असतत लाप्लास ऑपरेटर

From Vigyanwiki

गणित में, विकिरण लैपलेस संकार्य एक निरंतर लैपलेस संकार्य का अनुक्रम होता है, जिसे आरेख़ या विकिरण ग्रिड के रूप में परिभाषित किया जाता है। एक सीमित आयाम के आरेख जिसमें सीमित संख्या के किनारे और शीर्ष होते हैं, उनमें विकिरण लैपलेस संकार्य को सामान्यतः लैपलेसियन आव्यूह कहा जाता है।विकिरण लैपलेस प्रचालक भौतिकी समस्याओं जैसे कि आइसिंग प्रारूप और लूप क्वांटम ग्रैविटी में उपस्थित होता है, साथ ही इनका उपयोग विकिरण गतिशील प्रणालियों के अध्ययन में किया जाता है।

संख्यात्मक विश्लेषण में भी निरंतर लैपलेस संकार्य के लिए एक स्टैंड-इन के रूप में उपयोग किया जाता है। इसके सामान्य अनुप्रयोग में छवि प्रसंस्करण सम्मिलित होता है, जहां इसे लैपलेस फिल्टर के रूप में जाना जाता है, और मशीन लर्निंग में पड़ता है जिसमें इसे पड़ोस आरेख पर ग्रुहीकरण और अर्ध-संवर्धित शिक्षा के लिए उपयोग किया जाता है।

परिभाषाएँ

आरेख लाप्लासियन्स

आरेखों के लिए विचलित लापलेस के विभिन्न परिभाषाएं होती हैं, जो चिह्न और स्केल फैक्टर से अलग होती हैं (कभी-कभी पड़ोस शीर्ष पर औसत लेते हैं, कभी-कभी सिर्फ जोड़ते हैं; एक नियमित आरेख के लिए इसका कोई अंतर नहीं होता है। आरेख लापलेसियन की पारंपरिक परिभाषा, नीचे दी गई, एक मुक्त सीमा वाले डोमेन पर नकारात्मक अनुच्छेद लापलेसियन के समान होती है।

मान लीजिए एक आरेख हो जिसमें शीर्ष और शीर्ष . हो, शीर्ष पर मान लेने वाली एक फलन के लिए निम्नलिखित विचलित लापलेसियन पर क्रिया करना परिभाषित होता है तब, विचलित लापलेसियन जो Δ पर क्रिया करता है, उसकी परिभाषा निम्नलिखित है:

जहाँ शीर्ष w और v के मध्य आरेख की दूरी होती है। इस प्रकार, यह योग v के सबसे निकट पड़ोसी शीर्ष के लिए होता है। एक सीमित संख्या के शीर्ष और सदिश के साथ एक आरेख के लिए, यह परिभाषा लापलेसियन मैट्रिक्स की परिभाषा के समान होती है। संक्षिप्त रूप, स्तम्भ सदिश के रूप में लिखा जा सकता है; इसलिए स्तंभ वेक्टर और लाप्लासियन मैट्रिक्स का उत्पाद है,जबकि उत्पाद सदिश की मात्र v'वीं प्रविष्टि है।

यदि आरेख में भारित किनारे हैं, जो कि एक भारफलन है दिया गया है, तो परिभाषा को सामान्यीकृत किया जा सकता है

जहाँ शीर्ष पर . के भार का मान होता है

असतत लाप्लासियन से निकटता से संबंधित औसत प्रचालक है:


मेश लाप्लासियन्स

एक आरेख में नोड्स और किनारों की संयोजकता पर विचार करने के अतिरिक्त, मेश लैपलेस प्रचालक सतह की ज्यामिति को ध्यान में रखते हैं। द्वि-आयामी कई गुना त्रिकोण जाल के लिए, एक स्केलर फलन का लाप्लास-बेल्ट्रामी प्रचालक एक शीर्ष पर के रूप में अनुमानित किया जा सकता है

