चिल चीनी थे' तब 'सूरज पूर्व में उगता है' एक सत्य के रूप में मूल्यांकन करता है, यह देखते हुए कि 'विंस्टन चर्चिल चीनी थे' एक झूठ है और 'सूर्य पूर्व में उगता है' एक सत्य के रूप में मूल्यांकन करता है।
इस समस्या की पहचान में, प्रस्ताविक कलन में औपचारिक निहितार्थ के संकेत → को हर रोज़, सहज ज्ञान युक्त निहितार्थ से अलग करने के लिए सामग्री सशर्त कहा जाता है।[lower-alpha 1]
IF ... THEN ... ELSE निर्माण विवाद से बचा जाता है क्योंकि यह दो घोषित विकल्पों के बीच पूरी तरह से निर्धारक विकल्प प्रदान करता है; यह दो वस्तुओं (दो विकल्प बी और ए) प्रदान करता है, और यह उनके बीच विस्तृत और स्पष्ट रूप से चयन करता है।[12] नीचे दी गई सत्य तालिका में, d1 सूत्र है: ((IF c THEN b) AND (IF NOT-c THEN a) )। इसका पूरी तरह से घटा हुआ रूप d2 सूत्र है: ((c AND b) OR (NOT-c AND a)। कॉलम =d1 और =d2 द्वारा दिखाए गए दो सूत्र समकक्ष हैं। इलेक्ट्रिकल इंजीनियर पूरी तरह से कम किए गए फॉर्मूले को AND- कहते हैं। OR-चयन ऑपरेटर। CASE (या स्विच) ऑपरेटर n संभव, लेकिन परस्पर अनन्य परिणामों के लिए एक ही विचार का विस्तार है। इलेक्ट्रिकल इंजीनियर CASE ऑपरेटर को बहुसंकेतक कहते हैं।
d1 | d2 | ||||||||||||||||||||||||||||||||||||||
row | c | b | a | ( | ( | c | → | b | ) | & | ( | ~ | ( | c | ) | → | a | ) | ) | =d1 | ( | ( | c | & | b | ) | ∨ | ( | ~ | ( | c | ) | & | a | ) | ) | =d2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||||||||||||||||||
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | ||||||||||||||||||
2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | ||||||||||||||||||
3 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | ||||||||||||||||||
4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||||||||||||||||||
5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | ||||||||||||||||||
6 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | ||||||||||||||||||
7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
पहचान और मूल्यांकन
इस खंड की पहली तालिका में *** प्रविष्टि तार्किक तुल्यता है जो इस तथ्य पर ध्यान देती है कि तार्किक तुल्यता पहचान के समान नहीं है। उदाहरण के लिए, अधिकांश लोग इस बात से सहमत होंगे कि यह कथन कि गाय नीली है, गाय के नीले होने के कथन के समान है। दूसरी ओर, तार्किक तुल्यता कभी-कभी भाषण में प्रकट होती है जैसे कि इस उदाहरण में: 'सूरज चमक रहा है' का अर्थ है 'मैं बाइक चला रहा हूं' एक प्रस्तावक सूत्र में अनुवादित शब्द बन जाते हैं: यदि 'सूरज चमक रहा है' तो 'मैं' बाइकिंग', और अगर 'मैं बाइकिंग कर रहा हूं' तो 'सूरज चमक रहा है' :[13]
- IF 's' THEN 'b' AND IF 'b' THEN 's' को ((s → b) & (b → s)) या संक्षिप्त रूप में (s ↔ b) लिखा जाता है। जैसा कि सबसे दाहिना प्रतीक स्ट्रिंग बाईं ओर के प्रतीकों के संदर्भ में एक नए प्रतीक की परिभाषा है, पहचान चिह्न = का उपयोग उचित है:
- ((एस → बी) और (बी → एस)) = (एस ↔ बी)
विभिन्न लेखक तार्किक तुल्यता के लिए अलग-अलग चिह्नों का उपयोग करते हैं: ↔ (उदा. सप्पेस, गुडस्टीन, हैमिल्टन), ≡ (उदा. रॉबिन), ⇔ (उदा. बेंडर और विलियमसन)। विशिष्ट पहचान को बराबर चिह्न = के रूप में लिखा जाता है। इस नियम का एक अपवाद 'प्रिंसिपिया मैथेमेटिका' में पाया जाता है। पहचान की धारणा के दर्शन के बारे में अधिक जानकारी के लिए अविवेक की पहचान | लीबनिज का नियम देखें।
जैसा कि ऊपर उल्लेख किया गया है, टार्स्की पहचान को प्रस्ताविक कलन के बाहर मानता है, लेकिन वह दावा करता है कि धारणा के बिना, गणित और निगमनात्मक विज्ञान के लिए तर्क अपर्याप्त है। वास्तव में जब किसी सूत्र का मूल्यांकन किया जाना होता है तो संकेत प्रमेय कलन में आता है।[14] कुछ प्रणालियों में कोई सत्य सारणी नहीं होती है, बल्कि केवल औपचारिक स्वयंसिद्ध (उदाहरण के लिए एक सेट से प्रतीकों के तार { ~, →, (, ), चर p1, पी2, पी3, ... } और सूत्र-गठन नियम (उदाहरण के लिए प्रतिस्थापन और मूड सेट करना के उपयोग से पिछले तारों से अधिक प्रतीक तार बनाने के नियम)। इस तरह के कलन का परिणाम एक अन्य सूत्र होगा (अर्थात एक अच्छी तरह से निर्मित प्रतीक स्ट्रिंग)। आखिरकार, हालांकि, यदि कोई वैधता और सत्य की धारणाओं का अध्ययन करने के लिए कलन का उपयोग करना चाहता है, तो उसे ऐसे स्वयंसिद्धों को जोड़ना होगा जो सत्य मान {T, F} (या {1, 0}, आदि) कहे जाने वाले प्रतीकों के व्यवहार को परिभाषित करते हैं। अन्य प्रतीकों के सापेक्ष।
उदाहरण के लिए, हैमिल्टन दो प्रतीकों = और ≠ का उपयोग करता है जब वह किसी भी अच्छी तरह से गठित सूत्रों (wffs) A और B के मूल्यांकन v की धारणा को अपने औपचारिक बयान कलन L में परिभाषित करता है। एक मूल्यांकन v है a फ़ंक्शन (गणित) उनके सिस्टम L के wffs से रेंज (आउटपुट) {T, F} तक, दिया गया है कि प्रत्येक चर p1, पी2, पी3 एक wff में एक मनमाना सत्य मान {T, F} असाइन किया गया है।
-
v(A) ≠ v(~A)
(i)
-
v(A → B) = F if and only if v(A) = T and v(B) = F
(ii)
दो परिभाषाएँ (i) और (ii) अपने सिस्टम के ~ (NOT) और → (IMPLICATION) संयोजकों के लिए सत्य तालिकाओं के समतुल्य को परिभाषित करें। पहले वाला F ≠ T और T ≠ F प्राप्त करता है, दूसरे शब्दों में v(A) का अर्थ v(~A) नहीं है। परिभाषा (ii) सत्य तालिका में तीसरी पंक्ति निर्दिष्ट करता है, और फिर अन्य तीन पंक्तियाँ परिभाषा के एक अनुप्रयोग से आती हैं (i). विशेष रूप से (ii) संपूर्ण व्यंजक को मान F (या F का अर्थ) प्रदान करता है। परिभाषाएँ गठन नियमों के रूप में भी काम करती हैं जो पहले से सूत्र में प्राप्त मान के प्रतिस्थापन की अनुमति देती हैं:
v(A→B) | ||||
( | v(A) | → | v(B) | ) |
F | T | F | ||
F | T | T | ||
T | F | F | ||
T | T | T |
कुछ औपचारिक प्रणालियाँ शुरुआत में इन मूल्यांकन सिद्धांतों को कुछ सूत्रों के रूप में निर्दिष्ट करती हैं जैसे कि विरोधाभास का कानून या पहचान और अशक्तता के कानून। कम्यूटेशन और डिस्ट्रीब्यूशन जैसे कानूनों के साथ किसका उपयोग करना है, इसका चुनाव सिस्टम के डिज़ाइनर पर निर्भर करता है, जब तक कि स्वयंसिद्धों का सेट पूरा हो जाता है (यानी सिस्टम में बनाए गए किसी भी अच्छी तरह से तैयार किए गए फॉर्मूले का मूल्यांकन करने के लिए पर्याप्त है) .
