गतिज ऊर्जा प्रवेशक

From Vigyanwiki
(Redirected from काइनेटिक ऊर्जा भेदक)
फ्रेंच एंटी-टैंक राउंड अपने सबोट के साथ

गतिज ऊर्जा प्रवेशक (केईपी), जिसे लॉन्ग-रॉड पेनीट्रेटर (एलआरपी) के रूप में भी जाना जाता है और बोलचाल की भाषा में कभी-कभी सब्बल के रूप में संदर्भित किया जाता है, यह एक प्रकार का गोला-बारूद है, जिसे फ्लीचेट-जैसे, उच्च-अनुभागीय घनत्व प्रक्षेप्य का उपयोग करके (हथियार) वाहन कवच में प्रवेश के लिए डिज़ाइन किया गया है। गोली या गतिज ऊर्जा प्रवेशक की तरह, इस प्रकार के गोला-बारूद में विस्फोटक अंतरिक्ष उपकरण नहीं होते हैं और लक्ष्य को भेदने के लिए स्पष्ट रूप से गतिज ऊर्जा का उपयोग करते हैं। आधुनिक केईपी युद्ध सामग्री प्रायः आर्मर-पियर्सिंग फिन-स्टेबलाइज्ड डिस्कार्डिंग सैबोट (एपीएफएसडीएस) प्रकार की होती है।

इतिहास

आंशिक रूप से कट-दूर 30 × 173 मिमी आर्मर-पियर्सिंग फिन-स्टेबलाइज्ड डिस्कार्डिंग सैबोट-अनुरेखक गोला बारूद राउंड

प्रारंभिक तोपों ने गतिज ऊर्जा गोला-बारूद को निकाल दिया, जिसमें प्रारंभ में काम किए गए पत्थर और बाद में ठोस धातुओं के गोल शॉट सम्मिलित थे। प्रारंभ से ही, ऐसे हथियारों के डिजाइन में प्रक्षेप्य वजन और कठोरता के साथ उच्च नालमुख ऊर्जा का संयोजन सबसे महत्वपूर्ण कारक रहा है। इसी तरह, के हथियारों का सबसे महत्वपूर्ण उद्देश्य प्रायः हथियारबंद वाहनों या अन्य रक्षात्मक संरचनाओं के सुरक्षात्मक गोले को नष्ट करना रहा है, चाहे वह पत्थर की रक्षात्मक दीवारें हों, लकड़ी की जहाज, या आधुनिक टैंक कवच। गतिज ऊर्जा गोला-बारूद, अपने विभिन्न रूपों में, अत्यधिक केंद्रित अंतिम प्राक्षेपिकी के कारण उन हथियारों के लिए लगातार पसंद किया गया है।

आधुनिक केई प्रवेशक का विकास तोपें बनावट, उच्च बंदूक के मुँह का वेग और केंद्रित बल के दो पहलुओं को जोड़ता है। बंदूक की नाल में कम द्रव्यमान और बड़े आधार क्षेत्र के साथ प्रक्षेप्य का उपयोग करके उच्च बंदूक के मुँह का वेग प्राप्त किया जाता है। हल्के बाहरी आवरण में लिपटे छोटे-व्यास के प्रक्षेप्य को फायर करना, जिसे सैबट(बन्दूक) कहा जाता है, बंदूक के मुँह के वेग को बढ़ाता है। एक बार जब शेल बन्दूक की नली को साफ कर देता है, तो सैबट की जरूरत नहीं रह जाती है और टुकड़ों में गिर जाता है। यह एक छोटे क्रॉस-सेक्शनल क्षेत्र के साथ उच्च वेग से यात्रा करने वाले प्रक्षेप्य को छोड़ देता है और लक्ष्य के लिए उड़ान के दौरान वायुगतिकीय खींचना कम कर देता है (बाहरी प्राक्षेपिकी और अंतिम प्राक्षेपिकी देखें)। जर्मनी ने द्वितीय विश्व युद्ध के दौरान अपने विमान-रोधी युद्ध विमानभेदी तोपों को अतिरिक्त ऊंचाई देने के लिए "ट्रेबिस्पीगेल" ("जोर का दर्पण") नाम से आधुनिक सैबट विकसित किए। इससे पहले, प्रेरक आवेश और प्रक्षेप्य के बीच रखे गए बंदूक की नाल में तोप के गोले से पहले लकड़ी के प्लग से जुड़े या अतिक्रमण के रूप में सदियों से आदिम लकड़ी के सैबोट्स का उपयोग किया जाता था। "सबोट" नाम (उच्चारण /ˈsæb/ SAB-oh अंग्रेजी उपयोग में)[1] मोज़री (जूता) के लिए फ्रांसीसी शब्द है (कुछ यूरोपीय देशों में पारंपरिक रूप से पहना जाने वाला लकड़ी का जूता)।