यहाँ समझाया जा रहा है कि एक सरल नियम के अनुसार एक बिंदु ,के लिए उसके पड़ोसी बिंदु के साथ सभी आसन्न बिंदुओं के लिए एक गणना किया जाता है। यहा , और दोनों उस सीधे के विपरीत दो कोण हैं जो बिंदु , को जोड़ते है और बिन्दु ; का क्षेत्रफल है। बिंदु के साथ संघटित त्रिभुजों के क्षेत्रफलों का योग तीसरा हिस्सा होता है।यह महत्वपूर्ण टिप्पणी है कि असतत लाप्लास-बेल्ट्रामी प्रचालक के चिन्ह को पारंपरिक रूप से साधारण लाप्लास प्रचालक के चिन्ह के विपरीत होता है। उपरोक्त कॉटैंजेंट सूत्र को कई अलग-अलग विधियों का उपयोग करके प्राप्त किया जा सकता है जिनमें परिमित तत्व विधि, परिमित आयतन विधि और असतत बाहरी कलन सम्मिलित हैं।[1]

संगणना की सुविधा के लिए, लाप्लासियन को मैट्रिक्स में एन्कोड किया गया है, जैसे . जिससे प्रविष्टियों के साथ (विरल) कोटैंजेंट मैट्रिक्स बन सके।

जहां के पड़ोस को दर्शाता है और विकर्ण द्रव्यमान मैट्रिक्स है वहाँ विकर्ण के साथ-साथ प्रवेश शीर्ष क्षेत्र है, तब लाप्लासियन का वांछित विवरण है।

मेश प्रचालको का अधिक सामान्य अवलोकन में दिया गया है।[2]

परिमित अंतर

परिमित-अंतर विधि या परिमित-तत्व विधि द्वारा प्राप्त लाप्लासियन के अनुमानों को असतत लाप्लासियन भी कहा जा सकता है। उदाहरण के लिए, दो आयामों में लाप्लासियन को पांच-बिंदु स्टैंसिल परिमित-अंतर विधि का उपयोग करके अनुमानित किया जा सकता है, जिसके परिणामस्वरूप

जहाँ ग्रिड का आकार दोनों आयामों में h है, इसलिए एक बिंदु (x, y) का पांच-बिंदु स्टेंसिल ग्रिड में है।

यदि ग्रिड का आकार h = 1 होता है, तो परिणाम आरेख पर नकारात्मक ढंग से विवरणित लैपलेसियन होता है, जो वर्गाकृति जाली ग्रिड होता है। यहाँ ग्रिड की सीमा पर समीकरण f(x, y) के मानों पर कोई प्रतिबंध नहीं है, इसलिए यह सीमा पर कोई स्रोत नहीं होने की स्थिति है, अर्थात अन्य नाम इन्सुलेशन सीमा स्थिति, या सजातीय न्यूमैन सीमा स्थिति है। ग्राफ लैपलेसियन में सीमा पर दिए गए f(x, y) से क्षेत्र चर नियंत्रण (जिसे डिरिक्ले सीमा शर्त के रूप में भी जाना जाता है) असंभव होता है, परंतु यह अन्य अनुप्रयोगों में सामान्य होता है।

घनाभ पर बहुआयामी असतत लाप्लासियन आयताकार घनाभ नियमित ग्रिड में बहुत ही विशेष गुण होते हैं, उदाहरण के लिए, वे एक-आयामी असतत लाप्लासियन के क्रोनकर योग हैं, असतत लाप्लासियन का क्रोनकर योग देखें, जिस स्थिति में इसके सभी इजेनवेल्यूजऔर ईजेनवेक्टर की स्पष्ट रूप से गणना की जा सकती है।

परिमित-तत्व विधि

इस दृष्टिकोण में, डोमेन को छोटे तत्वों में विभाजित किया जाता है प्रायः त्रिकोण या टेट्राहेड्रा, परंतु अन्य तत्व जैसे आयत या घनाभ संभव हैं। समाधान स्थान को पूर्व-निर्धारित डिग्री के तथाकथित विधि-कलन का उपयोग करके अनुमानित किया जाता है। लाप्लास प्रचालक युक्त विभेदक समीकरण को तब एक भिन्न सूत्रीकरण में बदल दिया जाता है, और समीकरणों की एक प्रणाली का निर्माण किया जाता है, परिणामी मेट्रिसेस सामान्यतः बहुत विरल होते हैं और पुनरावृत्त विधियों से हल किए जा सकते हैं।