अधिक जटिल सूत्र
जैसा कि ऊपर दिखाया गया है, CASE (IF c THEN b ELSE a ) संयोजक या तो 2-तर्क संयोजक IF ... THEN ... और AND या OR और AND और 1-तर्क नहीं से निर्मित होता है। n-तर्क AND (a & b & c & ... & n), OR (a ∨ b ∨ c ∨ ... ∨ n) जैसे संयोजक दो-तर्क AND और OR के तार से निर्मित होते हैं और इसमें लिखे जाते हैं कोष्ठक के बिना संक्षिप्त रूप। ये, और अन्य संयोजक भी, फिर आगे के संयोजकों के लिए बिल्डिंग ब्लॉक्स के रूप में उपयोग किए जा सकते हैं। अलंकारिक, दार्शनिक और गणितज्ञ अपने सूत्रों का विश्लेषण और सरलीकरण करने के लिए सत्य तालिकाओं और विभिन्न प्रमेयों का उपयोग करते हैं।
इलेक्ट्रिकल इंजीनियरिंग खींचे गए प्रतीकों का उपयोग करता है और उन्हें उन रेखाओं से जोड़ता है जो प्रतिस्थापन और प्रतिस्थापन के गणितीय कार्य के लिए खड़ी होती हैं। फिर वे अपने आरेखणों को सत्य तालिकाओं के साथ सत्यापित करते हैं और कर्णघ नक्शों या प्रमेयों के उपयोग द्वारा नीचे दिखाए गए भावों को सरल करते हैं। इस तरह से इंजीनियरों ने कॉम्बिनेटरियल लॉजिक (यानी फीडबैक के बिना कनेक्टिव्स) जैसे डिकोडर्स, एनकोडर्स, म्यूटिफंक्शन गेट्स, मेजॉरिटी लॉजिक, बाइनरी एडर्स, अंकगणितीय लॉजिक यूनिट्स आदि का निर्माण किया है।
परिभाषाएँ
एक परिभाषा अक्सर संक्षेप के प्रयोजनों के लिए एक नया प्रतीक और उसका व्यवहार बनाती है। परिभाषा प्रस्तुत करने के बाद, समकक्ष प्रतीक या सूत्र के किसी भी रूप का उपयोग किया जा सकता है। निम्नलिखित प्रतीकवाद =Df Reichenbach के सम्मेलन का पालन कर रहा है।[15] प्रतीक समुच्चय { ~, &, (, ) } और चरों से निकाली गई सुविधाजनक परिभाषाओं के कुछ उदाहरण। प्रत्येक परिभाषा तार्किक रूप से समतुल्य सूत्र का उत्पादन कर रही है जिसका उपयोग प्रतिस्थापन या प्रतिस्थापन के लिए किया जा सकता है।
- एक नए चर की परिभाषा: (सी एंड डी) =Df एस
- या: ~(~ए और ~बी) =Df (ए ∨ बी)
- निहितार्थ: (~a ∨ b) =Df (ए → बी)
- एक्सओआर: (~ए और बी) ∨ (ए और ~बी) =Df (ए ⊕ बी)
- तार्किक समानता: ((ए → बी) और (बी → ए)) =Df (ए ≡ बी)
स्वयंसिद्ध और परिभाषा स्कीमा
OR, IMPLICATION, XOR, और तार्किक तुल्यता के लिए उपरोक्त परिभाषाएँ वास्तव में स्वयंसिद्ध स्कीमा (या स्कीमाटा) हैं, अर्थात, वे एक सामान्य सूत्र प्रारूप के लिए मॉडल (प्रदर्शन, उदाहरण) हैं, लेकिन विशिष्ट अक्षरों a के साथ (उदाहरण के उद्देश्यों के लिए) दिखाए गए हैं। बी, सी वेरिएबल्स के लिए, जबकि कोई भी वेरिएबल अक्षर उनके स्थान पर तब तक जा सकते हैं जब तक अक्षर प्रतिस्थापन नीचे प्रतिस्थापन के नियम का पालन करते हैं।
- उदाहरण: परिभाषा में (~a ∨ b) =Df (ए → बी), अन्य चर-प्रतीकों जैसे कि SW2 और CON1 का उपयोग किया जा सकता है, अर्थात औपचारिक रूप से:
- एक =Df SW2, बी =Df CON1, इसलिए हमारे पास परिभाषा स्कीमा का एक उदाहरण होगा (~SW2 ∨ CON1) =Df (SW2 → CON1)
प्रतिस्थापन बनाम प्रतिस्थापन
प्रतिस्थापन: किसी अन्य चर, स्थिरांक या उप-सूत्र के साथ प्रतिस्थापित किए जाने वाले चर या उप-सूत्र को समग्र सूत्र में सभी उदाहरणों में प्रतिस्थापित किया जाना चाहिए।
- उदाहरण: (सी और डी) ∨ (पी और ~(सी और ~डी)), लेकिन (क्यू1 और ~क्यू2) ≡ डी। अब जहाँ भी चर d होता है, स्थानापन्न (q1 & ~ क्यू2):
- (सी एंड (क्यू1 & ~ क्यू2)) ∨ (p & ~(c & ~(q1 & ~ क्यू2)))
प्रतिस्थापन: (i) प्रतिस्थापित किया जाने वाला सूत्र एक तनातनी के भीतर होना चाहिए, अर्थात तार्किक रूप से समतुल्य (≡ या ↔ से जुड़ा हुआ) उस सूत्र से जुड़ा होना चाहिए जो इसे प्रतिस्थापित करता है, और (ii) प्रतिस्थापन के विपरीत प्रतिस्थापन होने के लिए इसकी अनुमति है। केवल एक ही स्थान पर (अर्थात एक सूत्र के लिए)।
- उदाहरण: फॉर्मूला स्कीमा/समतुल्यता के इस सेट का उपयोग करें:
- ((ए ∨ 0) ≡ ए)।
- ((ए और ~ए) ≡ 0)।
- ((~a ∨ b) =Df (ए → बी))।
- ( ~(~a) ≡ a )
- start with "a": a
- Use 1 to replace "a" with (a ∨ 0): (a ∨ 0)
- Use the notion of "schema" to substitute b for a in 2: ( (a & ~a) ≡ 0 )
- Use 2 to replace 0 with (b & ~b): ( a ∨ (b & ~b) )
- (see below for how to distribute "a ∨" over (b & ~b), etc.)
आगमनात्मक परिभाषा
प्रस्तावपरक तर्क की शास्त्रीय प्रस्तुति (हर्बर्ट एंडर्टन 2002 देखें) संयोजकों का उपयोग करती है . प्रपोजल वेरिएबल्स के दिए गए सेट पर फॉर्मूलों का सेट आगमनात्मक परिभाषा है जो एक्सप्रेशंस का सबसे छोटा सेट है:
- सेट में प्रत्येक प्रस्तावक चर एक सूत्र है,
- एक सूत्र है जब भी है और
- एक सूत्र है जब भी और सूत्र हैं और द्विआधारी संयोजकों में से एक है .
अतिरिक्त संयोजकों को शामिल करने के लिए इस आगमनात्मक परिभाषा को आसानी से बढ़ाया जा सकता है।
आगमनात्मक परिभाषा को क्लोजर (गणित) ऑपरेशन (एंडर्टन 2002) के संदर्भ में भी दोहराया जा सकता है। चलो वी प्रस्तावित चर के एक सेट को निरूपित करते हैं और एक्स को जाने देते हैंVV, बाएँ और दाएँ कोष्ठकों में प्रतीकों, और विचाराधीन सभी तार्किक संयोजकों सहित वर्णमाला से सभी स्ट्रिंग्स के सेट को निरूपित करें। प्रत्येक लॉजिकल कनेक्टिव फॉर्मूला बिल्डिंग ऑपरेशन, XX से एक फ़ंक्शन से मेल खाता हैVXX कोV:
- एक स्ट्रिंग z दिया गया है, ऑपरेशन रिटर्न .
- दिए गए तार y और z, ऑपरेशन रिटर्न . इसी तरह के ऑपरेशन हैं , , और अन्य बाइनरी संयोजकों के अनुरूप।
V पर सूत्रों के सेट को XX का सबसे छोटा उपसमुच्चय माना जाता हैVजिसमें V है और सभी फॉर्मूला बिल्डिंग ऑपरेशंस के तहत बंद है।
पार्सिंग सूत्र
जटिल सूत्रों को कम करने के लिए प्रस्तावक कलन के निम्नलिखित नियमों का उपयोग किया जाता है। सत्य तालिकाओं के साथ कानूनों को आसानी से सत्यापित किया जा सकता है। प्रत्येक नियम के लिए, मुख्य (बाह्यतम) संयोजक तार्किक तुल्यता ≡ या तत्समक = से जुड़ा होता है। सभी का पूर्ण विश्लेषण 2n इसके n विशिष्ट चरों के लिए सत्य-मानों का संयोजन इस संयोजी के नीचे 1's (T's) के कॉलम में परिणत होगा। यह खोज प्रत्येक नियम को, परिभाषा के अनुसार, एक पुनरुक्ति बनाती है। और, किसी दिए गए कानून के लिए, क्योंकि बाएँ और दाएँ पर इसके सूत्र समतुल्य (या समरूप) हैं, उन्हें एक दूसरे के लिए प्रतिस्थापित किया जा सकता है।
- उदाहरण: निम्नलिखित सत्य तालिका OR से अधिक नहीं के व्यवहार के लिए डी मॉर्गन का नियम है: ~(a ∨ b) ≡ (~a & ~b)। मुख्य संयोजक के बाईं ओर ≡ (तना हुआ लेबल वाला पीला स्तंभ) सूत्र ~(b ∨ a) लेबल P के अंतर्गत (1, 0, 0, 0) का मूल्यांकन करता है। तना के दाईं ओर सूत्र (~(b) ∨ ~(a)) भी लेबल Q के अंतर्गत (1, 0, 0, 0) का मूल्यांकन करता है। चूंकि दो स्तंभों में समतुल्य मूल्यांकन हैं, तार्किक तुल्यता ≡ के तहत तना हुआ मूल्यांकन (1, 1, 1, 1), यानी P ≡ Q. इस प्रकार या तो सूत्र को दूसरे के लिए प्रतिस्थापित किया जा सकता है यदि यह एक बड़े सूत्र में प्रकट होता है।
P | taut | Q | ||||||||||||||||||||
b | a | ( | ~ | ( | b | V | a | ) | ≡ | ( | ~ | ( | b | ) | & | ~ | ( | a | ) | ) | ) | |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | |||||||||||
0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | |||||||||||
1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |||||||||||
1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
उद्यमी पाठक खुद को एक स्वयंसिद्ध प्रणाली का आविष्कार करने के लिए चुनौती दे सकते हैं जो प्रतीकों {∨, &, ~, (, ), चर ए, बी, सी}, ऊपर निर्दिष्ट गठन नियमों का उपयोग करता है, और नीचे सूचीबद्ध कानूनों में से जितना संभव हो उतना कम, और फिर प्रमेयों के रूप में अन्य के साथ-साथ ∨, &, और ~ के लिए सत्य-तालिका मूल्यांकन प्राप्त करें। हंटिंगटन (1904) (स्यूप्स: 204) के लिए जिम्मेदार एक सेट नीचे परिभाषित आठ कानूनों का उपयोग करता है।
यदि एक स्वयंसिद्ध प्रणाली में प्रयोग किया जाता है, तो प्रतीकों 1 और 0 (या टी और एफ) को अच्छी तरह से गठित सूत्र माना जाता है और इस प्रकार चर के समान सभी नियमों का पालन करते हैं। इस प्रकार नीचे सूचीबद्ध कानून वास्तव में स्वयंसिद्ध स्कीमा हैं, अर्थात, वे अनंत संख्या में उदाहरणों के स्थान पर खड़े होते हैं। इस प्रकार ( x ∨ y ) ≡ ( y ∨ x ) का उपयोग एक उदाहरण में किया जा सकता है, ( p ∨ 0 ) ≡ ( 0 ∨ p ) और दूसरे उदाहरण में ( 1 ∨ q ) ≡ ( q ∨ 1 ), आदि।
संयोजी वरिष्ठता (प्रतीक रैंक)
सामान्य तौर पर, प्रस्तावात्मक सूत्रों के विश्लेषण और मूल्यांकन के दौरान भ्रम से बचने के लिए कोष्ठकों का उदारतापूर्वक उपयोग करें। हालाँकि, अक्सर लेखक उन्हें छोड़ देते हैं। एक जटिल सूत्र को पार्स करने के लिए सबसे पहले वरिष्ठता, या रैंक जानने की जरूरत है, कि प्रत्येक संयोजक (* को छोड़कर) अन्य संयोजकों पर है। एक सूत्र को अच्छी तरह से बनाने के लिए, उच्चतम रैंक वाले संयोजी से शुरू करें और इसके घटकों के चारों ओर कोष्ठक जोड़ें, फिर रैंक में नीचे जाएं (संयोजी के दायरे पर ध्यान दें जिस पर यह काम कर रहा है)। सबसे कम से कम वरिष्ठ तक, विधेय चिह्न ∀x और ∃x के साथ, पहचान = और अंकगणितीय संकेत पूर्णता के लिए जोड़े गए हैं:[lower-alpha 2]
- ≡
- (तार्किक समानता)
- →
- (निहितार्थ)
- &
- (और)
- ∨
- (या)
- ~
- (नहीं)
- ∀x
- (सभी x के लिए)
- ∃x
- (वहाँ एक एक्स मौजूद है)
- =
- (पहचान)
- +
- (अंकगणितीय योग)
- *
- (अंकगणितीय गुणा)
- '
- (एस, अंकगणितीय उत्तराधिकारी)।
इस प्रकार सूत्र को पार्स किया जा सकता है - लेकिन क्योंकि वितरण कानून का पालन नहीं करता है, आंतरिक सूत्र (~c & ~d) के चारों ओर कोष्ठक अनिवार्य है:
- उदाहरण: d & c ∨ w को फिर से लिखा गया है ( (d & c) ∨ w )
- उदाहरण: a & a → b ≡ a & ~a ∨ b पुनर्लेखित (कठोरता से) है
- ≡ में वरिष्ठता है: ( ( a & a → b ) ≡ ( a & ~a ∨ b ) )
- → वरिष्ठता है: ((ए और (ए → बी)) ≡ (ए और ~ए ∨ बी))
- & दोनों पक्षों में वरिष्ठता है: ((((ए) और (ए → बी)) ≡ (((ए) और (~ए ∨ बी)))
- ~ वरिष्ठता है: ((((ए) और (ए → बी)) ≡ (((ए) और (~(ए) ∨ बी)))
- चेक 9 (-कोष्ठक और 9) -कोष्ठक: ((((ए) और (ए → बी)) ≡ (((ए) और (~(ए) ∨ बी)))
- उदाहरण:
- d & c ∨ p & ~(c & ~d) ≡ c & d ∨ p & c ∨ p & ~d फिर से लिखा गया है ( ( (d & c) ∨ ( p & ~((c & ~(d)) ) ) ) ≡ ( (सी और डी) ∨ (पी और सी) ∨ (पी और ~(डी)) ) )
क्रमविनिमेय और साहचर्य कानून
AND और OR दोनों क्रमविनिमेय कानून और साहचर्य कानून का पालन करते हैं:
- OR के लिए क्रमविनिमेय नियम: ( a ∨ b ) ≡ ( b ∨ a )
- AND के लिए क्रमविनिमेय नियम: (a और b) ≡ (b और a)
- OR के लिए साहचर्य नियम: ((a ∨ b ) ∨ c ) ≡ ( a ∨ (b ∨ c) )
- AND के लिए सहयोगी कानून: ((ए और बी) और सी) ≡ (ए और (बी और सी))
AND और OR के तार में कोष्ठकों को छोड़ना: संयोजकों को एकात्मक (एक-चर, जैसे नहीं) और बाइनरी (यानी दो-चर AND, OR, IMPLIES) माना जाता है। उदाहरण के लिए:
- ( ((c & d) ∨ (p & c) ∨ (p & ~d) ) ऊपर लिखा जाना चाहिए ( ((c & d) ∨ (p & c)) ∨ (p & ~(d) ) ) या संभवतः ((सी और डी) ∨ ((पी और सी) ∨ (पी और ~(डी))))
हालांकि, एक सत्य-सारणी प्रदर्शन दिखाता है कि अतिरिक्त कोष्ठकों के बिना प्रपत्र पूरी तरह से पर्याप्त है।
एकल-चर के संबंध में कोष्ठकों को छोड़ना नहीं: जबकि ~(a) जहां a एक एकल चर है, पूरी तरह से स्पष्ट है, ~a पर्याप्त है और यह शाब्दिक (गणितीय तर्क) प्रकट होने का सामान्य तरीका है। जब NOT एक से अधिक प्रतीक वाले सूत्र के ऊपर हो, तब कोष्ठक अनिवार्य होते हैं, उदा. ~(एक ∨ ख).
