इलेक्ट्रोहाइड्रोडायनामिक्स

From Vigyanwiki

विद्युत-द्रवगतिक (ईएचडी), जिसे विद्युत-द्रव-गतिशीलता (ईएफडी) या विद्युत्-गतिक के रूप में भी जाना जाता है, विद्युत आवेशित तरल पदार्थों की गतिशीलता (यांत्रिकी) का अध्ययन है।[1] यह आयनित कणों या अणुओं की गतियों और विद्युत क्षेत्रों और आसपास के तरल पदार्थ के साथ उनकी अंतःक्रिया का अध्ययन है। इस शब्द को बल्कि विस्तृत विद्युत विरूपण द्रवगतिकीय का समानार्थी माना जा सकता है। विद्युत-विरूपण-द्रवगतिकीय में निम्न प्रकार के कण और द्रव अभिगमन तंत्र वैद्युतकणसंचलन, विद्युत-गतिक्रम, परावैद्युत-कण संचलन, विद्युत परासरण और विद्युत-घूर्णन सम्मिलित है। सामान्य रूप से, घटनाएं विद्युत ऊर्जा को प्रत्यक्ष रूप से गतिज ऊर्जा में रूपांतरण और इसके विपरीतता से संबंधित हैं।

पहली अवस्था में, आकार वाले विद्युत् स्थैतिक क्षेत्र (ईएसएफ) परावैद्युत माध्यम में द्रव स्थैतिक दाब (एचएसपी, या गति) बनाते हैं। जब इस तरह के माध्यम तरल होते हैं, तो एक प्रवाह उत्पन्न होता है। यदि परावैद्युत निर्वात या ठोस है, तो कोई प्रवाह उत्पन्न नहीं होता है। इस तरह के प्रवाह को सामान्य रूप से इलेक्ट्रोड को स्थानांतरित करने के लिए इलेक्ट्रोड के विपरीत निर्देशित किया जा सकता है। ऐसे स्थिति में, गतिशील संरचना विद्युत मोटर के रूप में कार्य करती है। विद्युत-द्रवगतिक के लाभ के व्यावहारिक क्षेत्र सामान्य वायु आयनाइज़र (आयन उत्पन्न करने वाली मशीन), विद्युत-द्रवगतिकीय प्रणोदक और विद्युत-द्रवगतिक प्रशीतलन प्रणाली हैं।

दूसरी अवस्था में, विपरीत होता है। एक आकार के विद्युत् स्थैतिक क्षेत्र के अंदर माध्यम का एक संचालित प्रवाह प्रणाली में ऊर्जा जोड़ता है जिसे इलेक्ट्रोड द्वारा विभावंतर के रूप में लिया जाता है। ऐसे स्थिति में, संरचना विद्युत जनित्र के रूप में कार्य करती है।

विद्युत-गतिक्रम

''विद्युत-गतिक्रम'' यहां पुनर्निर्देश करता है। विद्युत मे कुशलतापूर्वक प्रयोग करने की कल्पित अलौकिक दक्षता के लिए, विद्युत या चुंबकीय प्रवीणता वाले कल्पित गुणों को देखें।

विद्युत-गतिक्रम एक कण या द्रव अभिगमन है जो एक विद्युत क्षेत्र द्वारा उत्पन्न होता है जो एक शुद्ध गतिशील आवेश वाले द्रव पर कार्य करता है। (विवरण के लिए -गतिक्रम देखें और -गतिक्रम प्रत्यय का और उपयोग करें।) विद्युत-गतिक्रम पहली बार फर्डिनेंड फ्रेडरिक रीस द्वारा 1808 के समय मृदा के कणों के वैद्युतकणसंचलन में देखा गया था। [2] प्रभाव को 1920 के दशक में थॉमस टाउनसेंड ब्राउन द्वारा भी देखा और प्रचारित किया गया था, जिसे उन्होंने बीफेल्ड-ब्राउन प्रभाव कहा था, हालांकि ऐसा लगता है कि उन्होंने इसे गुरुत्वाकर्षण पर कार्य करने वाले विद्युत क्षेत्र के रूप में गलत बताया है।[3] ऐसे तंत्र में प्रवाह दर विद्युत क्षेत्र में रैखिक होती है। सूक्ष्म द्रव में विद्युत-गतिक्रम का अपेक्षाकृत अधिक व्यावहारिक महत्व है,[4][5][6] क्योंकि यह केवल विद्युत क्षेत्रों का उपयोग करके सूक्ष्म निकाय में तरल पदार्थ को कुशलतापूर्वक प्रयोग करने और संप्रेषित करने का एक तरीका प्रदान करता है, जिसमें कोई गतिशील भाग नहीं होता है।