इमेज प्रोसेसिंग

असतत लाप्लास प्रचालक का उपयोग प्रायः इमेज प्रोसेसिंग में किया जाता है उदा। किनारे का पता लगाने और गति अनुमान अनुप्रयोगों में।[3] असतत लाप्लासियन को दूसरे व्युत्पन्न लैपलेस प्रचालक को समन्वय, अभिव्यक्ति के योग के रूप में परिभाषित किया गया है और इसकी गणना केंद्रीय पिक्सेल के निकटतम पड़ोसियों पर अंतर के योग के रूप में की जाती है। चूंकि व्युत्पन्न फिल्टर प्रायः एक छवि में शोर के प्रति संवेदनशील होते हैं, डेरिवेटिव की गणना करने से पहले शोर को दूर करने के लिए लाप्लास प्रचालक प्रायः एक समरेखण फिल्टर से पहले होता है। समरेखण फिल्टर और लाप्लास फिल्टर कोप्रायः एक ही फिल्टर में संयोजित किया जाता है।[4]


प्रचालक विवरणीकरण के माध्यम से कार्यान्वयन

एक-, दो- और त्रि-आयामी संकेतों के लिए, असतत लाप्लासियन को निम्नलिखित गुठली के साथ संवलन के रूप में दिया जा सकता है:

1D फ़िल्टर: ,
फ़िल्टर कर सकते हैं: .

पहले देखे गए परिमित-अंतर सूत्र (पांच-बिंदु स्टैंसिल) से मेल खाता है। यह बहुत सुचारू रूप से भिन्न क्षेत्रों के लिए स्थिर है, परंतु तेजी से भिन्न समाधानों वाले समीकरणों के लिए लाप्लासियन प्रचालक केअधिक स्थिर और समानुवर्ती रूप की आवश्यकता होती है,[5] जैसे नौ-बिंदु स्टैंसिल, जिसमें विकर्ण सम्मिलित हैं:

2 डी फ़िल्टर: ,
गणना फ़िल्टर: सात-बिंदु स्टैंसिल का उपयोग करके दिया गया है:
पहला विमान = ; दूसरा विमान = ; तीसरा विमान = .
और 27-बिंदु स्टैंसिल का उपयोग करके:[6]
पहला विमान = ; दूसरा विमान = ; तीसरा विमान = .
2डी फिल्टर तत्व के लिए कर्नेल का
जहाँ xi कर्नेल में i-वीं दिशा में तत्व की स्थिति (या तो −1, 0 या 1) है और s xi = 0 के लिए i दिशाओं की संख्या है।

ध्यान दें कि nD संस्करण, जो लाप्लासियन केआरेख सामान्यीकरण पर आधारित है,सभी पड़ोसियों को एक समान दूरी पर होने का मान लेता है और इसलिए उपरोक्त संस्करण के अतिरिक्त विकर्णों के साथ निम्न 2D फ़िल्टर की ओर जाता है

2 डी फ़िल्टर:

ये कर्नेल अंकगणितीय अंतर अनुप्रयोग करके निर्धारित किए जाते हैं।


यह सिद्ध किया जा सकता है कि दो-आयामी लैपलेसियन प्रचालक के निम्नलिखित अनुक्रमण का एक अवरोही मिश्रण के रूप में अनुकलन होता है।

जहां विशेष रूप से मान γ = 1/3 घूर्णी समरूपता का सर्वोत्तम सन्निकटन देता है।[7][8][9] त्रि-आयामी संकेतों के संबंध में, यह दिखाया गया है[8]कि लाप्लासियन प्रचालक को अंतर प्रचालको के दो-पैरामीटर परिवार द्वारा अनुमानित किया जा सकता है