वितरण कानून
OR AND पर वितरित करता है और AND OR पर वितरित करता है। NOT AND या OR पर वितरित नहीं होता है। डी मॉर्गन के कानून के बारे में नीचे देखें:
- OR के लिए वितरण नियम: ( c ∨ ( a & b) ) ≡ ( (c ∨ a) और (c ∨ b) )
- AND के लिए वितरण नियम: (c & (a ∨ b) ) ≡ ((c & a) ∨ (c & b) )
डी मॉर्गन के नियम
नहीं, जब OR या AND पर वितरित किया जाता है, तो कुछ अजीब होता है (फिर से, इन्हें सत्य-तालिका के साथ सत्यापित किया जा सकता है):
- OR के लिए डी मॉर्गन का नियम: ¬(a ∨ b) ≡ (¬a ^ ¬b)
- AND के लिए डी मॉर्गन का नियम: ¬(a ^ b) ≡ (¬a ∨ ¬b)
अवशोषण के नियम
अवशोषण, विशेष रूप से पहला, तर्क के नियमों को अंकगणित के नियमों से अलग करने का कारण बनता है:
- OR: (a ∨ a) ≡ a के लिए अवशोषण (निष्क्रियता)।
- AND के लिए अवशोषण (निष्क्रियता): (ए और ए) ≡ ए
मूल्यांकन के नियम: पहचान, शून्यता, और पूरक
चिह्न = (तार्किक तुल्यता ≡ से अलग, वैकल्पिक रूप से ↔ या ⇔) मूल्य या अर्थ के असाइनमेंट का प्रतीक है। इस प्रकार स्ट्रिंग (a & ~(a)) 0 का प्रतीक है, यानी इसका मतलब प्रतीक 0 जैसा ही है। कुछ प्रणालियों में यह एक स्वयंसिद्ध (परिभाषा) होगी जिसे शायद ((a & ~(a)) = के रूप में दिखाया गया हैDf 0); अन्य प्रणालियों में, इसे नीचे दी गई सत्य तालिका में प्राप्त किया जा सकता है:
c | taut | c | |||||||||||
a | ( | ( | a | & | ~ | ( | a | ) | ) | ≡ | 0 | ) | |
0 | 0 | 0 | 1 | 0 | 1 | 0 | |||||||
1 | 1 | 0 | 0 | 1 | 1 | 0 |
- समानता का रूपांतरण: (ए = बी) ≡ (बी = ए)
- OR के लिए सर्वसमिका: (a ∨ 0) = a or (a ∨ F) = a
- AND के लिए सर्वसमिका: (a & 1) = a or (a & T) = a
- OR के लिए शून्यता: (a ∨ 1) = 1 या (a ∨ T) = T
- AND के लिए शून्यता: (a और 0) = 0 या (a और F) = F
- OR के लिए पूरक: (a ∨ ~a) = 1 या (a ∨ ~a) = T, बहिष्कृत मध्य का नियम
- AND के लिए पूरक: (a & ~a) = 0 या (a & ~a) = F, विरोधाभास का नियम
डबल नेगेटिव (इनवोल्यूशन)
- ¬(¬ए) ≡ ए
सुगठित सूत्र (wffs)
सूत्रों की एक प्रमुख संपत्ति यह है कि इसके प्रस्ताविक चर और तार्किक संयोजकों के संदर्भ में सूत्र की संरचना का निर्धारण करने के लिए उन्हें विशिष्ट रूप से पार्स किया जा सकता है। जब सूत्रों को इंफिक्स नोटेशन में लिखा जाता है, तो सूत्रों की परिभाषा में कोष्ठकों के उचित उपयोग के माध्यम से अद्वितीय पठनीयता सुनिश्चित की जाती है। वैकल्पिक रूप से, सूत्रों को पोलिश संकेतन या रिवर्स पोलिश नोटेशन में लिखा जा सकता है, जिससे कोष्ठकों की आवश्यकता पूरी तरह से समाप्त हो जाती है।
पिछले खंड में इन्फिक्स सूत्रों की आगमनात्मक परिभाषा को बैकुस-नौर फॉर्म में एक औपचारिक व्याकरण में परिवर्तित किया जा सकता है:
<वाक्यविन्यास लैंग = बीएनएफ> <सूत्र> ::= <प्रस्तावात्मक चर> | (¬ <सूत्र>) | ( <सूत्र> ∧ <सूत्र>) | ( <सूत्र> ∨ <सूत्र> ) | ( <सूत्र> → <सूत्र>) | ( <सूत्र> ↔ <सूत्र>) </वाक्यविन्यास हाइलाइट> यह दिखाया जा सकता है कि व्याकरण से मेल खाने वाली किसी भी अभिव्यक्ति में बाएँ और दाएँ कोष्ठकों की एक संतुलित संख्या होती है, और सूत्र के किसी भी गैर-रिक्त प्रारंभिक खंड में दाएँ कोष्ठकों की तुलना में अधिक बाएँ होते हैं।[17] इस तथ्य का उपयोग फ़ार्मुलों को पार्स करने के लिए एक एल्गोरिथम देने के लिए किया जा सकता है। उदाहरण के लिए, मान लीजिए कि एक एक्सप्रेशन x से शुरू होता है . दूसरे प्रतीक के बाद शुरू करते हुए, x के सबसे छोटे उप-अभिव्यक्ति y का मिलान करें जिसमें संतुलित कोष्ठक हैं। यदि x एक सूत्र है, तो इस व्यंजक के बाद ठीक एक प्रतीक शेष रह जाता है, यह प्रतीक एक समापन कोष्ठक है, और y स्वयं एक सूत्र है। इस विचार का उपयोग सूत्रों के लिए एक पुनरावर्ती मूल पार्सर उत्पन्न करने के लिए किया जा सकता है।
'कोष्ठकों की गिनती का उदाहरण':
यह विधि 1 'प्रमुख संयोजक' के रूप में खोज करती है — संयोजी जिसके तहत सूत्र का समग्र मूल्यांकन सबसे बाहरी कोष्ठकों के लिए होता है (जो अक्सर छोड़े जाते हैं)।[18] यह सबसे भीतरी संयोजक का भी पता लगाता है जहां कोई सत्य तालिका के उपयोग के बिना सूत्र का मूल्यांकन शुरू करेगा, उदा। स्तर 6 पर।
start | ( | ( | ( | c | & | d | ) | V | ( | p | & | ~ | ( | ( | c | & | ~ | ( | d | ) | ) | ) | ) | ) | = | ( | ( | ( | c | & | d | ) | V | ( | p | & | d | ) | ) | V | ( | p | & | ~ | ( | c | ) | ) | ) | ) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 5 | 4 | 3 | 3 | 1 | 1 | 2 | 3 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 4 | 4 | 4 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 0 |
अनुमानों में मान्य सूत्रों बनाम अच्छी तरह से गठित सूत्र
वैध तर्क की धारणा आम तौर पर तर्कों में अनुमानों पर लागू होती है, लेकिन तर्क प्रस्तावात्मक सूत्रों में कम हो जाते हैं और किसी अन्य प्रस्ताव सूत्र के समान मूल्यांकन किया जा सकता है। यहाँ एक मान्य अनुमान का अर्थ है: सूत्र जो अनुमान का प्रतिनिधित्व करता है, उसके प्रमुख संयोजक के नीचे सत्य का मूल्यांकन करता है, चाहे इसके चरों को कोई भी सत्य-मान सौंपा गया हो, अर्थात सूत्र एक पुनरुक्ति है।[19] काफी संभवतः एक सूत्र अच्छी तरह से बना होगा लेकिन मान्य नहीं होगा। इसे कहने का दूसरा तरीका यह है: किसी सूत्र के मान्य होने के लिए अच्छी तरह से निर्मित होना आवश्यक है लेकिन यह पर्याप्त नहीं है। यह पता लगाने का एकमात्र तरीका है कि यह अच्छी तरह से गठित और वैध दोनों है या नहीं, इसे सत्य तालिका या कानूनों के उपयोग से सत्यापन के लिए जमा करना है:
- उदाहरण 1: अनुसरण करने में कठिन निम्नलिखित कथनों से कोई क्या बनाता है? क्या यह वैध है? अगर धूप है, लेकिन अगर मेंढक टर्र-टर्र कर रहा है तो धूप नहीं है, तो यह कहने के समान है कि मेंढक टर्र-टर्र नहीं कर रहा है। इसे एक प्रस्तावक सूत्र में निम्नानुसार परिवर्तित करें:
- IF (a AND (IF b THEN NOT-a) THEN NOT-a जहां a धूप का प्रतिनिधित्व करता है और b मेंढक टर्राने का प्रतिनिधित्व करता है :
- (((ए) और ((बी) → ~(ए)) ≡ ~(बी))
- यह सुगठित है, लेकिन क्या यह मान्य है? दूसरे शब्दों में, जब मूल्यांकन किया जाएगा तो क्या यह तार्किक-तुल्यता प्रतीक ≡ के नीचे एक पुनरुक्ति (सभी टी) उत्पन्न करेगा? उत्तर नहीं है, यह मान्य नहीं है। हालांकि, अगर एक निहितार्थ के रूप में पुनर्निर्माण किया गया तो तर्क मान्य है।
- यह कहना धूप है, लेकिन अगर मेंढक टर्रा रहा है तो धूप नहीं है, इसका मतलब है कि मेंढक टर्रा नहीं रहा है।
- अन्य परिस्थितियाँ मेंढक को टेढ़े होने से रोक सकती हैं: शायद एक क्रेन ने उसे खा लिया।
- उदाहरण 2 (रीचेनबैक से बर्ट्रेंड रसेल के माध्यम से):
- यदि सूअरों के पंख होते हैं, तो कुछ पंख वाले जानवर खाने में अच्छे होते हैं। कुछ पंखों वाले जानवर खाने में अच्छे होते हैं, तो सूअरों के पंख होते हैं।
- (((ए) → (बी)) और (बी) → (ए)) अच्छी तरह से गठित है, लेकिन एक अमान्य तर्क जैसा कि मुख्य निहितार्थ के तहत लाल मूल्यांकन द्वारा दिखाया गया है:
W | G | arg | |||||||||||||
a | b | ( | ( | ( | a | -> | b | ) | & | b | ) | -> | a | ) | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||||||
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | |||||||
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | |||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
संयोजकों के घटे हुए सेट
तार्किक संयोजकों के एक सेट को पूर्ण कहा जाता है यदि प्रत्येक प्रस्ताव सूत्र उस सेट में केवल संयोजकों के साथ एक सूत्र के बराबर है। संयोजकों के कई पूर्ण सेट हैं, जिनमें शामिल हैं , , और . दो बाइनरी संयोजक हैं जो क्रमशः NAND और NOR के अनुरूप अपने आप पूर्ण होते हैं।[20] उदाहरण के लिए, कुछ जोड़े पूर्ण नहीं हैं .
