बीम (संरचना)

From Vigyanwiki
एक समान रूप से वितरित भार के तहत एक सांख्यिकीय रूप से निर्धारित बीम, झुकना (सैगिंग)

एक बीम एक संरचनात्मक तत्व है जो मुख्य रूप से बीम की धुरी पर बाद में लागू होने वाले भार का प्रतिरोध करता है (मुख्य रूप से अक्षीय भार ले जाने के लिए डिज़ाइन किया गया एक तत्व एक अकड़ या स्तंभ होगा)। इसके विक्षेपण का तरीका मुख्य रूप से झुकने से होता है । बीम पर लगाए गए भार के परिणामस्वरूप बीम के समर्थन बिंदुओं पर प्रतिक्रिया बल होता है। बीम पर कार्य करने वाली सभी शक्तियों का कुल प्रभाव अपरूपण बल और बंकन क्षणों का उत्पादन करना है। बीम के भीतर जो बदले में बीम के आंतरिक तनाव, तनाव और विक्षेपण को प्रेरित करता है। बीम को उनके समर्थन के तरीके, प्रोफ़ाइल (क्रॉस-सेक्शन का आकार), संतुलन की स्थिति, लंबाई और उनकी सामग्री की विशेषता है।

बीम परंपरागत रूप से भवन या असैनिक अभियंत्रण संरचनात्मक तत्वों का वर्णन है जहां बीम क्षैतिज हैं और ऊर्ध्वाधर भार ले जाते हैं। हालांकि किसी भी संरचना में बीम हो सकते हैं। उदाहरण के लिए ऑटोमोबाइल फ्रेम, विमान के घटक, मशीन फ्रेम और अन्य यांत्रिक या संरचनात्मक प्रणालियाँ। इन संरचनाओं में किसी भी संरचनात्मक तत्व किसी भी अभिविन्यास में जो मुख्य रूप से तत्व के अक्ष पर पार्श्व रूप से लागू भार का प्रतिरोध करता है जो एक बीम तत्व होगा।

अवलोकन

ऐतिहासिक रूप से बीम लकड़ी के चौकोर होते थे लेकिन धातु, पत्थर या लकड़ी और धातु के संयोजन जैसे स्पंदन बीम भी होते हैं। बीम मुख्य रूप से लंबवत गुरुत्वाकर्षण बल ले जाते हैं। उनका उपयोग क्षैतिज भार ले जाने के लिए भी किया जाता है (उदाहरण के लिए, भूकंप या हवा के कारण भार या टाई बीम के रूप में राफ्टर थ्रस्ट का विरोध करने के लिए या कॉलर बीम के रूप में संपीड़न)। एक बीम द्वारा किए गए भार को स्तंभों, दीवारों या गर्डर्स में स्थानांतरित किया जाता है जो तब बल को आसन्न संरचनात्मक संपीड़न सदस्यों में स्थानांतरित करते हैं और अंत में जमीन पर हल्के फ्रेम निर्माण में धरन बीम पर आराम कर सकते हैं।

समर्थन के आधार पर वर्गीकरण

इंजीनियरिंग में बीम कई प्रकार के होते हैं:[1]

  1. बस समर्थित - सिरों पर समर्थित एक बीम जो घूमने के लिए स्वतंत्र है और इसका कोई क्षण प्रतिरोध नहीं है।
  2. फिक्स्ड या एनकैस्ट्रे (एनकैस्ट्रेटेड) - दोनों सिरों पर समर्थित एक बीम और रोटेशन से रोक दिया गया।
  3. ओवरहैंगिंग - एक छोर पर इसके समर्थन से परे फैली हुई एक साधारण बीम।
  4. डबल ओवरहैंगिंग - दोनों छोरों के साथ एक साधारण बीम दोनों सिरों पर इसके समर्थन से परे फैली हुई है।
  5. निरंतर - एक बीम जो दो से अधिक आधारों पर फैली हुई है।
  6. ब्रैकट - एक पेश बीम जो केवल एक छोर पर तय होता है।
  7. पुलिंदा - बनाने के लिए केबल या रॉड जोड़कर बीम को मजबूत किया जाता है।[2]
  8. वसंत पर बीम समर्थन करता है
  9. लोचदार नींव पर बीम

क्षेत्र का दूसरा क्षण (जड़ता का क्षेत्र क्षण)

यूलर -बर्नौली बीम सिद्धांत द्वारा क्षेत्र के दूसरे क्षण का प्रतिनिधित्व करने के लिए उपयोग किया जाता है। यह प्राय: जड़ता के क्षण के रूप में जाना जाता है और यह योग है, तटस्थ अक्ष के बारे में dA*r^2 जहां तटस्थ अक्ष से दूरी है और dA क्षेत्र का एक छोटा सा पैच है। इसलिए इसमें न केवल बीम सेक्शन का कुल क्षेत्रफल सम्मिलित है बल्कि यह भी सम्मिलित है कि क्षेत्र का प्रत्येक बिट अक्ष से कितना दूर है। किसी दिए गए पदार्थ के लिए जितना अधिक होता है झुकने में बीम उतना ही कठोर होता है।