जहाँ


निरंतर पुनर्निर्माण के माध्यम से कार्यान्वयन

एक असतत संकेत, जिसमें छवियां सम्मिलित होती हैं, एक सतत फलन को असतत प्रतिनिधित्व के रूप में देखा जा सकता है , जहां समन्वयसदिश होता है और मान डोमेन वास्तविक.होता है.व्युत्पत्ति संचालन के लिए इसलिए सतत फलन को सीधे लागू किया जा सकता है। विशेष रूप से कोई असतत छवि, असतत प्रक्रिया पर उचित अनुमानों के द्वारा पुनर्निर्मित किया जा सकता है, उदा। बैंड सीमित कार्यों को मानते हुए, या वेवलेट विस्तारणीय कार्यों इत्यादि को पुनर्निर्माण सूत्रीकरण के अंतरगर्त अच्छी तरह से व्यवहार करने वाले प्रक्षेपित कार्यों के माध्यम से पुनर्निर्मित किया जा सकता है,[10]

जहाँ के असतत प्रतिनिधित्व हैं ग्रिड पर और ग्रिड के लिए विशिष्ट प्रक्षेप कार्य हैं . एक समान ग्रिड पर, जैसे कि चित्र, और बैंडलिमिटेड फलन के लिए, प्रक्षेपित फलन तीव्र अपरिवर्तनीय की राशि होती है साथ में परिभाषित एक उचित रूप से फैला हुआ सिंकफलन है -आयाम अर्थात . के अन्य अनुमान एकसमान ग्रिड पर, उचित रूप से गॉसियन कार्यों को फैलाया जाता है -आयाम तदनुसार असतत लाप्लासियन निरंतर के लाप्लासियन का असतत संस्करण बन जाता है  :जो बदले में छवि ग्रिड पर प्रक्षेपित फलन के लैपलासीन के साथ एक दृढ़ संकल्प है .प्रक्षेप कार्यों के रूप में गॉसियन का उपयोग करने का एक लाभ यह है कि वे लाप्लासियन सहित रैखिक प्रचालको का उत्पादन करते हैं, जो समन्वय फ्रेम के घूर्णी कलाकृतियों से मुक्त होते हैं जिसमें के माध्यम से दर्शाया गया है , में आयाम, और परिभाषा के अनुसार आवृत्ति विचारशील हैं। एक रैखिक प्रचालक के पास न केवल एक सीमित सीमा होती है डोमेन लेकिन फ़्रीक्वेंसी डोमेन में एक प्रभावी रेंज भी है जिसे सैद्धांतिक रूप से गॉसियन के विचरण के माध्यम से एक सैद्धांतिक विधि द्वारा स्पष्ट रूप से नियंत्रित किया जा सकता है। इसके परिणामस्वरूप फ़िल्टरिंग को विभाजनीय फ़िल्टर और ग्रिड को धीमा करने के लिए अलगाव विधि के जरिए प्रभावी रूप से लागू किया जा सकता है। -आयाम दूसरे शब्दों में,-आयाम किसी भी आकार के असतत लाप्लासियन फ़िल्टर को गॉसियन के नमूने वाले लाप्लासियन के रूप में आसानी से उत्पन्न किया जा सकता है, जो स्थानिक आकार के साथ किसी विशेष अनुप्रयोग की ज़रूरतों को पूरा करता है, जैसा कि इसके विचरण द्वारा नियंत्रित होता है। मोनोमियल्स जो गैर-रैखिक प्रचालक हैं, उन्हें भी इसी तरह के पुनर्निर्माण और सन्निकटन दृष्टिकोण का उपयोग करके कार्यान्वित किया जा सकता है, मानक संकेत पर्याप्त रूप से से अधिक नमूना हो। इस प्रकार, ऐसे गैर-रैखिक प्रचालक उदा। संरचना टेन्सर, और सामान्यीकृत संरचना टेन्सर जो अभिविन्यास अनुमान में उनके कुल न्यूनतम-स्क्वायर इष्टतमता के लिए पैटर्न मान में उपयोग किए जाते हैं, परंतु फ़्रीक्वेंसी डोमेन में एक प्रभावी रेंज भी है जिसे सैद्धांतिक रूप से गॉसियन के विचरण के माध्यम से स्पष्ट रूप से नियंत्रित किया जा सकता है। परिणामी फ़िल्टरिंग को आगे की कम्प्यूटेशनल दक्षता के लिए वियोज्य फ़िल्टर और डिकिमेशन पिरामिड (इमेज प्रोसेसिंग) प्रतिनिधित्व द्वारा कार्यान्वित किया जा सकता है।

