कॉमा श्रेणी

From Vigyanwiki

गणित में एक कॉमा श्रेणी (एक विशेष स्थिति एक स्लाइस श्रेणी है) श्रेणी सिद्धांत में एक निर्माण है। यह मॉरफिज्म को देखने का एक अन्य उपाय प्रदान करता है। केवल एक वर्ग की वस्तुओं को एक दूसरे से संबंधित करने के अतिरिक्त मॉरफिज्म स्वयं में वस्तु का निर्माण करते हैं। यह धारणा 1963 में विलियम लॉवरे एफ डब्ल्यू लॉवरे (लॉवरे, 1963 पृष्ठ 36) द्वारा प्रस्तुत की गई थी। चूंकि विधि [उद्धरण वांछित] सामान्यतः कई वर्षों बाद तक ज्ञात नहीं हुई। कई गणितीय अवधारणाओं को कॉमा श्रेणियों के रूप में माना जा सकता है। कॉमा श्रेणियां कुछ सीमा (श्रेणी सिद्धांत) और कोलिमिट के अस्तित्व का आश्वासन भी प्रदान करती हैं। इसका नाम मुख्य रूप से लॉवरे द्वारा उपयोग किए जाने वाले नोटेशन से उत्पन्न होता है। जिसमें कॉमा विराम चिह्न सम्मिलित होता था। तथापि मानक अंकन बदल गया हो, परन्तु इसका नाम बना रहता है क्योंकि एक ऑपरेटर के रूप में कॉमा का उपयोग संभावित रूप से भ्रमित करने वाला होता है और यहां तक ​​कि लॉवरे भी गैर-सूचनात्मक शब्द कॉमा श्रेणी को पसंद नहीं करते हैं (लॉवरे, 1963 पृष्ठ 13)।

परिभाषा

सबसे सामान्य कॉमा श्रेणी के निर्माण में एक ही कोडोमेन वाले दो ऑपरेटर सम्मिलित होते हैं। अधिकांशतः इनमें से एक में डोमेन 1 (एक-वस्तु वन-मॉर्फिज़्म श्रेणी) होगा। श्रेणी सिद्धांत के कुछ अकाउंट केवल इन विशेष स्थितियों पर विचार करते हैं। किंतु कॉमा श्रेणी शब्द वस्तुतः में बहुत अधिक सामान्य होते हैं।

सामान्य रूप

माना कि , और श्रेणियां हैं और तथा (स्रोत और लक्ष्य के लिए) कारक हैं:

हम निम्नानुसार कॉमा श्रेणी बना सकते हैं:

  • वस्तु सभी त्रिगुणमय हैं। जिसमें एक वस्तु में है, एक वस्तु में है और मॉरफिज्म में उपस्थित है।
  • से तक मॉरफिज्म सभी जोड़े हैं। जहाँ और क्रमशः और में मॉरफिज्म हैं। जैसे कि निम्न आरेख कम्यूट करता है:

कोमा आरेख

जब भी बाद वाला व्यंजक परिभाषित होता है। मॉरफिज्म की रचना को लेकर की जा सकती है। किसी वस्तु पर आईडेन्टिटी आकृतिवाद है।

स्लाइस श्रेणी

पहली विशेष स्थिति तब होता है। जब फ़ंक्टर आईडेन्टिटी कारक है और (एक वस्तु और एक मॉरफिज्म वाली श्रेणी)। फिर किसी वस्तु के लिए में उपस्थित होता है ।

इस स्थिति में कॉमा श्रेणी को लिखा जाता है और इसे अधिकांशतः पर स्लाइस श्रेणी या पर वस्तुओं की श्रेणी कहा जाता है। वस्तुएं को जोड़े में सरल रूप का निर्माण किया जा सकता है। जहाँ कभी-कभी को से प्रदर्शित किया जाता है। एक मॉरफिज्म से को स्लाइस श्रेणी में तब एक एरो के रूप में सरलीकृत किया जा सकता है। जिससे निम्नलिखित आरेख बना सकते हैं:

