कॉन्स्टेंटन

From Vigyanwiki
कॉन्स्टेंटन
Konstantandraht.jpg
A spool of Constantan wire
Material typeCopper-nickel alloy
Physical properties
Density (ρ)8885 kg/m3
Mechanical properties
Young's modulus (E)162 GPa
Tensile strength t)~450 MPa
Elongation (ε) at break~0.25%
Thermal properties
Melting temperature (Tm)1210 °C
Thermal conductivity (k)21.2 W/(m·K)
Specific heat capacity (c)390 J/(kg·K)
Electrical properties
Surface resistivity0.56 μΩ·m

कॉन्स्टेंटन सामान्य ट्रेडमार्क तांबे-निकल मिश्र धातु के लिए जिसे यूरेका, एडवांस और फेरी के रूप में भी जाना जाता है।[1] इसमें प्रायः 55% तांबा और 45% निकल होता है।[2] इसकी मुख्य विशेषता इसकी प्रतिरोधकता की कम ऊष्मीय भिन्नता है, जो तापमान की विस्तृत श्रृंखला पर स्थिर है। इसी तरह कम तापमान गुणांक वाले अन्य मिश्र धातुओं को जाना जाता है, जैसे मैंगानिन (Cu [86%] / Mn [12%] / Ni [2%] )।

इतिहास

1887 में, एडवर्ड वेस्टन ने पता लगाया कि धातुओं में प्रतिरोध का एक नकारात्मक तापमान गुणांक हो सकता है, जिसे उन्होंने अपने "मिश्रधातु संख्या 2" का आविष्कार किया। इसका उत्पादन जर्मनी में किया गया था जहाँ इसका नाम बदलकर "कॉन्स्टेंटन" रखा गया था।[3][4]

कॉन्स्टेंटन मिश्र धातु

आधुनिक तनाव गेज में उपयोग की जाने वाली सभी मिश्र धातुओं में, कॉन्स्टेंटन सबसे पुराना है, और अभी भी सबसे व्यापक रूप से उपयोग किया जाता है। यह स्थिति इस तथ्य को दर्शाती है कि कॉन्स्टेंटन के पास कई तनाव गेज अनुप्रयोगों के लिए आवश्यक गुणों का सबसे अच्छा समस्त संयोजन है। उदाहरण के लिए, इस मिश्र धातु में पर्याप्त रूप से उच्च तनाव संवेदनशीलता, या गेज कारक है, जो तनाव स्तर और तापमान के प्रति अपेक्षाकृत असंवेदनशील है। इसकी प्रतिरोधकता (4.9 x 10−7 Ω·m)[5]

बहुत छोटे ग्रिडों में भी उपयुक्त प्रतिरोध मान प्राप्त करने के लिए पर्याप्त उच्च है, और प्रतिरोध का तापमान गुणांक काफी कम है। इसके अलावा, कॉन्स्टेंटन को अच्छी थकान जीवन और अपेक्षाकृत उच्च बढ़ाव क्षमता की विशेषता है। यद्यपि, कॉन्स्टेंटन 65 डिग्री सेल्सियस (149 डिग्री फ़ारेनहाइट) से ऊपर के तापमान पर निरंतर बहाव प्रदर्शित करता है, और इस विशेषता को ध्यान में रखा जाना चाहिए जब तनाव गेज की शून्य स्थिरता घंटों या दिनों की अवधि में महत्वपूर्ण हो। कॉन्स्टेंटन का उपयोग विद्युत प्रतिरोध ताप और थर्मोक्यूल्स के लिए भी किया जाता है।



ए-मिश्र धातु

बहुत महत्वपूर्ण बात यह है कि थर्मल विस्तार के परीक्षण सामग्री गुणांक की एक विस्तृत श्रृंखला से मिलान करने के लिए कॉन्स्टेंटन को स्व-तापमान क्षतिपूर्ति के लिए संसाधित किया जा सकता है। ए-मिश्र धातु की आपूर्ति स्व-तापमान-क्षतिपूर्ति (S-T-C) संख्या 00, 03, 05, 06, 09, 13, 15, 18, 30, 40, और 50 में की जाती है, जो संबंधित थर्मल विस्तार गुणांक के साथ परीक्षण पदार्थ पर उपयोग के लिए व्यक्त की जाती है। लंबाई के हिसाब से प्रति मिलियन भागों में (या μm/m) प्रति डिग्री फ़ारेनहाइट।