स्पेक्ट्रम

एक असीमित ग्रिड पर डिस्क्रीट लैपलेसियन का स्पेक्ट्रम महत्वपूर्ण होता है; क्योंकि यह एक स्व-एजॉइंट ऑपरेटर है, इसका वास्तविक स्पेक्ट्रम होता है। अधिवेशन के लिए पर , स्पेक्ट्रम अंदर है, जैसा कि औसत प्रचालक में वर्णक्रमीय मान होते हैं ). इसे फूरियर रूपांतरण लागू करके भी देखा जा सकता है। ध्यान दें कि एक अनंत ग्रिड पर असतत लाप्लासियन में विशुद्ध रूप से निरंतर स्पेक्ट्रम होता है, और इसलिए, कोई इजेनवेल्यूज या ईजेनवेक्टर नहीं होता है।

प्रमेय

यदि आरेख एक अनंत वर्ग जाली है, तो लाप्लासियन की यह परिभाषा अनंत रूप से ठीक ग्रिड की सीमा में निरंतर लाप्लासियन के अनुरूप दिखाई जा सकती है। इस प्रकार, उदाहरण के लिए, हमारे पास एक आयामी ग्रिड है

लाप्लासियन की यह परिभाषा सामान्यतः संख्यात्मक विश्लेषण और इमेज प्रोसेसिंग में उपयोग की जाती है। इमेज प्रोसेसिंग में, इसे एक प्रकार का डिजिटल फिल्टर माना जाता है, विशेष रूप से एक किनारा फिल्टर, जिसे लैपलेस फिल्टर कहा जाता है।

असतत गर्मी समीकरण

कल्पना करे जहां एक आरेख में तापमान वितरण का वर्णन करता है, जहां शीर्ष पर तापमान है . न्यूटन के शीतलन के नियम के अनुसार, गर्मी को नोड से स्थानांतरित किया जाता है नोड करने के लिए के लिए आनुपातिक है, यदि नोड्स और जुड़े हुए हैं तो, तापीय चालकता के लिए ,

मैट्रिक्स-वेक्टर नोटेशन में,

जो देता है

ध्यान दें कि यह समीकरण उष्मा समीकरण के समान रूप लेता है, जहां मैट्रिक्स -L लाप्लासियन प्रचालक का स्थान ; ले रहा है ; इसलिए,आरेख लाप्लासियन

:इस अवकलनीय भेदीय समीकरण का एक समाधान खोजने के लिए, पहले प्रथम-वर्ग मैट्रिक्स भेदीय समीकरण को हल करने के लिए मानक तकनीकों का उपयोग करें।अर्थात, समय-निर्भर गुणांक के साथ, ईजेनवेक्टरों के एक रैखिक संयोजन के रूप में, इसकी इकाई-मानदंड ईजेनवेक्टर ओर्थोगोनल हैं

जिसका समाधान है

जैसा कि पहले दिखाया गया है, इजेनवेल्यूज एल के गैर-नकारात्मक हैं, यह दर्शाता है कि प्रसार समीकरण का समाधान एक संतुलन तक पहुंचता है, क्योंकि यह केवल घातीय रूप से घटता है या स्थिर रहता है। इससे यह भी पता चलता है कि दिया और प्रारंभिक स्थिति , समाधान किसी भी समय टी पाया जा सकता है।[11]ढूँढ़ने के लिए प्रत्येक के लिए समग्र प्रारंभिक स्थिति के संदर्भ में , बस प्रोजेक्ट करें इकाई-मानक ; ईजेनवेक्टरों पर ;

.