द्रव पर कार्य करने वाला बल समीकरण द्वारा दिया जाता है

जहाँ, परिणामी बल है, जिसे न्यूटन (इकाई) में मापा जाता है, धारा है, जिसे एम्पेयर में मापा जाता है, और इलेक्ट्रोड के बीच की दूरी है, जिसे मीटर में मापा जाता है, और परावैद्युत द्रव का आयन गतिशीलता गुणांक है, जिसे m2/(V·s) में मापा जाता है।

यदि इलेक्ट्रोड एक दूसरे से अपनी दूरी निर्धारित रखते हुए द्रव के अंदर जाने के लिए स्वतंत्र हैं, तो ऐसा बल वास्तव में तरल के संबंध में इलेक्ट्रोड को प्रेरित करेगा।

जीव विज्ञान में विद्युत-गतिक्रम भी देखा गया है, जहां यह पाया गया कि तन्त्रिका कोशिका की झिल्लियों में गति को उत्तेजित करके उन्हें भौतिक क्षति पहुंचाता है।[7][8] इसकी चर्चा आर.जे. एलुल के कोशिका झिल्ली में स्थिर आवेश (1967) में की गई है।

जल विद्युत-गतिक

अक्टूबर 2003 में, अल्बर्टा विश्वविद्यालय के डॉ. डेनियल क्वोक, डॉ. लैरी कोस्टियुक और दो स्नातक छात्रों ने सामान्य नल के पानी जैसे द्रव के प्राकृतिक विद्युतगतिकी गुणों का दोहन करके तरल पदार्थ को पंप करके छोटे सूक्ष्म प्रणाली के एक दबाव अंतर के साथ द्रवगतिकीय से विद्युत ऊर्जा रूपांतरण की एक विधि पर चर्चा की।[9] यह तकनीक किसी दिन मोबाइल फोन या कैलकुलेटर जैसे उपकरणों के लिए एक व्यावहारिक और स्वच्छ ऊर्जा भंडारण उपकरण प्रदान कर सकती है, जो आज की बैटरी की जगह लेती है, जिसे केवल उच्च दबाव में पानी पंप करके आवेशित किया जा सकता है। सूक्ष्म प्रणाली पर तरल पदार्थ के प्रवाह के लिए आवश्यकता पर दबाव जारी किया जाएगा। जब पानी संचरण करता है, या किसी सतह पर प्रवाहित होता है, तो जिन आयनों से पानी बनाया जाता है, वे ठोस के विपरीत घर्षण किए जाते हैं, जिससे सतह अल्प आवेशित हो जाती है। गतिमान आयनों से गतिज ऊर्जा इस प्रकार विद्युत ऊर्जा में परिवर्तित हो जाएगी। यद्यपि एक प्रणाली से उत्पन्न बिजली बहुत कम होती है, लेकिन बिजली उत्पादन बढ़ाने के लिए लाखों समानांतर सूक्ष्म-प्रणाली का उपयोग किया जा सकता है। इस प्रवाही विभव, जल-प्रवाह घटना की खोज 1859 में जर्मन भौतिक विज्ञानी जॉर्ज हरमन क्विन्के ने की थी।[citation needed][5][6][10]


विद्युत-गतिक अस्थिरता

सूक्ष्म द्रव और नैनो-द्रव उपकरणों में द्रव प्रवाह प्रायः स्थिर होता है और श्यानता बल द्वारा दृढ़ता से (रेनॉल्ड्स के साथ संयोजन या छोटे क्रम की संख्या) अवमन्दित हो जाता है। हालांकि, प्रयुक्त विद्युत क्षेत्रों की उपस्थिति में विषम आयनिक चालकता क्षेत्र, कुछ शर्तों के अंतर्गत, विद्युतगतिकी अस्थिरता (ईकेआई) के कारण एक अस्थिर प्रवाह क्षेत्र उत्पन्न कर सकते हैं। चालकता प्रवणता पर चिप विद्युतगतिकी प्रक्रियाओं में प्रचलित हैं जैसे कि पूर्वकेंद्रित विधि (जैसे क्षेत्र प्रवर्धित प्रतिदर्श चितिकरण और समविद्युत् विभव फोकसन), बहुआयामी जांच और विकृत निर्दिष्ट नमूना रसायन वाले प्रणाली के साथ प्रचलित हैं। विद्युतगतिकी अस्थिरता की गतिशीलता और आवधिक आकृति विज्ञान रेले-टेलर अस्थिरता वाली अन्य प्रणालियों के समान हैं। नीचे की तरफ सजातीय आयनों के अंत:क्षेपण के साथ एक समतल तल ज्यामिति की विशेष स्थिति रेले-बेनार्ड संवहन के समान एक गणितीय संरचना की ओर जाता है।