एक साधारण वर्ग बीम (ए) और सार्वभौमिक बीम (बी) की कठोरता का आरेख।सार्वभौमिक बीम निकला हुआ किनारा खंड ठोस बीम के ऊपरी और निचले हिस्सों की तुलना में तीन गुना आगे हैं।सार्वभौमिक बीम की जड़ता का दूसरा क्षण नौ गुना है जो कि समान क्रॉस सेक्शन के वर्ग बीम का है (यूनिवर्सल बीम वेब सरलीकरण के लिए अनदेखा)

तनाव

आंतरिक रूप से बीम्स भार के अधीन हैं जो मरोड़ या अक्षीय लोडिंग अनुभव को संपीड़ित, तन्य और कतरनी तनाव को प्रेरित नहीं करते हैं जो उनके लिए लागू भार के परिणामस्वरूप होता है। प्राय: गुरुत्वाकर्षण भार के तहत बीम की मूल लंबाई को बीम के शीर्ष पर एक छोटे त्रिज्या चाप को घेरने के लिए थोड़ा कम किया जाता है जिसके परिणामस्वरूप संपीड़न होता है। जबकि बीम के निचले भाग में समान मूल बीम की लंबाई को घेरने के लिए बड़ा त्रिज्या चाप थोड़ा बढ़ाया जाता है और इसलिए यह तनाव में है। विकृति के मोड जहां बीम का शीर्ष चेहरा संपीड़न में होता है जैसा कि एक ऊर्ध्वाधर भार के तहत होता है और यह सैगिंग मोड के रूप में जाना जाता है जहां शीर्ष तनाव में होता है। उदाहरण के लिए एक समर्थन पर हॉगिंग के रूप में जाना जाता है। बीम के मध्य की समान मूल लंबाई प्राय: ऊपर और नीचे के बीच आधा झुकने के रेडियल चाप के समान है और इसलिए यह न तो संपीड़न के अधीन है और न ही तनाव के तहत होती है और तटस्थ अक्ष (बीम में बिंदीदार रेखा) को परिभाषित करती है आकृति)। समर्थन के ऊपर बीम कतरनी तनाव के संपर्क में है।और कुछप्रबलित कंक्रीट बीम हैं जिनमें कंक्रीट पूरी तरह से स्टील टेंडन द्वारा लिए गए तन्य बलों के साथ संपीड़न में है। इन बीमों को प्रीस्ट्रेस्ड कंक्रीट बीम के रूप में जाना जाता है और लोडिंग स्थितियों के तहत अपेक्षित तनाव से अधिक संपीड़न उत्पन्न करने के लिए गढ़े जाते हैं। उच्च शक्ति वाले स्टील के टेंडन को फैलाया जाता है जबकि बीम को उनके ऊपर डाला जाता है फिर जब कंक्रीट ठीक हो जाता है, तो टेंडन धीरे-धीरे निकल जाते हैं और बीम तुरंत सनकी अक्षीय भार के नीचे होता है। यह सनकी भार एक आंतरिक क्षण बनाता हैऔर बदले में बीम की क्षमता ले जाने के क्षण को बढ़ाता है। वे प्राय: राजमार्ग पुलों पर उपयोग किए जाते हैं।

एक लोड-असर वाली दीवार को बदलने के लिए समानांतर स्ट्रैंड लंबर लंबर का एक किरण स्थापित किया गया

बीम के संरचनात्मक विश्लेषण के लिए प्राथमिक उपकरण यूलर -बर्नौली बीम समीकरण है। यह समीकरण पतला बीम के लोचदार व्यवहार का सटीक वर्णन करता है जहां क्रॉस अनुभागीय आयाम बीम की लंबाई की तुलना में छोटे होते हैं। उन बीमों के लिए जो पतला नहीं हैं एकअलग सिद्धांत को कतरनी बलों के कारण विरूपण के लिए खाते में अपनाया जाना चाहिए और गतिशील स्थितयो में रोटरी जड़ता के कारण विरूपण के लिए एक अलग सिद्धांत को अपनाने की आवश्यकता है। यहां अपनाया गया बीम फॉर्मूलेशन टिमोशेंको का है और तुलनात्मक उदाहरण नफेम्स बेंचमार्क चैलेंज नंबर 7 में पाए जा सकते हैं।[3] बीम के विक्षेपण (इंजीनियरिंग) को निर्धारित करने के लिए अन्य गणितीय तरीकों में आभासी कार्य की विधि और ढलान विक्षेपण विधि सम्मिलित है।इंजीनियर विक्षेपण का निर्धारण करने में रुचि रखते हैं क्योंकि बीम कांच जैसी भंगुर सामग्री के साथ सीधे संपर्क में हो सकता है। बीम विक्षेपण भी सौंदर्य संबंधी कारणों से कम किया जाता है। एक स्पष्ट रूप से शिथिल बीम भले ही संरचनात्मक रूप से सुरक्षित हो और इससे बचा जाना चाहिए। एक कठोर बीम ( लोच का उच्च मापांक और/या क्षेत्र के उच्च दूसरे क्षण में से एक ) कम विक्षेपण पैदा करता है।