यह दृष्टिकोण असंरचित ग्रिड पर मात्रात्मक ताप अंतरण प्रारूपों के लिए लागू किया गया है।[12]अप्रत्यक्ष रेखांकन के विषयो में, यह कार्य करता है क्योंकि सममित है, और वर्णक्रमीय प्रमेय द्वारा, इसके ईजेनवेक्टर सभी ऑर्थोगोनल हैं। तो के ईजेनवेक्टरों पर प्रक्षेपण निर्देशांक के एक समुच्चय के लिए प्रारंभिक स्थिति का केवल एक ऑर्थोगोनल समन्वय परिवर्तन है जो एक दूसरे से घातीय और स्वतंत्र रूप से क्षय होता है।

संतुलन व्यवहार

समझ में , मात्र नियमों जो बचे हैं वे वहीं हैं , तब से

दूसरे शब्दों में,प्रणाली की संतुलन स्थिति पूरी तरह से कर्नेल द्वारा निर्धारित की जाती है .

चूंकि परिभाषा के अनुसार, ,सदिश सभी कर्नेल में हैं। अगर वहाँ आरेख में कनेक्टेड कंपोनेंट को डिसाइड करें, फिर सभी के इस सदिश को योग में विभाजित किया जा सकता है स्वतंत्र एक और शून्य के ईजेनवेक्टरों, जहां प्रत्येक जुड़ा हुआ घटक एक इंवेक्टर से जुड़ा होता है, जो जुड़े हुए घटक और शून्य में कहीं और के तत्वों के साथ होता है।

इसका परिणाम यह है कि दी गई प्रारंभिक स्थिति के लिए के साथ एक आरेख के लिए कोने

जहाँ

प्रत्येक तत्व के लिए का , अर्थात प्रत्येक शीर्ष के लिए आरेख में, इसे फिर से लिखा जा सकता है

.

दूसरे शब्दों में, स्थिर अवस्था में, का मान आरेख ़ के प्रत्येक शीर्ष पर समान मान पर अभिसरित होता है, जो कि सभी शीर्षों पर प्रारंभिक मानों का औसत होता है। चूँकि यह ऊष्मा प्रसार समीकरण का हल है, यह सहज रूप से सही समझ में आता है। हम उम्मीद करते हैं कि आरेख ़ में पड़ोसी तत्व तब तक ऊर्जा का आदान-प्रदान करेंगे जब तक कि ऊर्जा एक दूसरे से जुड़े सभी तत्वों में समान रूप से फैल न जाए।

ग्रिड पर प्रचालक का उदाहरण

यह जीआईएफ प्रसार की प्रगति को दर्शाता है, जैसा कि आरेख लैपलेशियन तकनीक द्वारा हल किया गया है। एक ग्रिड के ऊपर एक आरेख बनाया जाता है, जहाँ आरेख ़ में प्रत्येक पिक्सेल अपने 8 बॉर्डरिंग पिक्सेल से जुड़ा होता है। छवि में मान इन कनेक्शनों के माध्यम से समय के साथ अपने पड़ोसियों के लिए आसानी से फैल जाते हैं। यह विशेष छवि तीन मजबूत बिंदु मानों से शुरू होती है जो धीरे-धीरे उनके पड़ोसियों तक फैलती है। संपूर्ण प्रणाली अंतत: संतुलन पर समान मान पर स्थिर हो जाती है।

यह खंड एकफलन का एक उदाहरण दिखाता है एक आरेख के माध्यम से समय के साथ प्रसार। इस उदाहरण में आरेख एक 2D असतत ग्रिड पर बनाया गया है, जिसमें उनके आठ पड़ोसियों से जुड़े ग्रिड के बिंदु हैं। तीन प्रारंभिक बिंदुओं को सकारात्मक मान रखने के लिए निर्दिष्ट किया गया है, जबकि ग्रिड में शेष मान शून्य हैं। समय के साथ, घातीय क्षय इन बिंदुओं पर मानों को पूरे ग्रिड में समान रूप से वितरित करने का कार्य करता है।

इस एनीमेशन को उत्पन्न करने के लिए उपयोग किया गया पूरा मैटलैब स्रोत कोड नीचे दिया गया है। यह प्रारंभिक स्थितियों को निर्दिष्ट करने की प्रक्रिया को दर्शाता है, इन प्रारंभिक स्थितियों को लाप्लासियन मैट्रिक्स के आइगेनवैल्यू पर प्रोजेक्ट करता है, और इन अनुमानित प्रारंभिक स्थितियों के घातीय क्षय का अनुकरण करता है।