विद्युत गतिज अस्थिरता का तेजी से मिश्रण (भौतिकी) के लिए लाभ उठाया जा सकता है या प्रतिदर्श अंत:क्षेपण, पृथक्करण और चितिकरण में अवांछनीय प्रसार उत्पन्न कर सकता है। ये अस्थिरताएं विद्युत क्षेत्रों और आयनिक चालकता प्रवणताओं के युग्मन के कारण होती हैं जिसके परिणामस्वरूप विद्युत पिंड बल होता है। इस युग्मन के परिणामस्वरूप बिजली की दोहरी परत के बाहर विस्तृत तरल में एक विद्युत पिंड बल होता है, जो लौकिक, संवहन और पूर्ण प्रवाह अस्थिरता उत्पन्न कर सकता है। चालकता प्रवणता के साथ विद्युतगतिकी प्रवाह अस्थिर हो जाता है जब विद्युत् श्यानता विस्तारण और संवाहकता अंतराफलक के वलन आणविक प्रसार के विघटनकारी प्रभाव से तीव्रता से बढ़ता है।

चूंकि इन प्रवाहों की विशेषता कम वेग और छोटी लंबाई के पैमाने हैं, रेनॉल्ड्स संख्या 0.01 से नीचे है और प्रवाह ' स्तरीय' है। इन प्रवाहों में अस्थिरता के प्रारंभ को विद्युत रेले संख्या के रूप में सबसे अच्छा वर्णित किया गया है।

विविध

तापीय-विद्युत-द्रवगतिक द्वारा नैनो-पैमाने पर तरल पदार्थ मुद्रित किए जा सकते हैं।[11]


यह भी देखें

संदर्भ

  1. Castellanos, A. (1998). इलेक्ट्रोहाइड्रोडायनामिक्स.
  2. Wall, Staffan. "The history of electrokinetic phenomena." Current Opinion in Colloid & Interface Science 15.3 (2010): 119-124.
  3. Thompson, Clive (August 2003). "The Antigravity Underground". Wired Magazine.
  4. Chang, H.C.; Yeo, L. (2009). इलेक्ट्रोकाइनेटिक रूप से संचालित माइक्रोफ्लुइडिक्स और नैनोफ्लुइडिक्स. Cambridge University Press.
  5. 5.0 5.1 Kirby, B.J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. ISBN 978-0-521-11903-0.
  6. 6.0 6.1 Bruus, H. (2007). सैद्धांतिक माइक्रोफ्लुइडिक्स. Oxford University Press.
  7. Patterson, Michael; Kesner, Raymond (1981). Electrical Stimulation Research Techniques. Academic Press. ISBN 0-12-547440-7.
  8. Elul, R.J. (1967). Fixed charge in the cell membrane. PMID 6040152.
  9. Yang, Jun; Lu, Fuzhi; Kostiuk, Larry W.; Kwok, Daniel Y. (1 January 2003). "इलेक्ट्रोकाइनेटिक और माइक्रोफ्लुइडिक घटना के माध्यम से इलेक्ट्रोकाइनेटिक माइक्रोचैनल बैटरी". Journal of Micromechanics and Microengineering (in English). 13 (6): 963–970. Bibcode:2003JMiMi..13..963Y. doi:10.1088/0960-1317/13/6/320. S2CID 250922353.
  10. Levich, V.I. (1962). भौतिक-रासायनिक हाइड्रोडायनामिक्स.
  11. Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. (2010). "Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting". Nature Nanotechnology. 5 (6): 429–435. Bibcode:2010NatNa...5..429F. doi:10.1038/nnano.2010.82. PMID 20453855.


बाहरी संबंध