स्ट्रोक (नंद)
एनएएनडी से संबंधित द्विआधारी संयोजक को शेफर लाइन कहा जाता है, और एक ऊर्ध्वाधर पट्टी के साथ लिखा जाता है या लंबवत तीर ↑. इस संयोजकता की पूर्णता प्रिन्सिपिया मैथेमेटिका (1927:xvii) में नोट की गई थी। चूँकि यह अपने आप में पूर्ण है, अन्य सभी संयोजकों को केवल आघात का प्रयोग करके व्यक्त किया जा सकता है। उदाहरण के लिए, जहां प्रतीक ≡ तार्किक तुल्यता का प्रतिनिधित्व करता है:
- ~p ≡ p|p
- पी → क्यू ≡ पी | ~ क्यू
- p ∨ q ≡ ~p|~q
- पी और क्यू ≡ ~ (पी | क्यू)
विशेष रूप से, शून्य-ऐरी संयोजक (सच्चाई का प्रतिनिधित्व) और (झूठ का प्रतिनिधित्व) स्ट्रोक का उपयोग करके व्यक्त किया जा सकता है:
अगर ... तो ... और
यह संयोजक {0, 1}, (या {F, T} या { , } ) एक पूर्ण सेट बनाता है। निम्नलिखित में IF...THEN...ELSE संबंध (गणित) (c, b, a) = d निरूपित करता है ((c → b) ∨ (~c → a) ) ≡ ( (c & b) ∨ ( ~ सी और ए)) = डी
- (सी, बी, ए):
- (सी, 0, 1) ≡ ~ सी
- (सी, बी, 1) ≡ (सी → बी)
- (सी, सी, ए) ≡ (सी ∨ ए)
- (सी, बी, सी) ≡ (सी और बी)
उदाहरण: निम्नलिखित दिखाता है कि (c, b, 1) ≡ (c → b) का एक प्रमेय-आधारित प्रमाण कैसे आगे बढ़ेगा, प्रमाण के नीचे इसका सत्य-सारणी सत्यापन है। (नोट: (c → b) को (~c ∨ b) के रूप में परिभाषित किया गया है):
- घटाए गए रूप से शुरू करें: ( (c & b) ∨ (~c & a) )
- 1 को a से बदलें: ( (c & b) ∨ (~c & 1) )
- सर्वसमिका (~c & 1) = ~c: ((c & b) ∨ (~c) )
- V के लिए परिवर्तन का नियम: ((~c) ∨ (c & b) )
- ~c V को (c और b) पर वितरित करें: ( ((~c) ∨ c ) और ((~c) ∨ b )
- अपवर्जित मध्य का नियम (((~c) ∨ c ) = 1 ): ( (1) & ((~c) ∨ b ) )
- वितरण (1) और अधिक ((~c) ∨ b): ( ((1) और (~c)) ∨ ((1) और b )) )
- कम्युटिविटी और आइडेंटिटी (( 1 & ~c) = (~c & 1) = ~c, and (( 1 & b) ≡ (b & 1) ≡ b: ( ~c ∨ b )
- ( ~c ∨ b ) को 'c → b' Q. E. D के रूप में परिभाषित किया गया है।
निम्नलिखित सत्य तालिका में टॉटोलॉजी के लिए तना हुआ लेबल वाला कॉलम d लेबल वाले दो स्तंभों के बीच तार्किक तुल्यता (यहाँ ≡ द्वारा चिन्हित) का मूल्यांकन करता है। क्योंकि तना हुआ के अंतर्गत सभी चार पंक्तियाँ 1 हैं, तुल्यता वास्तव में एक पुनरुक्ति का प्रतिनिधित्व करती है।
d | taut | d | |||||||||||||||||||||||||||||
rows | c | b | a | ( | ( | ( | c | & | b | ) | V | ( | ~ | ( | c | ) | & | a | ) | ) | ≡ | ( | ~ | ( | c | ) | V | b | ) | ) | |
0,1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | |||||||||||||||
2,3 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | |||||||||||||||
4,5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | |||||||||||||||
6,7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
सामान्य रूप
एक मनमाना प्रस्ताव सूत्र में बहुत जटिल संरचना हो सकती है। ऐसे सूत्रों के साथ काम करना अक्सर सुविधाजनक होता है जिनके सरल रूप होते हैं, जिन्हें सामान्य रूपों के रूप में जाना जाता है। कुछ सामान्य सामान्य रूपों में संयोजक सामान्य रूप और विघटनकारी सामान्य रूप शामिल हैं। किसी भी प्रस्तावनात्मक सूत्र को उसके संयोजक या वियोगी सामान्य रूप में घटाया जा सकता है।
सामान्य रूप में कमी
सूत्र के लिए एक सत्य तालिका तैयार होने के बाद सामान्य रूप में कमी अपेक्षाकृत सरल होती है। लेकिन शाब्दिक संख्या को कम करने के लिए आगे के प्रयासों (नीचे देखें) के लिए कुछ उपकरणों की आवश्यकता होती है: डी मॉर्गन के नियमों और सत्य तालिकाओं द्वारा कमी करना मुश्किल हो सकता है, लेकिन कर्णघ के नक्शे चर की एक छोटी संख्या (5 या उससे कम) के लिए बहुत उपयुक्त हैं। कई आउटपुट वाले अधिक जटिल सर्किट के लिए कुछ परिष्कृत सारणीबद्ध तरीके मौजूद हैं लेकिन ये इस लेख के दायरे से बाहर हैं; अधिक जानकारी के लिए क्विन-मैक्लुस्की एल्गोरिथम देखें।
शाब्दिक, पद और पर्याय
इलेक्ट्रिकल इंजीनियरिंग में एक चर x या इसका निषेध ~(x) एक साथ एक एकल धारणा में एक साथ हो जाता है जिसे शाब्दिक (गणितीय तर्क) कहा जाता है। ANDs द्वारा जुड़े शाब्दिक शब्दों की एक स्ट्रिंग को एक शब्द कहा जाता है। OR से जुड़े शाब्दिक शब्दों की एक स्ट्रिंग को एक परिवर्तन कहा जाता है। विशिष्ट रूप से शाब्दिक ~(x) का संक्षिप्त रूप ~x है। कभी-कभी बीजगणितीय गुणन के तरीके में &-प्रतीक को पूरी तरह से छोड़ दिया जाता है।
- उदाहरण
- ए, बी, सी, डी चर हैं। ((( a & ~(b) ) & ~(c)) & d) एक पद है। इसे (a & ~b & ~c & d), या a~b~cd के रूप में संक्षिप्त किया जा सकता है।
- p, q, r, s चर हैं। (((p & ~(q) ) & r) & ~(s) ) एक परिवर्तन है। इसे (p ∨ ~q ∨ r ∨ ~s) के रूप में संक्षिप्त किया जा सकता है।
मिनट्स
इसी प्रकार अ 2n-पंक्ति सत्य तालिका सभी 2 के लिए एक प्रस्ताव सूत्र का मूल्यांकन प्रदर्शित करती हैn इसके चरों के संभावित मान, n चर एक 2 उत्पन्न करते हैंn-स्क्वायर कर्णघ मानचित्र (भले ही हम इसे इसके पूर्ण-आयामी बोध में नहीं बना सकते हैं)। उदाहरण के लिए, 3 चर 2 उत्पन्न करते हैं3 = 8 पंक्तियाँ और 8 कर्णघ वर्ग; 4 चर 16 सत्य-तालिका पंक्तियाँ और 16 वर्ग उत्पन्न करते हैं और इसलिए 16 minterms। प्रत्येक कर्णघ-नक्शा वर्ग और इसके संबंधित सत्य-तालिका मूल्यांकन एक मिनट का प्रतिनिधित्व करता है।
किसी भी प्रस्तावित सूत्र को सक्रिय (यानी 1 - या टी-वैल्यूड) मिन्टरम्स के तार्किक योग (OR) तक कम किया जा सकता है। जब इस रूप में सूत्र को वियोगात्मक सामान्य रूप में कहा जाता है। लेकिन भले ही यह इस रूप में है, यह जरूरी नहीं कि शब्दों की संख्या या अक्षर की संख्या के संबंध में कम से कम हो।
निम्नलिखित तालिका में, पंक्तियों की अजीबोगरीब संख्या देखें: (0, 1, 3, 2, 6, 7, 5, 4, 0)। पहला कॉलम अंक cba के बाइनरी समतुल्य का दशमलव समतुल्य है, दूसरे शब्दों में:
- उदाहरण
- सीबीए2 = सी * 22 + ख*21 + ए*20:
- सीबीए = (सी=1, बी=0, ए=0) = 1012 = 1*22 + 0*21 + 1*20</सुप> = 510
यह क्रमांकन इस बारे में आता है क्योंकि जैसे ही कोई पंक्ति से पंक्ति में तालिका को नीचे ले जाता है, एक समय में केवल एक चर इसके मूल्य को बदलता है। ग्रे कोड इस धारणा से लिया गया है। इस धारणा को तीन और चार-आयामी अतिविम तक बढ़ाया जा सकता है जिसे हस्से आरेख कहा जाता है, जहां प्रत्येक कोने के चर एक समय में केवल एक ही बदलते हैं, क्योंकि घन के किनारों के चारों ओर घूमते हैं। हस्से आरेख (हाइपरक्यूब्स) दो आयामों में चपटा हुआ या तो वेच आरेख या कर्णघ मानचित्र हैं (ये वस्तुतः एक ही चीज़ हैं)।
कर्णघ नक्शों के साथ काम करते समय हमेशा यह ध्यान रखना चाहिए कि शीर्ष किनारा नीचे के किनारे के चारों ओर लपेटता है, और बायां किनारा दाएं किनारे के चारों ओर लपेटता है- कर्णघ आरेख वास्तव में एक तीन- या चार- या एन-आयामी चपटा वस्तु है .
