कन्वर्स (तर्क)
कन्वर्स (तर्क) और गणित में, स्पष्ट या निहितार्थ कथन का कन्वर्स इसके दो घटक कथनों को परिवर्तित करने का परिणाम है। निहितार्थ P → Q के लिए, कन्वर्स Q → P है। श्रेणीबद्ध तर्कवाक्य के लिए सभी S, P हैं, सभी कन्वर्स P, S हैं। किसी भी प्रकार से, कन्वर्स सामान्यतः मूल कथन से स्वतंत्र होता है।[1]
इम्प्लीकेशनल कन्वर्स
मान लीजिए S, P के रूप का कथन है, जिसका अर्थ Q (P → Q) है। तब S का कन्वर्स Q है जिसका तात्पर्य P (Q → P) से है। सामान्यतः, S का सत्य इसके कन्वर्स की सत्यता के संबंध में कुछ नहीं कहता है,[2] जब तक कि पूर्ववर्ती (तर्क) P और परिणामी Q तार्किक रूप से समतुल्य न हों।
उदाहरण के लिए, इस सत्य कथन पर विचार करें यदि मैं मानव हूँ, तो मैं नश्वर हूँ। उस कथन का विलोम है यदि मैं नश्वर हूँ, तो मैं मानव हूँ, जो आवश्यक रूप से तार्किक सत्य नहीं है।
दूसरी ओर, पारस्परिक रूप से समावेशी स्थितियों के साथ कथन का विलोम मूल प्रस्ताव की सच्चाई को देखते हुए उचित है। यह कहने के समान है कि किसी परिभाषा का कन्वर्स सत्य होता है। इस प्रकार, कथन यदि मैं त्रिभुज हूँ, तो मैं तीन-भुजा बहुभुज हूँ तार्किक रूप से यदि मैं तीन-भुजा बहुभुज हूँ, तो मैं त्रिभुज हूँ, के समतुल्य है क्योंकि त्रिभुज की परिभाषा तीन-भुजा बहुभुज ही होती है।
सत्य तालिका यह स्पष्ट करती है कि S और S का कन्वर्स तार्किक रूप से समतुल्य नहीं हैं, जब तक कि दोनों शब्द परस्पर प्रभावित न करें-
(converse) | |||
True | True | True | True |
True | False | False | True |
False | True | True | False |
False | False | True | True |
किसी कथन से उसके कन्वर्स तक जाना परिणामी पुष्टि का भ्रम होता है। चूँकि, यदि कथन S और इसका कन्वर्स समतुल्य हैं (अर्थात, P और Q सत्य है), तो परिणाम की पुष्टि करना मान्य होगा।
कन्वर्स निहितार्थ तार्किक रूप से और के संयोजन के समतुल्य होते हैं।
मूल भाषा में इसे "P के बिना Q नहीं" के रूप में प्रस्तुत किया जा सकता है।
प्रमेय का कन्वर्स
गणित में, P → Q के रूप के प्रमेय का कन्वर्स Q → P होगा। कन्वर्स सत्य हो भी सकता है और नहीं भी और सत्य होने पर भी, इसका प्रमाण कठिन हो सकता है। उदाहरण के लिए, चार-वर्टेक्स प्रमेय 1912 में सिद्ध हुआ था, किन्तु इसका विलोम 1997 में सिद्ध हुआ था।[3]
व्यवहार में, गणितीय प्रमेय के कन्वर्स का निर्धारण करते समय, पूर्ववर्ती के स्वरूपों को संदर्भ स्थापित करने के रूप में लिया जा सकता है। अर्थात्, P का कन्वर्स, यदि Q है तो R, यदि R तो Q होगा। उदाहरण के लिए, पाइथागोरस प्रमेय को इस प्रकार कहा जा सकता है-
लंबाई , और की भुजाओं के साथ त्रिभुज दिया गया है, यदि लंबाई की भुजा के विपरीत कोण समकोण है, तब होता है।
कन्वर्स, जो यूक्लिड के तत्वों (पुस्तक I, प्रस्ताव 48) में भी प्रकट होता है, जिसे निम्लिखित रूप में प्रस्तुत किया जाता सकता है-
लंबाई , और की भुजाओं वाला त्रिभुज दिया है, यदि है, तब लंबाई की भुजा के विपरीत कोण समकोण होता है।
संबंध का कन्वर्स
यदि के साथ द्विआधारी संबंध है तब विपरीत संबंध को स्थानान्तरण भी कहा जाता है।[4]
नोटेशन
निहितार्थ P → Q का कन्वर्स Q → P, लिखा जा सकता है, किन्तु इसे या बीपीक्यू भी कहा जा सकता है।[citation needed]
स्पष्ट कन्वर्स
पारंपरिक तर्क में, विषय शब्द को विधेय शब्द के साथ परिवर्तित करने की प्रक्रिया को रूपांतरण कहा जाता है। उदाहरण के लिए, "P, S नहीं है" इसका कन्वर्स "S,P नहीं है" होता हैं। असा महँ के शब्दों में:
मूल प्रस्ताव को एक्सपोसिटा कहा जाता है; जब यह परिवर्तित किया जाता है, तो इसे कन्वर्स के रूप में दर्शाया जाता है। रूपांतरण तभी मान्य होता है, जब कन्वर्स में ऐसा कुछ भी नहीं कहा गया हो, जिसकी व्याख्या में पुष्टि या निहित न हो।[5]
एक्सपोजिटा को सामान्यतः कन्वर्टेंड कहा जाता है। सरल रूप में, रूपांतरण केवल E और I प्रस्तावों के लिए मान्य है:[6]
प्रकार | कन्वर्टेंड | सरल कन्वर्स | कन्वर्स प्रति एक्सिडेंड्स (यदि P उपस्थित है तब यह मान्य है) |
---|---|---|---|
A | All S are P | not valid | Some P is S |
E | No S is P | No P is S | Some P is not S |
I | Some S is P | Some P is S | – |
O | Some S is not P | not valid | – |
केवल E और I प्रस्तावों के लिए सरल रूपांतरण की वैधता को प्रतिबंध द्वारा व्यक्त किया जा सकता है कि रूपांतरण में कोई भी शब्द वितरित नहीं किया जाना चाहिए जो रूपांतरण में वितरित नहीं है।[7] E प्रस्तावों के लिए, विषय और विधेय दोनों स्थितियों के वितरण हैं, यद्यपि I प्रस्तावों के लिए नहीं है।
A प्रस्तावों के लिए, विषय वितरित किया जाता है जबकि विधेय नहीं होता है और इसलिए A कथन से इसके विलोम का अनुमान मान्य नहीं होता है। उदाहरण के रूप में, A प्रस्ताव के लिए सभी बिल्लियाँ स्तनधारी हैं, इसका विलोम सभी स्तनधारी बिल्लियाँ हैं, यह स्पष्ट रूप से अनुचित है। चूँकि, कथन कुछ स्तनधारी बिल्लियाँ हैं, यह सत्य है। कन्वर्स प्रति एक्सिडेंड्स को इस कथन के निर्माण की प्रक्रिया के रूप में परिभाषित करते हैं। किसी कथन से इसके कन्वर्स प्रति एक्सिडेंड्स का अनुमान सामान्यतः मान्य होता है। चूँकि, न्यायवाक्य की भाँति, लौकिक से विशेष तक का यह परिवर्तन रिक्त श्रेणियों के साथ समस्याओं का कारण बनता है: सभी यूनिकॉर्न स्तनधारी होते हैं जिसे अधिकांशतः सत्य के रूप में लिया जाता है, जबकि इसका विलोम, कुछ स्तनधारी यूनिकॉर्न होते हैं, स्पष्ट रूप से अनुचित है।
प्रथम-क्रम तर्क में, सभी S, P हैं जिन्हें के रूप में दर्शाया जा सकता है।[8] इसलिए यह स्पष्ट है कि श्रेणीबद्ध कन्वर्स निहितार्थ संबंधी कन्वर्स से निकटता से संबंधित है, और S को P में स्वैप नहीं किया जा सकता है।
यह भी देखें
- अरस्तू
- स्पष्ट प्रस्ताव#रूपांतरण
- विरोधाभास
- कन्वर्स (सेमैंटिक्स)
- अनुमान
- [[इनवर्स (तर्क)]]
- तार्किक संयोजक
- विमुखता
- युक्तिवाक्य
- शब्द तर्क
- स्थानान्तरण (तर्क)
संदर्भ
- ↑ Robert Audi, ed. (1999), The Cambridge Dictionary of Philosophy, 2nd ed., Cambridge University Press: "converse".
- ↑ Taylor, Courtney. "What Are the Converse, Contrapositive, and Inverse?". ThoughtCo (in English). Retrieved 2019-11-27.
- ↑ Shonkwiler, Clay (October 6, 2006). "चार वर्टेक्स प्रमेय और इसका विलोम" (PDF). math.colostate.edu. Retrieved 2019-11-26.
- ↑ Gunther Schmidt & Thomas Ströhlein (1993) Relations and Graphs, page 9, Springer books
- ↑ Asa Mahan (1857) The Science of Logic: or, An Analysis of the Laws of Thought, p. 82.
- ↑ William Thomas Parry and Edward A. Hacker (1991), Aristotelian Logic, SUNY Press, p. 207.
- ↑ James H. Hyslop (1892), The Elements of Logic, C. Scribner's sons, p. 156.
- ↑ Gordon Hunnings (1988), The World and Language in Wittgenstein's Philosophy, SUNY Press, p. 42.
अग्रिम पठन
- Aristotle. Organon.
- Copi, Irving. Introduction to Logic. MacMillan, 1953.
- Copi, Irving. Symbolic Logic. MacMillan, 1979, fifth edition.
- Stebbing, Susan. A Modern Introduction to Logic. Cromwell Company, 1931.