आवरण (तरंग)

From Vigyanwiki

भौतिकी और अभियांत्रिकी में, दोलन सिग्नल (इलेक्ट्रॉनिक्स) का आवरण चिकनी वक्र है जो इसकी चरम सीमाओं को रेखांकित करता है।[1] आवरण इस प्रकार निरंतर आयाम की अवधारणा को तात्कालिक आयाम में सामान्यीकृत करता है। यह आंकड़ा 'ऊपरी आवरण' और 'निचला आवरण' के बीच अलग-अलग संशोधित साइन तरंग दिखाता है। आवरण कार्य समय, स्थान, कोण, या वास्तव में किसी भी चर का कार्य हो सकता है।

संग्राहक साइन तरंग के लिए आवरण।

तरंगों की धड़कन में

समान आयाम और लगभग समान तरंग दैर्ध्य और आवृत्ति की दो साइन तरंगों को जोड़ने से उत्पन्न मॉडुलेटेड तरंग।

एक सामान्य स्थिति जिसके परिणामस्वरूप अंतरिक्ष x और समय t दोनों में एक आवरण कार्य होता है, इस प्रकार लगभग समान तरंग दैर्ध्य और आवृत्ति की दो तरंगों का सुपरपोज़िशन होता है:[2]

जो त्रिकोणमितीय पहचान या उत्पाद-से-योग और योग-से-उत्पाद पहचान के लिए त्रिकोणमितीय सूत्र और सन्निकटन Δλ ≪ λ का उपयोग करता है, :

यहाँ मॉडुलन तरंग दैर्ध्य λmod द्वारा दिया गया है:[2][3]

मॉड्यूलेशन वेवलेंथ आवरण की दोगुनी है क्योंकि मॉड्यूलेटिंग कोसाइन वेव की प्रत्येक आधी-वेवलेंथ मॉड्यूलेटेड साइन वेव के सकारात्मक और नकारात्मक दोनों मानों को नियंत्रित करती है। इसी तरह विस्पंद आवृत्ति आवरण की होती है, जो मॉडुलक तरंग की दुगुनी या 2Δf होती है।[4]

यदि यह तरंग ध्वनि तरंग है, जिससे कान f से जुड़ी आवृत्ति को सुनता है और इस ध्वनि का आयाम विस्पंद आवृत्ति के साथ बदलता रहता है।[4]

चरण और समूह वेग

लाल वर्ग चरण वेग के साथ चलता है, और हरे वृत्त समूह वेग के साथ फैलते हैं।

एक कारक 2 के अतिरिक्त उपरोक्त साइनसोइड्स का तर्क π हैं:

सदस्यता सी और ई के साथ वाहक और आवरण का जिक्र है। तरंग का समान आयाम F ξC और ξE के समान मानों से उत्पन्न होता है, जिनमें से प्रत्येक x और t के अलग-अलग किन्तु उचित रूप से संबंधित विकल्पों पर समान मूल्य पर वापस आ सकता है। इस व्युत्क्रम का अर्थ है कि अंतरिक्ष में इन तरंगों का पता लगाया जा सकता है जिससे निश्चित आयाम की स्थिति की गति का पता लगाया जा सकता है क्योंकि यह समय में फैलता है; वाहक तरंग के तर्क के समान रहने के लिए नियम है:

जो निरंतर आयाम रखने के लिए दिखाता है दूरी Δx तथाकथित चरण वेग v द्वारा समय अंतराल Δtp से संबंधित है

दूसरी ओर, वही विचार दिखाते हैं कि आवरण तथाकथित समूह वेग वीg पर फैलता है:[5]

समूह वेग के लिए अधिक सामान्य अभिव्यक्ति वेववेक्टर k प्रस्तुत करके प्राप्त की जाती है:

हम देखते हैं कि छोटे परिवर्तनों के लिए Δλ, वेववेक्टर में संबंधित छोटे परिवर्तन का परिमाण, Δk, है:

इसलिए समूह वेग को फिर से लिखा जा सकता है:

जहां ω रेडियंस/सेकंड में आवृत्ति है: ω = 2πएफ सभी मीडिया में, आवृत्ति और वेववेक्टर फैलाव संबंध से संबंधित होते हैं, ω = ω(k), और समूह वेग लिखा जा सकता है:

जीएएएस में जाली कंपन के अनुरूप कुछ तरंगों के लिए फैलाव संबंध ω=ω(k)।[6]

मौलिक निर्वात जैसे माध्यम में विद्युत चुम्बकीय तरंगों के लिए फैलाव संबंध है:

जहां सी0 मौलिक निर्वात में प्रकाश की गति है। इस स्थिति के लिए, चरण और समूह वेग दोनों c0 हैं.

तथाकथित फैलाव (प्रकाशिकी) में फैलाव संबंध वेववेक्टर का जटिल कार्य हो सकता है, और चरण और समूह वेग समान नहीं होते हैं। उदाहरण के लिए, जीएएएस में परमाणु कंपन (फोनोन) द्वारा प्रदर्शित कई प्रकार की तरंगों के लिए, फैलाव संबंधों को ब्रिलॉइन ज़ोन या वेववेक्टर 'के' के महत्वपूर्ण बिंदुओं के चित्र में दिखाया गया है। सामान्य स्थिति में, चरण और समूह वेगों की अलग-अलग दिशाएँ हो सकती हैं।[7]

फलन सन्निकटन में

आवरण कार्यों से गणना के रूप में जीएएएस-गालअस क्वांटम हेटरोस्ट्रक्चर में 160Ǻ जीएएएस क्वांटम कूप के निम्नतम दो क्वांटम राज्यों में इलेक्ट्रॉन संभावनाएं।[8]

संघनित पदार्थ भौतिकी में क्रिस्टल में मोबाइल चार्ज वाहक के लिए ऊर्जा ईजेनफंक्शन को बलोच तरंग के रूप में व्यक्त किया जा सकता है:

जहाँ n बैंड के लिए सूचकांक है (उदाहरण के लिए, कंडक्शन या वैलेंस बैंड) 'r' स्थानिक स्थान है, और 'k' वेववेक्टर है। एक्सपोनेंशियल साइनसॉइडली भिन्न फलन है जो धीरे-धीरे अलग-अलग आवरण के अनुरूप होता है जो वेवफंक्शन यू केn,k तेजी से भिन्न भाग को संशोधित करता है जाली के परमाणुओं के कोर के निकट वेवफंक्शन के व्यवहार का वर्णन करता है। आवरण क्रिस्टल के ब्रिलौइन क्षेत्र द्वारा सीमित सीमा के अन्दर k-मानों तक सीमित है, और यह सीमित करता है कि यह स्थान r के साथ कितनी तेज़ी से भिन्न हो सकता है।

क्वांटम यांत्रिकी का उपयोग कर वाहकों के व्यवहार का निर्धारण करने में, सामान्यतः आवरण सन्निकटन का उपयोग किया जाता है जिसमें श्रोडिंगर समीकरण को केवल आवरण के व्यवहार को संदर्भित करने के लिए सरलीकृत किया जाता है, और इस प्रकार सीमा नियमों को सीधे आवरण फलन पर प्रयुक्त किया जाता है, किन्तु पूर्ण तरंग की तुलना में [9] उदाहरण के लिए, अशुद्धता के पास फंस गए वाहक के तरंग फलन को आवरण फलन एफ द्वारा नियंत्रित किया जाता है जो बलोच कार्यों की सुपरपोजिशन को नियंत्रित करता है:

जहां आवरण F('k') के फूरियर घटक अनुमानित श्रोडिंगर समीकरण से पाए जाते हैं।[10] कुछ अनुप्रयोगों में, आवधिक भाग uk बैंड किनारे के पास इसके मान से प्रतिस्थापित किया जाता है, मान लीजिए k=k0, और तब:[9]:

विवर्तन प्रतिरूप में

डबल स्लिट के विवर्तन प्रतिरूप में सिंगल-स्लिट आवरण होता है।

एकाधिक स्लिट्स से विवर्तन प्रतिरूप में एकल स्लिट विवर्तन प्रतिरूप द्वारा निर्धारित आवरण होते हैं। एकल छिद्र के लिए प्रतिरूप इस प्रकार दिया गया है:[11]:

जहां α विवर्तन कोण है, d छिद्र चौड़ाई है, और λ तरंग दैर्ध्य है। एकाधिक स्लिट्स के लिए, प्रतिरूप है [11]:

जहाँ q स्लिट्स की संख्या है, और g ग्रेटिंग स्थिरांक है। पहला कारक, एकल-स्लिट परिणाम I1, अधिक तेजी से बदलते दूसरे कारक को संशोधित करता है जो स्लिट्स की संख्या और उनकी रिक्ति पर निर्भर करता है।

अनुमान

एक आवरण डिटेक्टर इलेक्ट्रॉनिक परिपथ है जो आवरण को सिग्नल से निकालता है।

अंकीय संकेत प्रक्रिया में, आवरण का अनुमान लगाया जा सकता है कि वह हिल्बर्ट ट्रांसफॉर्म या चलती औसत आरएमएस आयाम को नियोजित करता है।[12]

यह भी देखें

संदर्भ

  1. C. Richard Johnson, Jr; William A. Sethares; Andrew G. Klein (2011). "Figure C.1: The envelope of a function outlines its extremes in a smooth manner". Software Receiver Design: Build Your Own Digital Communication System in Five Easy Steps. Cambridge University Press. p. 417. ISBN 978-0521189446.
  2. Jump up to: 2.0 2.1 Blair Kinsman (2002). Wind Waves: Their Generation and Propagation on the Ocean Surface (Reprint of Prentice-Hall 1965 ed.). Courier Dover Publications. p. 186. ISBN 0486495116.
  3. Mark W. Denny (1993). Air and Water: The Biology and Physics of Life's Media. Princeton University Press. pp. 289. ISBN 0691025185.
  4. Jump up to: 4.0 4.1 Paul Allen Tipler; Gene Mosca (2008). Physics for Scientists and Engineers, Volume 1 (6th ed.). Macmillan. p. 538. ISBN 978-1429201247.
  5. Peter W. Milonni; Joseph H. Eberly (2010). "§8.3 Group velocity". Laser Physics (2nd ed.). John Wiley & Sons. p. 336. ISBN 978-0470387719.
  6. Peter Y. Yu; Manuel Cardona (2010). "Fig. 3.2: Phonon dispersion curves in GaAs along high-symmetry axes". Fundamentals of Semiconductors: Physics and Materials Properties (4th ed.). Springer. p. 111. ISBN 978-3642007095.
  7. V. Cerveny; Vlastislav Červený (2005). "§2.2.9 Relation between the phase and group velocity vectors". Seismic Ray Theory. Cambridge University Press. p. 35. ISBN 0521018226.
  8. G Bastard; JA Brum; R Ferreira (1991). "Figure 10 in Electronic States in Semiconductor Heterostructures". In Henry Ehrenreich; David Turnbull (eds.). Solid state physics: Semiconductor Heterostructures and Nanostructures. p. 259. ISBN 0126077444.
  9. Jump up to: 9.0 9.1 Christian Schüller (2006). "§2.4.1 Envelope function approximation (EFA)". Inelastic Light Scattering of Semiconductor Nanostructures: Fundamentals And Recent Advances. Springer. p. 22. ISBN 3540365257.
  10. For example, see Marco Fanciulli (2009). "§1.1 Envelope function approximation". Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures. Springer. pp. 224 ff. ISBN 978-3540793649.
  11. Jump up to: 11.0 11.1 Kordt Griepenkerl (2002). "Intensity distribution for diffraction by a slit and Intensity pattern for diffraction by a grating". In John W Harris; Walter Benenson; Horst Stöcker; Holger Lutz (eds.). Handbook of physics. Springer. pp. 306 ff. ISBN 0387952691.
  12. "लिफाफा निष्कर्षण - MATLAB और सिमुलिंक". MathWorks. 2021-09-02. Retrieved 2021-11-16.

This article incorporates material from the Citizendium article "Envelope function", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.