decimal equivalent of (c, b, a) | c | b | a | minterm |
---|---|---|---|---|
0 | 0 | 0 | 0 | (~c & ~b & ~a) |
1 | 0 | 0 | 1 | (~c & ~b & a) |
3 | 0 | 1 | 1 | (~c & b & a) |
2 | 0 | 1 | 0 | (~c & b & ~a) |
6 | 1 | 1 | 0 | (c & b & ~a) |
7 | 1 | 1 | 1 | (c & b & a) |
5 | 1 | 0 | 1 | (c & ~b & a) |
4 | 1 | 0 | 0 | (c & ~b & ~a) |
0 | 0 | 0 | 0 | (~a & ~b & ~c) |
मानचित्र विधि (वीच, कर्णघ) के उपयोग से कमी
वेइच ने वृत्तों को संलग्न वर्गों में परिवर्तित करके वेन आरेखों की धारणा में सुधार किया, और कर्णघ ने उनके शाब्दिक रूप (जैसे ~abc~d) में लिखे गए टकसालों को संख्याओं में परिवर्तित करके वेइच आरेख को सरल बनाया।[21] विधि निम्नानुसार आगे बढ़ती है:
सूत्र की सत्य तालिका तैयार करें
सूत्र की सत्य तालिका तैयार करें। n चर के लिए चर के बाइनरी-समतुल्य (आमतौर पर सिर्फ क्रमिक रूप से 0 से n-1) का उपयोग करके इसकी पंक्तियों को संख्या दें।
- तकनीकी रूप से, प्रस्तावक समारोह को इसके (अन्यूनतम) संयोजन सामान्य रूप में कम कर दिया गया है: प्रत्येक पंक्ति में इसकी न्यूनतम अभिव्यक्ति होती है और इन्हें इसके (अन्यूनतम) संयोजन सामान्य रूप में सूत्र का उत्पादन करने के लिए OR'd किया जा सकता है।
उदाहरण: ((c & d) ∨ (p & ~(c & (~d)))) = q संयोजक सामान्य रूप में है:
- ((~p & d & c) ∨ (p & d & c) ∨ (p & d & ~c) ∨ (p & ~d & ~c) ) = q
हालाँकि, इस सूत्र को शब्दों की संख्या (4 से 3 तक) और इसके शाब्दिक (12 से 6) की कुल संख्या में घटाया जा सकता है।
row | Minterms | p | d | c | ( | ( | c | & | d | ) | ∨ | ( | p | & | ~ | ( | ( | c | & | ~ | ( | d | ) | ) | ) | ) | ) | Active minterms | Formula in conjunctive normal form |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ( ~p & ~d & ~c ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | ||||||||||||||
1 | ( ~p & ~d & c) | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | ||||||||||||||
2 | ( ~p & d & ~c ) | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ||||||||||||||
3 | ( ~p & d & c ) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | (~p & d & c) | |||||||||||||
4 | ( p & ~d & ~c ) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | (~p & d & c) | |||||||||||||
5 | ( p & ~d & c ) | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | ||||||||||||||
6 | ( p & d & ~c ) | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | (p & d & ~c) | |||||||||||||
7 | ( p & d & c ) | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | ( p & d & c ) | |||||||||||||
q | = (~p&d&c) ∨ (~p&d&c) ∨ (p&d&~c ) ∨ (p&d&c ) |
सूत्र का कर्णघ नक्शा बनाएं
ट्रूथ-टेबल विधि द्वारा प्राप्त सूत्र (जैसे p) के मानों का उपयोग करें और उन्हें उनके संबंधित (संबद्ध) कर्णघ वर्गों में रखें (ये ग्रे कोड कन्वेंशन के अनुसार गिने जाते हैं)। यदि तालिका में परवाह नहीं करने के लिए d के मान दिखाई देते हैं, तो यह कमी चरण के दौरान लचीलापन जोड़ता है।
minterm कम करें
सन्निकट (संलग्न) 1-वर्गों (टी-स्क्वायर) के न्यूनतम पदों को उनके शाब्दिक (गणितीय तर्क) की संख्या के संबंध में कम किया जा सकता है, और प्रक्रिया में संख्या शर्तों को भी घटाया जाएगा। दो जुड़े हुए वर्ग (2 x 1 क्षैतिज या 1 x 2 लंबवत, यहां तक कि किनारे भी संलग्न वर्गों का प्रतिनिधित्व करते हैं) 4 x 1 आयत (क्षैतिज या लंबवत) या 2 x 2 वर्ग में एक शाब्दिक, चार वर्ग खो देते हैं (यहां तक कि चार कोने संलग्न करने का प्रतिनिधित्व करते हैं) वर्ग) दो अक्षर खो देते हैं, एक आयत में आठ वर्ग 3 अक्षर खो देते हैं, आदि। (कोई सबसे बड़े वर्ग या आयत की तलाश करता है और छोटे वर्गों या आयतों को पूरी तरह से अनदेखा कर देता है।) यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी संलग्न वर्गों का हिसाब नहीं हो जाता। जिस बिंदु पर प्रस्तावात्मक सूत्र को छोटा किया जाता है।
उदाहरण के लिए, वर्ग #3 और #7 abut। ये दो संलग्न वर्ग एक शाब्दिक खो सकते हैं (उदाहरण के लिए वर्ग #3 और #7 से p), एक आयत या वर्ग में चार वर्ग दो शाब्दिक खो देते हैं, एक आयत में आठ वर्ग 3 अक्षर खो देते हैं, आदि। (एक सबसे बड़े वर्ग की तलाश करता है या आयतें।) यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी संलग्न वर्गों का हिसाब नहीं लगाया जाता है, जिस बिंदु पर प्रस्तावक सूत्र को न्यूनतम कहा जाता है।
उदाहरण: मानचित्र विधि आमतौर पर निरीक्षण द्वारा की जाती है। कर्णघ मानचित्र पर शब्दों के संयोजन के पीछे की चाल दिखाने के लिए निम्न उदाहरण बीजगणितीय पद्धति का विस्तार करता है:
- मिन्टरम्स #3 और #7 अबाउट, #7 और #6 अबाउट, और #4 और #6 अबाउट (क्योंकि टेबल के किनारे लपेटे जाते हैं)। तो इनमें से प्रत्येक जोड़े को कम किया जा सकता है।
निरीक्षण करें कि कार्यकुशलता नियम (A ∨ A) = A द्वारा, हम और पद बना सकते हैं। फिर संघ और वितरण कानूनों द्वारा गायब होने वाले चर जोड़े जा सकते हैं, और फिर विरोधाभास के कानून (x & ~x)=0 के साथ गायब हो सकते हैं। निम्नलिखित केवल शब्दों का ट्रैक रखने के लिए कोष्ठक [ और ] का उपयोग करता है; उनका कोई विशेष महत्व नहीं है:
- सूत्र को कम किए जाने वाले सूत्र के साथ संयोजन सामान्य रूप में रखें:
- q = ((~p & d & c) ∨ (p & d & c) ∨ (p & d & ~c) ∨ (p & ~d & ~c) ) = ( #3 ∨ #7 ∨ #6 ∨ #4 )
- उदासीनता (अवशोषण) [ए ∨ ए) = ए:
- ( #3 ∨ [ #7 ∨ #7 ] ∨ [ #6 ∨ #6 ] ∨ #4 )
- साहचर्य नियम (x ∨ (y ∨ z)) = ((x ∨ y) ∨ z )
- ( [ #3 ∨ #7 ] ∨ [ #7 ∨ #6 ] ∨ [ #6 ∨ #4] )
- [ (~पी और डी और सी) ∨ (पी और डी और सी)] ∨ [(पी और डी और सी) ∨ (पी और डी और ~सी)] ∨ [ (पी और डी और ~सी) ∨ (पी और ~डी और ~सी)]।
- वितरण नियम (x और (y ∨ z) ) = ( (x और y) ∨ (x और z) ):
- ( [(डी और सी) ∨ (~पी और पी)] ∨ [(पी और डी) ∨ (~सी और सी) ] ∨ [ (पी और ~सी) ∨ (सी और ~सी) ] )
- क्रमविनिमेय नियम और विरोधाभास का नियम (x & ~x) = (~x & x) = 0:
- ( [(डी और सी) ∨ (0) ] ∨ [ (पी और डी) ∨ (0) ] ∨ [ (पी और ~सी) ∨ (0) ] )
- पहचान का नियम ( x ∨ 0 ) = x सूत्र के घटे हुए रूप के लिए अग्रणी:
- क्यू = ((डी और सी) ∨ (पी एंड डी) ∨ (पी और ~सी))
एक सत्य तालिका के साथ कमी को सत्यापित करें
row | Minterms | p | d | c | ( | ( | d | & | c | ) | ∨ | ( | p | & | d | ) | ∨ | ( | p | & | ~ | ( | c | ) | ) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ( ~p & ~d & ~c ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |||||||||
1 | ( ~p & ~d & c) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |||||||||
2 | ( ~p & d & ~c ) | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | |||||||||
3 | ( ~p & d & c ) | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | |||||||||
4 | ( p & ~d & ~c ) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | |||||||||
5 | ( p & ~d & c ) | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | |||||||||
6 | ( p & d & ~c ) | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | |||||||||
7 | ( p & d & c ) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | |||||||||
q |
अप्रतिबंधित प्रस्ताव
निम्नलिखित उदाहरणों को परिभाषाओं के रूप में देखते हुए, बाद के तर्कों से क्या बनता है:
- (1) यह वाक्य सरल है। (2) यह वाक्य जटिल है, और यह AND से जुड़ा है।
फिर चर s को बाएँ-सबसे वाक्य में असाइन करें यह वाक्य सरल है। कंपाउंड c = सरल नहीं ~s को परिभाषित करें, और c = ~s को यह वाक्य कंपाउंड है; इसे j असाइन करें [यह वाक्य] AND से जुड़ा हुआ है। दूसरे वाक्य को इस प्रकार व्यक्त किया जा सकता है:
- (नहीं(एस) और जे)
यदि सत्य मान वाक्यों c = ~s और j पर रखे जाने हैं, तो सभी स्पष्ट रूप से FALSEHOODS हैं: उदा। यह वाक्य जटिल है एक FALSEHOOD है (यह सरल है, परिभाषा के अनुसार)। अतः उनका संयोजन (AND) असत्य है। लेकिन जब इसके इकट्ठे रूप में लिया जाता है, तो वाक्य एक सत्य होता है।