बीम बलों (बीम के आंतरिक बलों और बीम समर्थन पर लगाए जाने वाले बलों) का निर्धारण करने के लिए गणितीय तरीके सम्मिलित हैं जिसमें क्षण वितरण विधि, बल या लचीलापन विधि और प्रत्यक्ष कठोरता विधि सम्मिलित है।

सामान्य आकार

प्रबलित कंक्रीट इमारतों में अधिकांश बीम में आयताकार क्रॉस सेक्शन होते हैं लेकिन एक बीम के लिए एक अधिक कुशल क्रॉस सेक्शन एक है I या एच अनुभाग जो प्राय: स्टील निर्माण में देखा जाता है।समानांतर अक्ष प्रमेय और तथ्य के कारण कि अधिकांश सामग्री तटस्थ अक्ष से दूर है, बीम के क्षेत्र का दूसरा क्षण बढ़ता है, जो बदले में कठोरता को बढ़ाता है।

एक I एक पुल के नीचे धातु के आकार का बीम

एक I-बाइम झुकने की एक दिशा में केवल सबसे कुशल आकार है: ऊपर और नीचे प्रोफ़ाइल को एक के रूप में देखना I।यदि बीम की ओर मुड़ा हुआ है, तो यह एक H के रूप में कार्य करता है जहां यह कम कुशल है।2 डी में दोनों दिशाओं के लिए सबसे कुशल आकार एक बॉक्स (एक वर्ग शेल) है;किसी भी दिशा में झुकने के लिए सबसे कुशल आकार, हालांकि, एक बेलनाकार खोल या ट्यूब है।यूनिडायरेक्शनल झुकने के लिए, I या विस्तृत निकला हुआ किनारा बीम बेहतर है।[citation needed]

दक्षता का अर्थ है कि एक ही क्रॉस सेक्शनल क्षेत्र (प्रति लंबाई बीम की मात्रा) के लिए समान लोडिंग स्थितियों के अधीन, बीम कम विक्षेपित करता है।

अन्य आकृतियाँ, जैसे L (कोण), संरचनात्मक चैनल |C (चैनल), टी-बीम |T-बीम और डबल टी | डबल-Tया ट्यूबों का उपयोग निर्माण में भी किया जाता है जब विशेष आवश्यकताएं होती हैं।

पतली दीवारें

एक पतली दीवार वाली बीम एक बहुत ही उपयोगी प्रकार का बीम (संरचना) है। एक बीम (संरचना) के बंद या खुले क्रॉस सेक्शन बनाने के लिए पतली दीवार वाले बीम का क्रॉस सेक्शन आपस में जुड़े पतले पैनलों से बना है।विशिष्ट बंद वर्गों में गोल, वर्ग और आयताकार ट्यूब सम्मिलित हैं।खुले वर्गों में I-Beams, T-Beams, L-Beams, और इसी तरह सम्मिलित हैं। पतली दीवार वाले बीम स्थित हैं क्योंकि प्रति यूनिट क्रॉस सेक्शनल क्षेत्र में उनकी झुकने वाली कठोरता ठोस क्रॉस सेक्शन जैसे रॉड या बार की तुलना में बहुत अधिक है। इस तरह न्यूनतम वजन के साथ कठोर बीम प्राप्त किए जा सकते हैं।पतली दीवार वाले बीम विशेष रूप से उपयोगी होते हैं जब सामग्री एक समग्र टुकड़े टुकड़े होती है।कम्पोजिट लेमिनेट पतली दीवारों वाले बीम पर पायनियर का काम उग्रता द्वारा किया गया था।

एक बीम की टॉर्सनल कठोरता इसके क्रॉस सेक्शनल आकार से बहुत प्रभावित होती है।खुले वर्गों के लिए, जैसे कि I सेक्शन, वार करने वाले विक्षेपण होते हैं, जो कि प्रतिबंधित हो जाते हैं, जो कि टॉर्सनल कठोरता को बहुत बढ़ाते हैं।[4]


यह भी देखें

संदर्भ

  1. Ching, Frank. A visual dictionary of architecture. New York: Van Nostrand Reinhold, 1995. 8–9. Print.
  2. The American Architect and Building News, Vol XXIII. Boston: James R. Osgood & Co. 1888. p. 159.
  3. Ramsay, Angus. "NAFEMS Benchmark Challenge Number 7" (PDF). ramsay-maunder.co.uk. Retrieved 7 May 2017.
  4. Ramsay, Angus. "The Influence and Modelling of Warping Restraint on Beams". ramsay-maunder.co.uk. Retrieved 7 May 2017.


आगे की पढाई


बाहरी कड़ियाँ