छोटे से क्षेत्र में बल का एकाग्रता शुरू में एकल धातु (प्रायः स्टील) शॉट को दो धातुओं, एक भारी कोर (टंगस्टन पर आधारित) का उपयोग करके एक हल्के धातु के बाहरी आवरण के साथ बदलकर प्राप्त किया गया था। इन डिजाइनों को अंग्रेजों द्वारा कवच-भेदी गोला बारूद। आर्मर-पियर्सिंग कम्पोजिट रिजिड(एपीसीआर), अमेरिका द्वारा उच्च-वेग आर्मर-पियर्सिंग (एचवीएपी) और जर्मनों द्वारा हार्टकर्न (हार्ड कोर) के रूप में जाना जाता था। प्रभाव पर, समान वजन और आकार के सादे धातु शॉट की तुलना में कोर का अधिक केंद्रित प्रभाव था। वायु प्रतिरोध और अन्य प्रभाव समान आकार के गोले के समान थे। उच्च-वेग आर्मर-पियर्सिंग (एचवीएपी) गोल मुख्य रूप से संयुक्त राज्य सेना में टैंक विध्वंसक द्वारा उपयोग किए गए थे और अपेक्षाकृत असामान्य थे क्योंकि टंगस्टन कोर महंगा था और अन्य अनुप्रयोगों के लिए प्राथमिकता थी।

1941 और 1943 के बीच, अंग्रेजों ने आर्मर-पियर्सिंग डिसाइडिंग सैबोट (एपीडीएस) दौर में दो तकनीकों को मिला दिया। सैबोट्सने एपीसीआर के बाहरी धातु खोल को बदल दिया। जबकि बंदूक में, फेंकने योग्य चार्ज से अधिकतम त्वरण प्राप्त करने के लिए शॉट का एक बड़ा आधार क्षेत्र था, लेकिन एक बार बाहर, सैबोट्सएक छोटे क्रॉस-आंशिक क्षेत्र के साथ एक भारी शॉट प्रकट करने के लिए गिर गया। एपीडीएस दौर प्रारंभिक-शीत युद्ध काल के दौरान अधिकांश टैंकों के प्राथमिक गतिज ऊर्जा तोप के रूप में काम करते थे, हालांकि उन्हें अशुद्धि की प्राथमिक कमी का सामना करना पड़ा। 1970 के दशक के दौरान आर्मर-पियर्सिंग फिन-स्टेबलाइज्ड डिस्कार्डिंग सैबोट (एपीएफएसडीएस) गोल की शुरुआत के साथ इसका समाधान किया गया था, जिसने प्रवेशक में स्थिर फिन्स को जोड़ा, जिससे सटीकता में काफी वृद्धि हुई।[2]

डिजाइन

गतिज ऊर्जा प्रवेशक का सिद्धांत यह है कि यह अपनी गतिज ऊर्जा का उपयोग करता है, जो इसके द्रव्यमान और वेग का कार्य है, कवच के माध्यम से अपना रास्ता बनाने के लिए। यदि कवच पराजित हो जाता है, तो कवच के माध्यम से जाने वाले प्रवेशक द्वारा उत्पन्न गर्मी और विस्तार टैंकभेदी युद्ध (कण स्प्रे), और विकसित होने वाली दबाव तरंग आदर्श रूप से लक्ष्य को नष्ट कर देती है।[3]

आधुनिक गतिज ऊर्जा तोप लक्ष्य तक पहुँचाए गए तनाव (यांत्रिकी) (प्रभाव क्षेत्र द्वारा विभाजित गतिज ऊर्जा) को अधिकतम करता है

  • द्रव्यमान को अधिकतम करना - अर्थात, घनत्व धातुओं का व्यावहारिक उपयोग करना, जो यूरेनियम या टंगस्टन कार्बाइड की कमी के कारणों में से एक है - और प्रक्षेप्य के बंदूक के मुँह का वेग, द्रव्यमान m और वेग v के वर्ग के साथ गतिज ऊर्जा के पैमाने के रूप में प्रक्षेप्य का v
  • चौड़ाई को कम से कम करना, क्योंकि यदि प्रक्षेप्य नहीं गिरता है, तो यह पहले लक्ष्य के चेहरे से टकराएगा। जैसा कि अधिकांश आधुनिक प्रक्षेप्यों में वृत्ताकार क्रॉस-सेक्शनल क्षेत्र होते हैं, उनका प्रभाव क्षेत्र त्रिज्या r के वर्ग के साथ होगा (प्रभाव क्षेत्र )