यह उन विरोधाभासों का एक उदाहरण है जो एक अप्रतिबंधित परिभाषा से उत्पन्न होते हैं - अर्थात, जब किसी वस्तु m में एक गुण P होता है, लेकिन वस्तु m को गुण P के संदर्भ में परिभाषित किया जाता है।[22] एक बयानबाजी करने वाले या निगमनात्मक विश्लेषण में शामिल व्यक्ति के लिए सबसे अच्छी सलाह है कि वह अप्रतिबंधात्मक परिभाषाओं से बचें, लेकिन साथ ही साथ उनकी तलाश में रहें क्योंकि वे वास्तव में विरोधाभास पैदा कर सकते हैं। दूसरी ओर, इंजीनियरों ने उन्हें प्रतिक्रिया के साथ प्रस्तावात्मक सूत्रों के रूप में काम करने के लिए रखा।
प्रतिक्रिया के साथ प्रस्ताव सूत्र
अपने स्वयं के चरों में से एक के रूप में प्रकट होने वाले एक प्रस्तावनात्मक सूत्र की धारणा के लिए एक गठन नियम की आवश्यकता होती है जो सूत्र को एक चर के असाइनमेंट की अनुमति देता है। सामान्य तौर पर ऐसी कोई शर्त नहीं है (वस्तुओं और संबंधों की स्वयंसिद्ध या सत्य-सारणी प्रणाली) जो ऐसा होने से मना करती है।[23] सबसे सरल मामला तब होता है जब एक OR सूत्र अपना स्वयं का इनपुट बन जाता है उदा। पी = क्यू। (p ∨ s) = q से प्रारंभ करें, फिर मान लीजिए p = q। ध्यान दें कि q की परिभाषा स्वयं q के साथ-साथ s और OR संयोजक पर भी निर्भर करती है; क्यू की यह परिभाषा इस प्रकार अप्रतिबंधात्मक है। दो स्थितियों में से कोई भी परिणाम हो सकता है:[24] कंपन या स्मृति।
यह सूत्र को ब्लैक बॉक्स के रूप में सोचने में मदद करता है। सूत्र-बॉक्स के अंदर क्या चल रहा है, इसके ज्ञान के बिना बाहर से ऐसा प्रतीत होगा कि आउटपुट अब केवल इनपुट का एक फ़ंक्शन (गणित) नहीं है। अर्थात्, कभी कोई q को देखता है और 0 को देखता है और अन्य समय 1 को देखता है। इस समस्या से बचने के लिए किसी को बॉक्स के अंदर छिपे चर p की स्थिति (स्थिति) को जानना होगा (अर्थात q का मान वापस खिलाया गया और p को सौंपा गया) . जब यह ज्ञात हो जाता है तो स्पष्ट असंगति दूर हो जाती है।
समझने के लिए [भविष्यवाणी] प्रतिक्रिया के साथ सूत्रों के व्यवहार को अनुक्रमिक सर्किट के अधिक परिष्कृत विश्लेषण की आवश्यकता होती है। राज्य मशीनों के लिए, उनके सरलतम रूप में, फीडबैक लीड के साथ प्रस्तावक सूत्र; वे ट्यूरिंग टेप और काउंटर-मशीन काउंटर के रूप में यादों को भी जन्म देते हैं। इन तत्वों के संयोजन से कोई भी किसी भी प्रकार के परिबद्ध कम्प्यूटेशनल मॉडल (जैसे ट्यूरिंग मशीन, काउंटर मशीन, रजिस्टर मशीन, मैकिंटोश कंप्यूटर, आदि) का निर्माण कर सकता है।
दोलन
सार (आदर्श) मामले में सबसे सरल दोलन सूत्र खुद को वापस नहीं खिलाया जाता है: ~(~(p=q)) = q। सत्य-सारणी में एक सार (आदर्श) तर्कवाक्य सूत्र का विश्लेषण p=1 और p=0 दोनों मामलों के लिए एक असंगति प्रकट करता है: जब p=1, q=0, यह नहीं हो सकता क्योंकि p=q; इसी तरह जब पी = 0 और क्यू = 1 के लिए।
q | |||||||
---|---|---|---|---|---|---|---|
p | ~ | ( | p | ) | = q | ||
0 | 1 | 0 | 1 | q & p inconsistent | |||
1 | 0 | 1 | 0 | q & p inconsistent |
विलंब के साथ दोलन: यदि विलंब हो[25] (आदर्श या गैर-आदर्श) p और q के बीच सार सूत्र में डाला जाता है तो p 1 और 0: 101010...101... अनंत के बीच दोलन करेगा। यदि देरी में से कोई भी और सार नहीं है (अर्थात आदर्श नहीं है), तो उपयोग किए जाने वाले विश्लेषण का प्रकार ऑसिलेटर बनाने वाली वस्तुओं की सटीक प्रकृति पर निर्भर करेगा; ऐसी चीजें गणित के बाहर और इंजीनियरिंग में आती हैं।
विश्लेषण के लिए देरी डालने की आवश्यकता होती है और फिर देरी और इनपुट p के बीच लूप कट जाता है। विलंब को एक प्रकार के प्रस्ताव के रूप में देखा जाना चाहिए जिसमें इनपुट के रूप में q के आउटपुट के रूप में qd (q-delayed) है। यह नया प्रस्ताव सत्य तालिका में एक और स्तंभ जोड़ता है। असंगति अब qd और p के बीच है जैसा कि लाल रंग में दिखाया गया है; परिणामी दो स्थिर अवस्थाएँ:
q | ||||||||
---|---|---|---|---|---|---|---|---|
qd | p | ( | ~ | ( | p | ) | = q | |
0 | 0 | 1 | 0 | 1 | state 1 | |||
0 | 1 | 0 | 1 | 0 | qd & p inconsistent | |||
1 | 0 | 1 | 0 | 1 | qd & p inconsistent | |||
1 | 1 | 0 | 1 | 0 | state 0 |
मेमोरी
बिना देर किए, सत्य तालिका विश्लेषण से विसंगतियों को दूर किया जाना चाहिए। देरी की धारणा के साथ, यह स्थिति खुद को फेड-बैक आउटपुट वेरिएबल क्यू और पी = क्यू के बीच एक क्षणिक असंगति के रूप में प्रस्तुत करती हैdelayed.
एक सत्य तालिका उन पंक्तियों को प्रकट करती है जहाँ p = q के बीच विसंगतियाँ होती हैंdelayed इनपुट पर और q आउटपुट पर। फ़ीड-बैक को तोड़ने के बाद,[26] सत्य तालिका निर्माण पारंपरिक तरीके से आगे बढ़ता है। लेकिन बाद में, प्रत्येक पंक्ति में आउटपुट क्यू की तुलना अब-स्वतंत्र इनपुट पी से की जाती है और पी और क्यू के बीच कोई भी विसंगतियां नोट की जाती हैं (यानी पी = 0 क्यू = 1, या पी = 1 और क्यू = 0 के साथ); जब लाइन को फिर से बनाया जाता है तो विरोधाभास के कानून ~(p & ~p) द्वारा दोनों को असंभव बना दिया जाता है। विसंगतियों को प्रकट करने वाली पंक्तियों को या तो क्षणिक स्थिति माना जाता है या असंगत के रूप में समाप्त कर दिया जाता है और इसलिए असंभव है।
वन्स-फ्लिप मेमोरी
सबसे सरल मेमोरी परिणामों के बारे में जब OR का आउटपुट इसके किसी एक इनपुट को वापस फीड करता है, इस मामले में आउटपुट q p में वापस फीड करता है। यह देखते हुए कि सूत्र का पहले p=0 और q=0 के साथ मूल्यांकन (प्रारंभिक) किया जाता है, यह s=1 द्वारा सेट किए जाने पर एक बार फ़्लिप करेगा। इसके बाद, आउटपुट q फ़्लिप की स्थिति में q को बनाए रखेगा (राज्य q = 1)। यह व्यवहार, जो अब समय-निर्भर है, राज्य आरेख द्वारा वंस-फ्लिप के दाईं ओर दिखाया गया है।
q | ||||||||
---|---|---|---|---|---|---|---|---|
p | s | ( | s | ∨ | p | ) | = q | |
0 | 0 | 0 | 0 | 0 | 0 | state 0, s=0 | ||
0 | 1 | 1 | 1 | 0 | q & p inconsistent | |||
1 | 0 | 0 | 1 | 1 | 1 | state 1 with s = 0 | ||
1 | 1 | 1 | 1 | 1 | 1 | state 1 with s = 1 |
फ्लिप-फ्लॉप मेमोरी
अगला सरल मामला है सेट-रीसेट फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) | फ्लिप-फ्लॉप एक बार-फ्लिप के नीचे दिखाया गया है। यह देखते हुए कि आर = 0 और एस = 0 और क्यू = 0 शुरुआत में, यह एक बार-फ्लिप के समान तरीके से सेट (एस = 1) है। हालाँकि इसमें r = 1 होने पर q = 0 को रीसेट करने का प्रावधान है। और अतिरिक्त जटिलता तब होती है जब दोनों सेट = 1 और रीसेट = 1। इस सूत्र में, सेट = 1 आउटपुट q = 1 को बाध्य करता है, इसलिए कब और यदि (s = 0 और r = 1) फ्लिप-फ्लॉप रीसेट हो जाएगा। या, अगर (s=1 & r=0) फ्लिप-फ्लॉप सेट हो जाएगा। अमूर्त (आदर्श) उदाहरण में जिसमें s=1 ⇒ s=0 & r=1 ⇒ r=0 एक साथ, सूत्र q अनिश्चित (अनिश्चित) होगा। वास्तविक OR, AND और NOT में देरी के कारण परिणाम शुरुआत में अज्ञात होगा लेकिन उसके बाद विधेय होगा।
q | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | s | r | ( | s | ∨ | ( | p | & | ~ | ( | r | ) | ) | ) | = q | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | state 0 with ( s=0 & r=0 ) | ||||||
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | state 0 with ( s=0 & r=1 ) | ||||||
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | q & p inconsistent | |||||||
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | q & p inconsistent | |||||||
1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | state 1 with ( s=0 & r=0 ) | ||||||
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | q & p inconsistent | |||||||
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | state 1 with ( s=1 & r=0 ) | ||||||
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | state 1 with s & r simultaneously 1 |
क्लॉक फ्लिप-फ्लॉप मेमोरी