पी मिश्र धातु

बहुत बड़े स्ट्रेन की माप के लिए, 5% (50,000 माइक्रोस्ट्रेन) या उससे अधिक, एनीलेड कॉन्स्टेंटन (पी मिश्र धातु) सामान्य रूप से चुनी गई ग्रिड पदार्थ है। कॉन्स्टेंटन इस रूप में बहुत लचीलापन है, और, गेज लंबाई में 0.125 inches (3.2 mm) और लंबे समय तक, >20% तक तनावग्रस्त किया जा सकता है। यद्यपि, यह ध्यान में रखा जाना चाहिए कि उच्च चक्रीय उपभेदों के तहत पी मिश्र धातु प्रत्येक चक्र के साथ कुछ स्थायी प्रतिरोधकता परिवर्तन प्रदर्शित करेगा, और तनाव गेज में इसी शून्य बदलाव का कारण होगा। इस विशेषता के कारण, और बार-बार तनाव के साथ समय से पहले ग्रिड की विफलता की प्रवृत्ति, चक्रीय तनाव अनुप्रयोगों के लिए प्रायः पी मिश्र धातु की अनुशंसित नहीं की जाती है। धातु और प्लास्टिक पर उपयोग के लिए पी मिश्र धातु क्रमशः 08 और 40 की एस-टी-सी संख्या के साथ उपलब्ध है।

भौतिक गुण

गुण मान
कमरे के तापमान पर विद्युत प्रतिरोधकता[2] 4.9×10−7 Ω·m
20 डिग्री सेल्सियस पर तापमान गुणांक[6] 8 ppmK−1
तापमान गुणांक -55 से 105 डिग्री सेल्सियस[2] ±40 ppmK−1
क्यूरी बिंदु[7] 35 K
घनत्व[2] 8.9 × 103 kg/m3
गलनांक 1221–1300 °C
विशिष्ट गर्मी की क्षमता 390 J/(kg·K)
23 डिग्री सेल्सियस पर तापीय चालकता 19.5 W/(m.K)
25 से 105 डिग्री सेल्सियस पर थर्मल विस्तार का रेखीय गुणांक[2] 14.9×10−6 K−1
तन्यता सामर्थ्य[2] 455–860 MPa
फ्रैक्चर पर बढ़ाव <45%
तन्य गुणांक 162 GPa

तापमान माप

कॉन्स्टेंटन का उपयोग लोहे, तांबे या क्रोमेल से बने तारों के साथ थर्मोक्यूल्स बनाने के लिए भी किया जाता है।[8] इसमें 0 डिग्री सेल्सियस से ऊपर असाधारण रूप से मजबूत नकारात्मक सीबेक गुणांक है,[9] जो एक अच्छी तापमान संवेदनशीलता के लिए अग्रणी है।

संदर्भ

  1. M. A. Laughton; D. F. Warne (2003). इलेक्ट्रिकल इंजीनियर संदर्भ पुस्तक (16th ed.). Elsevier. p. 10/43. ISBN 0-7506-4637-3.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 J. R. Davis (2001). कॉपर और कॉपर मिश्र. ASM International. p. 158. ISBN 0-87170-726-8.
  3. A chronological history of electrical development from 600 B.C. National Electrical Manufacturers Association. 1946. p. 59.
  4. D. O. Woodbury (1949). A measure for greatness: a short biography of Edward Weston. McGraw-Hill. p. 168.
  5. "प्रतिरोधकता की तालिका". hyperphysics.phy-astr.gsu.edu. Retrieved 2016-05-18.
  6. J. O'Malley (1992). Schaum's outline of theory and problems of basic circuit analysis. McGraw-Hill Professional. p. 19. ISBN 0-07-047824-4.
  7. Varanasi, C. V.; Brunke, L.; Burke, J.; Maartense, I.; Padmaja, N.; Efstathiadis, H.; Chaney, A.; Barnes, P. N. (2006). "Biaxially textured constantan alloy (Cu 55 wt%, Ni 44 wt%, Mn 1 wt%) substrates for YBa2Cu3O7−x coated conductors". Superconductor Science and Technology. 19 (9): 896. Bibcode:2006SuScT..19..896V. doi:10.1088/0953-2048/19/9/002. S2CID 119007573.
  8. "Chromel, Alumel और कॉन्स्टेंटन के साथ कार्य करना". Keats Manufacturing Co. (in English). 2015-03-12. Retrieved 2016-05-18.
  9. Handbook of Temperature Measurement Vol. 3, edited by Robin E. Bentley


ग्रन्थसूची

  • J. R. Davis (2001). Copper and Copper Alloys. ASM International. ISBN 0-87170-726-8.


बाहरी संबंध