प्रवेश की अंतिम गहराई को निर्धारित करने में प्रवेशक की लंबाई बड़ी भूमिका निभाती है। प्रायः एक प्रवेशक अपनी लंबाई से अधिक गहराई तक प्रवेश करने में असमर्थ होता है, क्योंकि प्रभाव और वेध का अत्यधिक तनाव इसे समाप्त कर देता है।[4] इसने वर्तमान रचना को जन्म दिया है जो एक लंबे धातु के तीर जैसा दिखता है।

एकल सामग्री से बने मोनोब्लॉक प्रवेशक के लिए, विली ओडरमैट और डब्ल्यू लैंज़ द्वारा तैयार किया गया वेध सूत्र एक एपीएफएसडीएस दौर की प्रवेश गहराई की गणना कर सकता है।[5]

1982 में, गैस डायनेमिक्स की अवधारणाओं और लक्ष्य प्रवेश पर प्रयोगों से एक विश्लेषणात्मक जांच चित्रकारी[6] प्रभावकों की दक्षता पर निष्कर्ष निकाला कि प्रभाव की गहराई अधिक गहरी है[7] स्थिर त्रि-आयामी आकृतियों का उपयोग करना।[8]

केई-प्रवेशक की विपरीत विधि रासायनिक ऊर्जा प्रवेशक का उपयोग करती है। इस तरह के दो प्रकार के शेल (प्रक्षेप्य) उपयोग में हैं उच्च-विस्फोटक एंटी-टैंक (ऊष्मा) और उच्च-विस्फोटक स्क्वैश हेड (एचईएसएच)। वे अतीत में कवच के खिलाफ व्यापक रूप से उपयोग किए गए हैं और अभी भी उनकी भूमिका निभाते हैं लेकिन आधुनिक समग्र कवच के खिलाफ कम प्रभावी हैं, जैसे चोभम कवच, जैसा कि आज मुख्य युद्धक टैंकों पर उपयोग किया जाता है। मुख्य युद्धक टैंक प्रायः केई-प्रवेशक का उपयोग करते हैं, जबकि एचईएटी मुख्य रूप से अस्त्र प्रणाली में पाया जाता है जो कंधे से प्रारंभ किया जाता है या वाहन पर चढ़ाया जाता है, और एचईएसएच प्रायः किलेबंधी विध्वंस का समर्थन करता है।

यह भी देखें


टिप्पणियाँ

  1. Shorter Oxford English Dictionary (2007) 6th Ed. p. 2641
  2. "Tank - Armament". Encyclopedia Britannica (in English). Retrieved 2020-02-22.
  3. "Heat Rounds and Sabots". xbradtc.wordpress.com. Archived from the original on 2011-07-18.
  4. M829A3 penetration test (in English), archived from the original on 2021-12-11, retrieved 2020-02-22
  5. "Long Rod Penetrators. Perforation Equation". www.longrods.ch. Retrieved 2020-02-22.
  6. Bondarchuk, V.S.; Vedernikov, Y.; Dulov, V.G.; Minin, V.F. (1982). "Optimization of star-shaped penetrators". LZV. Sib. Otd. Akad. Nauk SSSR Ser. Tekh. Nauk (in русский). 13: 60–64.
  7. Bivin, Y.K.; Simonov, I.V. (2010). "Mechanics of Dynamic Penetration into Soil Medium". Mechanics of Solids. Allerton Press. 45 (6): 892–920. Bibcode:2010MeSol..45..892B. doi:10.3103/S0025654410060130. ISSN 0025-6544. S2CID 120416067.
  8. Ben-Dor, G.; Dubinsky, A.; Elperin, T. (1997). "Area rules for penetrating bodies". Applied Fracture Mechanics. Elsevier Ltd. 26 (3): 193–198. doi:10.1016/S0167-8442(96)00049-3. ISSN 0167-8442.


संदर्भ

  • Cai, W. D.; Li, Y.; Dowding, R. J.; Mohamed, F. A.; Lavernia, E. J. (1995). "A review of tungsten-based alloys as kinetic energy penetrator materials". Review of Particulate Materials. 3: 71–131.