क्लॉक्ड फ्लिप-फ्लॉप मेमोरी (c क्लॉक है और d डेटा है) के रूप में जाना जाने वाला सूत्र नीचे दिया गया है। यह निम्नानुसार कार्य करता है: जब c = 0 डेटा d (या तो 0 या 1) आउटपुट q को प्रभावित करने के लिए प्राप्त नहीं कर सकता है। जब c = 1 डेटा d के माध्यम से प्राप्त होता है और आउटपुट q d के मान का अनुसरण करता है। जब c 1 से 0 तक जाता है तो डेटा का अंतिम मान आउटपुट q पर फंसा रहता है। जब तक c = 0, d, q को बदले बिना मान बदल सकता है।
- उदाहरण
- ((सी और डी) ∨ (पी और (~(सी और ~(डी))) = क्यू, लेकिन अब पी = क्यू:
- ((सी और डी) ∨ (क्यू और (~(सी और ~(डी))) = क्यू
राज्य आरेख फ्लिप-फ्लॉप के राज्य आरेख के आकार के समान है, लेकिन संक्रमणों पर अलग-अलग लेबलिंग के साथ।
s | q | w | v | r | u | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
row | q | d | c | ( | ( | c | & | d | ) | ∨ | ( | q | & | ~ | ( | ( | c | & | ~ | ( | d | ) | ) | ) | ) | ) | =q | Description |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | state 0 with ( s=0 & r=0 ), 0 is trapped | ||||||||||||
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | state 0 with ( d=0 & c=1 ): q=0 is following d=0 | ||||||||||||
2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | state 0 with ( d=1 & r=0 ), 0 is trapped | ||||||||||||
3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | q & p inconsistent | |||||||||||||
4 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | state 1 with (d =0 & c=0 ), 1 is trapped | ||||||||||||
5 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | q & p inconsistent | |||||||||||||
6 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | state 1 with (d =1 & c=0 ), 1 is trapped | ||||||||||||
7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | state 1 with ( d=1 & c=1 ): q=1 is following d=1 |
ऐतिहासिक विकास
बर्ट्रेंड रसेल (1912:74) अरस्तू से प्राप्त विचार के तीन नियमों को सूचीबद्ध करता है: (1) पहचान का नियम: जो कुछ भी है, वह है। , (2) गैर-विरोधाभास का नियम: कुछ भी नहीं हो सकता है और न ही हो सकता है, और (3) बहिष्कृत मध्य का नियम: सब कुछ होना चाहिए या नहीं होना चाहिए।
- उदाहरण: यहाँ O किसी वस्तु के होने या गुणवत्ता के बारे में एक अभिव्यक्ति है:
- पहचान का नियम: O = O
- विरोधाभास का नियम: ~(O & ~(O))
- बहिष्कृत मध्य का कानून: (ओ ∨ ~(ओ))
बहिष्कृत मध्य के कानून में सब कुछ शब्द का उपयोग इस कानून की रसेल की अभिव्यक्ति को बहस के लिए खुला करता है। यदि वस्तुओं के एक परिमित संग्रह (प्रवचन का एक परिमित ब्रह्मांड) के संदर्भ में BEING या QUALITY के बारे में एक अभिव्यक्ति तक सीमित है - जिसके सदस्यों की उपस्थिति या अनुपस्थिति के लिए एक के बाद एक जांच की जा सकती है - तो कानून माना जाता है सहज रूप से उपयुक्त। इस प्रकार एक अभिकथन जैसे: यह वस्तु या तो होनी चाहिए या नहीं होनी चाहिए (संग्रह में), या इस वस्तु में या तो यह गुणवत्ता होनी चाहिए या यह गुणवत्ता नहीं होनी चाहिए (संग्रह में वस्तुओं के सापेक्ष) स्वीकार्य है। वेन आरेख पर और देखें।
यद्यपि तर्कवाक्य कलन की उत्पत्ति अरस्तू के साथ हुई, फिर भी तर्कवाक्यों पर लागू बीजगणित की धारणा को 19वीं शताब्दी की शुरुआत तक प्रतीक्षा करनी पड़ी। अरस्तू के न्यायवाक्य की 2000 वर्ष की परंपरा की एक (प्रतिकूल) प्रतिक्रिया में, जॉन लोके के मानव समझ से संबंधित निबंध (1690) में लाक्षणिकता (प्रतीकों के उपयोग का सिद्धांत) शब्द का प्रयोग किया गया था। 1826 तक रिचर्ड व्हाटली ने लोके के लाक्षणिकता के प्रति सहानुभूति के साथ न्याय संगत तर्क का आलोचनात्मक विश्लेषण किया था। जॉर्ज बेंथम के कार्य (1827) के परिणामस्वरूप विधेय (1827) के परिमाणीकरण की धारणा उत्पन्न हुई (आजकल इसे सभी के लिए ∀ ≡ के रूप में दर्शाया जाता है)। ऑगस्टस डी मॉर्गन के साथ एक प्राथमिकता विवाद पर सर विलियम हैमिल्टन, 9वें बैरोनेट द्वारा उकसाए गए एक विवाद ने जॉर्ज बूले को तर्क पर अपने विचार लिखने और उन्हें 1847 में एमएएल [तर्क का गणितीय विश्लेषण] के रूप में प्रकाशित करने के लिए प्रेरित किया (ग्रैटिन-गिनीज और बोर्नेट 1997) :xxviii)।
उनके योगदान के बारे में ग्रैटिन-गिनीज और बोर्नेट टिप्पणी:
- बोले का प्रमुख एकल नवाचार [द] कानून [x] थाn = x ] तर्क के लिए: यह कहा गया है कि गुण x को चुनने और x को बार-बार चुनने का मानसिक कार्य एक बार x को चुनने के समान है... इसके परिणामस्वरूप उसने समीकरण x•(1) बनाया -x)=0 और x+(1-x)=1 जो उसके लिए क्रमशः विरोधाभास के कानून और बहिष्कृत मध्य के कानून (पी। xxviiff) को व्यक्त करता है। बूले के लिए 1 प्रवचन का ब्रह्मांड था और 0 कुछ भी नहीं था।
भगवान फ्रीज का शुक्र है के बड़े पैमाने पर उपक्रम (1879) के परिणामस्वरूप प्रस्तावों की एक औपचारिक गणना हुई, लेकिन उनका प्रतीकवाद इतना कठिन था कि एक व्यक्ति को छोड़कर इसका बहुत कम प्रभाव था: बर्ट्रेंड रसेल। सबसे पहले अल्फ्रेड नॉर्थ व्हाइटहेड के छात्र के रूप में उन्होंने फ्रीज के काम का अध्ययन किया और इसके संबंध में एक (प्रसिद्ध और कुख्यात) संशोधन का सुझाव दिया (1904) एक अधिकार-विरोध की समस्या के आसपास जिसे उन्होंने फ्रेज के उपचार (cf रसेल के विरोधाभास) में खोजा। रसेल के काम ने व्हाइटहेड के साथ सहयोग का नेतृत्व किया, जिसने 1912 में प्रिंसिपिया मैथेमेटिका (पीएम) के पहले खंड का निर्माण किया। यही वह स्थान है जिसे हम आधुनिक तर्कवाक्य तर्क मानते हैं जो सबसे पहले प्रकट हुआ। विशेष रूप से, पीएम ने NOT और OR और अभिकथन प्रतीक ⊦ आदिम के रूप में परिचय दिया। इन धारणाओं के संदर्भ में वे इम्प्लीकेशन को परिभाषित करते हैं → ( def. *1.01: ~p ∨ q), फिर AND (def. *3.01: ~(~p ∨ ~q) ), फिर EQUIVALENCE p ←→ q (*4.01: ( पी → क्यू) और (क्यू → पी))।
- हेनरी एम. शेफ़र (1921) और जॉन निकोड प्रदर्शित करते हैं कि केवल एक संयोजक, स्ट्रोक | सभी प्रस्तावित सूत्रों को व्यक्त करने के लिए पर्याप्त है।
- एमिल पोस्ट (1921) ने प्रारंभिक प्रस्तावों के एक सामान्य सिद्धांत के अपने परिचय में विश्लेषण की सत्य तालिका पद्धति विकसित की। उसने निकोद के स्ट्रोक को नोट किया | .
- व्हाइटहेड और रसेल ने पीएम के अपने 1927 के पुनर्प्रकाशन में एक परिचय जोड़ा, जिसमें आंशिक रूप से आघात का एक अनुकूल उपचार जोड़ा गया।
'गणना और स्विचिंग लॉजिक':
- विलियम एक्लस (भौतिक विज्ञानी) और एफ डब्ल्यू जॉर्डन (1919) एक वैक्यूम ट्यूब से बने ट्रिगर रिले का वर्णन करते हैं।
- [[जॉर्ज स्टिअंश्ज़]] (1937) ने यांत्रिक रिले का उपयोग करके बाइनरी योजक का आविष्कार किया। वह इसे अपनी रसोई की मेज पर बनाता है।
- उदाहरण: दिए गए बाइनरी बिट्स एi और बीi और कैरी-इन ( c_ini), उनका योग Σi और कैरी-आउट (c_outi) हैं:
- ( ( एi एक्सओआर बीi ) एक्सओआर c_ini )= एसi
- ( एi & बीi ) ∨ c_ini ) = c_outi;
- एलन ट्यूरिंग रिले (1937-1938) का उपयोग करके गुणक बनाता है। ऐसा करने के लिए उसे अपने स्वयं के रिले कॉइल्स को हाथ से हवा देना पड़ता है।
- स्विचिंग सर्किट के बारे में पाठ्यपुस्तकें 1950 के दशक की शुरुआत में दिखाई देती हैं।
- विलार्ड क्वीन 1952 और 1955, एडवर्ड डब्ल्यू. वीच|ई. डब्ल्यू. वीच 1952, और मौरिस कर्णघ|एम. कर्णघ (1953) प्रस्तावित कार्यों को सरल बनाने के लिए मानचित्र-विधियाँ विकसित करते हैं।
- जॉर्ज एच. मीली (1955) और एडवर्ड एफ. मूर (1956) अनुक्रमिक (यानी स्विचिंग-सर्किट) मशीनों के सिद्धांत को संबोधित करते हैं।
- ई.जे. मैकक्लुस्की और एच. शोर ने प्रस्तावित (स्विचिंग) सर्किट (1962) को सरल बनाने के लिए एक विधि विकसित की।
फुटनोट्स
- ↑ Rosenbloom discusses this problem of implication at some length. Most philosophers and mathematicians just accept the material definition as given above. But some do not, including the intuitionists; they consider it a form of the law of excluded middle misapplied.[11]
- ↑ Rosenbloom[16] and Kleene 1952:73-74 ranks all 11 symbols.