N = 20; % The number of pixels along a dimension of the image
A = zeros(N, N); % The image
Adj = zeros(N * N, N * N); % The adjacency matrix

% Use 8 neighbors, and fill in the adjacency matrix
dx = [- 1, 0, 1, - 1, 1, - 1, 0, 1];
dy = [- 1, - 1, - 1, 0, 0, 1, 1, 1];
for x = 1:N
    for y = 1:N
        index = (x - 1) * N + y;
        for ne = 1:length(dx)
            newx = x + dx(ne);
            newy = y + dy(ne);
            if newx > 0 && newx <= N && newy > 0 && newy <= N
                index2 = (newx - 1) * N + newy;
                Adj(index, index2) = 1;
            end
        end
    end
end

% BELOW IS THE KEY CODE THAT COMPUTES THE SOLUTION TO THE DIFFERENTIAL EQUATION
Deg = diag(sum(Adj, 2)); % Compute the degree matrix
L = Deg - Adj; % Compute the laplacian matrix in terms of the degree and adjacency matrices
[V, D] = eig(L); % Compute the eigenvalues/vectors of the laplacian matrix
D = diag(D);

% Initial condition (place a few large positive values around and
% make everything else zero)
C0 = zeros(N, N);
C0(2:5, 2:5) = 5;
C0(10:15, 10:15) = 10;
C0(2:5, 8:13) = 7;
C0 = C0(:);

C0V = V'*C0; % Transform the initial condition into the coordinate system
% of the eigenvectors
for t = 0:0.05:5
    % Loop through times and decay each initial component
    Phi = C0V .* exp(- D * t); % Exponential decay for each component
    Phi = V * Phi; % Transform from eigenvector coordinate system to original coordinate system
    Phi = reshape(Phi, N, N);
    % Display the results and write to GIF file
    imagesc(Phi);
    caxis([0, 10]);
     title(sprintf('Diffusion t = %3f', t));
    frame = getframe(1);
    im = frame2im(frame);
    [imind, cm] = rgb2ind(im, 256);
    if t == 0
        imwrite(imind, cm, 'out.gif', 'gif', 'Loopcount', inf, 'DelayTime', 0.1);
    else
        imwrite(imind, cm, 'out.gif', 'gif', 'WriteMode', 'append', 'DelayTime', 0.1);
    end
end


असतत श्रोडिंगर प्रचालक

यदि आरेख पर परिभाषित एक संभावित कार्य हो तो P को तिरछे कार्य करने वाला गुणक संकारक माना जा सकता है

तब असतत श्रोडिंगर प्रचालकहै, निरंतर श्रोडिंगर समीकरण श्रोडिंगर प्रचालक का एक एनालॉग।

यदि किसी शीर्ष पर मिलने वाले किनारों की संख्या समान रूप से परिबद्ध है, और विभव परिबद्ध है, तो H परिबद्ध और स्व-संलग्न है।

इस हैमिल्टनियन के एक प्रचालक के स्पेक्ट्रम का अध्ययन स्टोन स्पेस के साथ किया जा सकता है। स्टोन की प्रमेय; यह पॉसेट्स और बूलियन के मध्य द्वंद्व का परिणाम है।

नियमित जाली पर, प्रचालक के पास सामान्यतः ट्रैवलिंग-वेव के साथ-साथ एंडरसन स्थानीयकरण समाधान दोनों होते हैं, यह इस बात पर निर्भर करता है कि संभावित आवधिक या यादृच्छिक है या नहीं।

असतत श्रोडिंगर प्रचालक का ग्रीन का कार्य विलायक औपचारिकता में किसके द्वारा दिया गया है

जहाँ आरेख पर क्रोनकर डेल्टाफलन समझा जाता है अर्थात, यह 1 के बराबर है यदि v=w और 0 अन्यथा।

निश्चित के लिए और एक सम्मिश्र संख्या, हरे रंग का फलन जिसे v का फलन माना जाता है, का अद्वितीय हल है