उद्धरण
- ↑ Hamilton 1978:1
- ↑ Principia Mathematica (PM) p. 91 eschews "the" because they require a clear-cut "object of sensation"; they stipulate the use of "this"
- ↑ (italics added) Reichenbach[clarification needed] p.80.
- ↑ Tarski p.54-68. Suppes calls IDENTITY a "further rule of inference" and has a brief development around it; Robbin, Bender and Williamson, and Goodstein introduce the sign and its usage without comment or explanation. Hamilton p. 37 employs two signs ≠ and = with respect to the valuation of a formula in a formal calculus. Kleene p. 70 and Hamilton p. 52 place it in the predicate calculus, in particular with regards to the arithmetic of natural numbers.
- ↑ Empiricits eschew the notion of a priori (built-in, born-with) knowledge. "Radical reductionists" such as John Locke and David Hume "held that every idea must either originate directly in sense experience or else be compounded of ideas thus originating"; quoted from Quine reprinted in 1996 The Emergence of Logical Empriricism, Garland Publishing Inc. http://www.marxists.org/reference/subject/philosophy/works/us/quine.htm
- ↑ Neural net modelling offers a good mathematical model for a comparator as follows: Given a signal S and a threshold "thr", subtract "thr" from S and substitute this difference d to a sigmoid function: For large "gains" k, e.g. k=100, 1/( 1 + e−k*d ) = 1/( 1 + e−k*(S-thr) ) = { ≃0, ≃1 }.[clarification needed] For example, if "The door is DOWN" means "The door is less than 50% of the way up", then a threshold thr=0.5 corresponding to 0.5*5.0 = +2.50 volts could be applied to a "linear" measuring-device with an output of 0 volts when fully closed and +5.0 volts when fully open.
- ↑ In actuality the digital 1 and 0 are defined over non-overlapping ranges e.g. { "1" = +5/+0.2/−1.0 volts, 0 = +0.5/−0.2 volts }[clarification needed]. When a value falls outside the defined range(s) the value becomes "u" -- unknown; e.g. +2.3 would be "u".
- ↑ While the notion of logical product is not so peculiar (e.g. 0*0=0, 0*1=0, 1*0=0, 1*1=1), the notion of (1+1=1 is peculiar; in fact (a "+" b) = (a + (b - a*b)) where "+" is the "logical sum" but + and - are the true arithmetic counterparts. Occasionally all four notions do appear in a formula: A AND B = 1/2*( A plus B minus ( A XOR B ) ] (cf p. 146 in John Wakerly 1978, Error Detecting Codes, Self-Checking Circuits and Applications, North-Holland, New York, ISBN 0-444-00259-6 pbk.)
- ↑ A careful look at its Karnaugh map shows that IF...THEN...ELSE can also be expressed, in a rather round-about way, in terms of two exclusive-ORs: ( (b AND (c XOR a)) OR (a AND (c XOR b)) ) = d.
- ↑ Robbin p. 3.
- ↑ Rosenbloom 1950, pp. 30 and 54ff.
- ↑ Indeed, exhaustive selection between alternatives -- mutual exclusion -- is required by the definition that Kleene gives the CASE operator (Kleene 1952229)
- ↑ The use of quote marks around the expressions is not accidental. Tarski comments on the use of quotes in his "18. Identity of things and identity of their designations; use of quotation marks" p. 58ff.
- ↑ Hamilton p. 37. Bender and Williamson p. 29 state "In what follows, we'll replace "equals" with the symbol " ⇔ " (equivalence) which is usually used in logic. We use the more familiar " = " for assigning meaning and values."
- ↑ Reichenbach p. 20-22 and follows the conventions of PM. The symbol =Df is in the metalanguage and is not a formal symbol with the following meaning: "by symbol ' s ' is to have the same meaning as the formula '(c & d)' ".
- ↑ Rosenbloom 1950, p. 32.
- ↑ cf Minsky 1967:75, section 4.2.3 "The method of parenthesis counting". Minsky presents a state machine that will do the job, and by use of induction (recursive definition) Minsky proves the "method" and presents a theorem as the result. A fully generalized "parenthesis grammar" requires an infinite state machine (e.g. a Turing machine) to do the counting.
- ↑ Robbin p. 7
- ↑ cf Reichenbach p. 68 for a more involved discussion: "If the inference is valid and the premises are true, the inference is called conclusive.
- ↑ As well as the first three, Hamilton pp.19-22 discusses logics built from only | (NAND), and ↓ (NOR).
- ↑ Wickes 1967:36ff. Wickes offers a good example of 8 of the 2 x 4 (3-variable maps) and 16 of the 4 x 4 (4-variable) maps. As an arbitrary 3-variable map could represent any one of 28=256 2x4 maps, and an arbitrary 4-variable map could represent any one of 216 = 65,536 different formula-evaluations, writing down every one is infeasible.
- ↑ This definition is given by Stephen Kleene. Both Kurt Gödel and Kleene believed that the classical paradoxes are uniformly examples of this sort of definition. But Kleene went on to assert that the problem has not been solved satisfactorily and impredicative definitions can be found in analysis. He gives as example the definition of the least upper bound (l.u.b) u of M. Given a Dedekind cut of the number line C and the two parts into which the number line is cut, i.e. M and (C - M), l.u.b. = u is defined in terms of the notion M, whereas M is defined in terms of C. Thus the definition of u, an element of C, is defined in terms of the totality C and this makes its definition impredicative. Kleene asserts that attempts to argue this away can be used to uphold the impredicative definitions in the paradoxes.(Kleene 1952:43).
- ↑ McCluskey comments that "it could be argued that the analysis is still incomplete because the word statement "The outputs are equal to the previous values of the inputs" has not been obtained"; he goes on to dismiss such worries because "English is not a formal language in a mathematical sense, [and] it is not really possible to have a formal procedure for obtaining word statements" (p. 185).
- ↑ More precisely, given enough "loop gain", either oscillation or memory will occur (cf McCluskey p. 191-2). In abstract (idealized) mathematical systems adequate loop gain is not a problem.
- ↑ The notion of delay and the principle of local causation as caused ultimately by the speed of light appears in Robin Gandy (1980), "Church's thesis and Principles for Mechanisms", in J. Barwise, H. J. Keisler and K. Kunen, eds., The Kleene Symposium, North-Holland Publishing Company (1980) 123-148. Gandy considered this to be the most important of his principles: "Contemporary physics rejects the possibility of instantaneous action at a distance" (p. 135). Gandy was Alan Turing's student and close friend.
- ↑ McKlusky p. 194-5 discusses "breaking the loop" and inserts "amplifiers" to do this; Wickes (p. 118-121) discuss inserting delays. McCluskey p. 195ff discusses the problem of "races" caused by delays.
संदर्भ
- Rosenbloom, Paul (1950). The Elements of Mathematical Logic. Mineola, New York: Dover Publications, Inc. ISBN 0-486-44617-4.
- Kleene, Stephen (1952). Introduction to metamathematics. Amsterdam: North-Holland Publishing Company.
- Bender, Edward A. and Williamson, S. Gill, 2005, A Short Course in Discrete Mathematics, Dover Publications, Mineola NY, ISBN 0-486-43946-1. This text is used in a "lower division two-quarter [computer science] course" at UC San Diego.
- Enderton, H. B., 2002, A Mathematical Introduction to Logic. Harcourt/Academic Press. ISBN 0-12-238452-0
- Goodstein, R. L., (Pergamon Press 1963), 1966, (Dover edition 2007), Boolean Algebra, Dover Publications, Inc. Minola, New York, ISBN 0-486-45894-6. Emphasis on the notion of "algebra of classes" with set-theoretic symbols such as ∩, ∪, ' (NOT), ⊂ (IMPLIES). Later Goldstein replaces these with &, ∨, ¬, → (respectively) in his treatment of "Sentence Logic" pp. 76–93.
- Ivor Grattan-Guinness and Gérard Bornet 1997, George Boole: Selected Manuscripts on Logic and its Philosophy, Birkhäuser Verlag, Basil, ISBN 978-0-8176-5456-6 (Boston).
- A. G. Hamilton 1978, Logic for Mathematicians, Cambridge University Press, Cambridge UK, ISBN 0-521-21838-1.
- E. J. McCluskey 1965, Introduction to the Theory of Switching Circuits, McGraw-Hill Book Company, New York. No ISBN. Library of Congress Catalog Card Number 65-17394. McCluskey was a student of Willard Quine and developed some notable theorems with Quine and on his own. For those interested in the history, the book contains a wealth of references.
- Marvin L. Minsky 1967, Computation: Finite and Infinite Machines, Prentice-Hall, Inc, Englewood Cliffs, N.J.. No ISBN. Library of Congress Catalog Card Number 67-12342. Useful especially for computability, plus good sources.
- Joel W. Robbin 1969, 1997, Mathematical Logic: A First Course, Dover Publications, Inc., Mineola, New York, ISBN 0-486-45018-X (pbk.).
- Patrick Suppes 1957 (1999 Dover edition), Introduction to Logic, Dover Publications, Inc., Mineola, New York. ISBN 0-486-40687-3 (pbk.). This book is in print and readily available.
- On his page 204 in a footnote he references his set of axioms to E. V. Huntington, "Sets of Independent Postulates for the Algebra of Logic", Transactions of the American Mathematical Society, Vol. 5 91904) pp. 288-309.
- Alfred Tarski 1941 (1995 Dover edition), Introduction to Logic and to the Methodology of Deductive Sciences, Dover Publications, Inc., Mineola, New York. ISBN 0-486-28462-X (pbk.). This book is in print and readily available.
- Jean van Heijenoort 1967, 3rd printing with emendations 1976, From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Massachusetts. ISBN 0-674-32449-8 (pbk.) Translation/reprints of Frege (1879), Russell's letter to Frege (1902) and Frege's letter to Russell (1902), Richard's paradox (1905), Post (1921) can be found here.
- Alfred North Whitehead and Bertrand Russell 1927 2nd edition, paperback edition to *53 1962, Principia Mathematica, Cambridge University Press, no ISBN. In the years between the first edition of 1912 and the 2nd edition of 1927, H. M. Sheffer 1921 and M. Jean Nicod (no year cited) brought to Russell's and Whitehead's attention that what they considered their primitive propositions (connectives) could be reduced to a single |, nowadays known as the "stroke" or NAND (NOT-AND, NEITHER ... NOR...). Russell-Whitehead discuss this in their "Introduction to the Second Edition" and makes the definitions as discussed above.
- William E. Wickes 1968, Logic Design with Integrated Circuits, John Wiley & Sons, Inc., New York. No ISBN. Library of Congress Catalog Card Number: 68-21185. Tight presentation of engineering's analysis and synthesis methods, references McCluskey 1965. Unlike Suppes, Wickes' presentation of "Boolean algebra" starts with a set of postulates of a truth-table nature and then derives the customary theorems of them (p. 18ff).
बाहरी संबंध
- Media related to प्रस्तावक सूत्र at Wikimedia Commons