एडीई वर्गीकरण

असतत लाप्लासियन को सम्मिलित करने वाले कुछ समीकरणों का मात्र सरल-युक्त डायकिन आरेखों पर समाधान होता है, और एडीई वर्गीकरण का एक उदाहरण है। विशेष रूप से, सजातीय समीकरण का एकमात्र सकारात्मक समाधान:

शब्दों में,

किसी भी लेबल का दुगुना आसन्न शीर्षों पर लेबलों का योग होता है,

विस्तारित एडीई डाइनकिन आरेख पर हैं, जिनमें से 2 अनंत परिवार (A और D) और 3 अपवाद (E) हैं। परिणामी क्रमांकन पैमाने तक अद्वितीय है, और यदि सबसे छोटा मान 1 पर सेट किया गया है, तो अन्य संख्याएँ पूर्णांक हैं, जो 6 तक हैं।

साधारण एडीई आरेख एकमात्र ऐसे आरेख हैं जो निम्नलिखित गुणों के साथ एक सकारात्मक लेबलिंग स्वीकार करते हैं:

किसी भी लेबल माइनस दो का दुगुना सन्निकट शीर्षों पर लेबलों का योग होता है।

लाप्लासियन के संदर्भ में, विषम समीकरण के सकारात्मक समाधान:

उत्पन्न अंकन अद्वितीय होता है और पूर्णांकों से बनता है। E8 के लिए, इन्हें 58 से 270 तक का रेंज होता है, और 1968 से पहले देखे जाते थे[13]







यह भी देखें

संदर्भ

  1. Crane, K.; de Goes, F.; Desbrun, M.; Schröder, P. (2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses. SIGGRAPH '13. Vol. 7. pp. 1–126. doi:10.1145/2504435.2504442.
  2. Reuter, M.; Biasotti, S.; Giorgi, D.; Patane, G.; Spagnuolo, M. (2009). "Discrete Laplace-Beltrami operators for shape analysis and segmentation". Computers & Graphics. 33 (3): 381–390df. CiteSeerX 10.1.1.157.757. doi:10.1016/j.cag.2009.03.005.
  3. Forsyth, D. A.; Ponce, J. (2003). "Computer Vision". Computers & Graphics. 33 (3): 381–390. CiteSeerX 10.1.1.157.757. doi:10.1016/j.cag.2009.03.005.
  4. Matthys, Don (Feb 14, 2001). "लॉग फ़िल्टर". Marquette University. Retrieved 2019-12-01.
  5. Provatas, Nikolas; Elder, Ken (2010-10-13). Phase-Field Methods in Materials Science and Engineering (PDF). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. p. 219. doi:10.1002/9783527631520. ISBN 978-3-527-63152-0.
  6. O'Reilly, H.; Beck, Jeffrey M. (2006). "A Family of Large-Stencil Discrete Laplacian Approximations in Three Dimensions" (PDF). International Journal for Numerical Methods in Engineering: 1–16.
  7. Lindeberg, T., "Scale-space for discrete signals", PAMI(12), No. 3, March 1990, pp. 234–254.
  8. 8.0 8.1 Lindeberg, T., Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, 1994, ISBN 0-7923-9418-6.
  9. Patra, Michael; Karttunen, Mikko (2006). "अंतर ऑपरेटरों के लिए आइसोट्रोपिक विवेकीकरण त्रुटि के साथ स्टेंसिल". Numerical Methods for Partial Differential Equations. 22 (4): 936–953. doi:10.1002/num.20129. ISSN 0749-159X. S2CID 123145969.
  10. Bigun, J. (2006). Vision with Direction. Springer. doi:10.1007/b138918. ISBN 978-3-540-27322-6.
  11. Newman, Mark (2010). Networks: An Introduction. Oxford University Press. ISBN 978-0199206650.
  12. Yavari, R.; Cole, K. D.; Rao, P. K. (2020). "Computational heat transfer with spectral graph theory: Quantitative verification". International J. Of Thermal Sciences. 153: 106383. doi:10.1016/j.ijthermalsci.2020.106383.
  13. Bourbaki, Nicolas (2002) [1968], Groupes et algebres de Lie: Chapters 4–6, Elements of Mathematics, translated by Pressley, Andrew, Springer, ISBN 978-3-540-69171-6


बाहरी संबंध