स्लाइस आरेख

कॉस्लाइस श्रेणी

स्लाइस श्रेणी के लिए डबल (श्रेणी सिद्धांत) अवधारणा एक कोस्लाइस श्रेणी है। यहाँ , डोमेन है और एक आईडेन्टिटी कारक है।

इस स्थिति में कॉमा श्रेणी को अधिकांशतः लिखा जाता है। जहां S द्वारा चयनित की ऑब्जेक्ट है। इसे , या वस्तुओं की श्रेणी के संबंध में कोस्लिस श्रेणी कहा जाता है। के अनुसार वस्तुएं के साथ जोड़े हैं। और को देखते हुए कॉसलिस श्रेणी में मॉरफिज्म एक मानचित्र है। जो निम्नलिखित आरेख को कम्यूट करता है:

कोस्लिस आरेख

एैरो श्रेणी

पर आईडेन्टिटी कारक और उपस्थित हैं (इसलिए )।

इस स्थिति में कॉमा श्रेणी तीर श्रेणी है। इसकी वस्तुएं मॉरफिज्म हैं और इसके मॉरफिज्म वर्ग में कम्यूट होते हैं ।[1]

एरो डायग्राम

अन्य विविधताएं

स्लाइस या कोस्लिस श्रेणी के स्थिति में आईडेन्टिटी कारक को किसी अन्य कारक से परिवर्तित किया जा सकता है। यह प्रमुख रूप से आसन्न कारको के अध्ययन में उपयोगी श्रेणियों का एक वर्ग उत्पन्न करता है। उदाहरण के लिए यदि एक एबेलियन समूह को उसकी बीजगणितीय संरचना में मैप करने वाला फॉरगेटफुल फ़ंक्टर है और कुछ निश्चित समुच्चय (गणित) है (1 से एक कारक के रूप में माना जाता है)। फिर कॉमा श्रेणी ऐसी वस्तुएं हैं, जो एक समूह के नीचे एक समुच्चय के लिए मानचित्र s हैं। यह के बाएं आसन्न से संबंधित है। जो कि फ़ंक्टर है। जो उस समुच्चय को अपने आधार के रूप में मुक्त एबेलियन समूह के लिए मैप करता है। विशेष रूप से की प्रारंभिक वस्तु कैनोनिकल इंजेक्शन है। जहाँ , द्वारा उत्पन्न मुक्त समूह है। की एक वस्तु को से तक मॉरफिज्म या डोमेन के साथ -संरचित तीर कहा जाता है।[1] की एक वस्तु को से या कोडोमेन के साथ एक तीर कहा जाता है।[1]

एक और विशेष स्थिति तब प्रदर्शित होती है। जब दोनों और डोमेन वाले फंक्‍टर हैं। यदि और , फिर कॉमा श्रेणी , लिखा हुआ , असतत श्रेणी है जिसकी वस्तुएँ से तक मॉरफिज्म हैं।

एक इन्सर्टर श्रेणी कॉमा श्रेणी की एक (गैर-पूर्ण) उपश्रेणी है। जहाँ और आवश्यक होता है। कॉमा श्रेणी को और के इन्सटर के रूप में भी देखा जा सकता है। जहाँ और प्रोडक्ट श्रेणी में से दो प्रक्षेपण कारक होते हैं।

गुण

प्रत्येक कॉमा श्रेणी के लिए इसमें फॉरगेटफुल फंक्टर होते हैं।

  • डोमेन कारक , , जो मैप करता है:
    • वस्तुएं: ;
    • मॉरफिज्म: ;
  • कोडोमेन कार्य , , जो मैप करता है:
    • वस्तुएं: ;
    • मॉरफिज्म: .
  • एरो कारक , , जो मैप करता है:
    • वस्तुएं: ;
    • मॉरफिज्म: ;

उपयोग के उदाहरण

कुछ उल्लेखनीय श्रेणियां

कॉमा श्रेणियों के संदर्भ में कई दिलचस्प श्रेणियों की स्वाभाविक परिभाषा है।

  • प्वाइन्टेड समूहों की श्रेणी साथ कॉमा श्रेणी है किसी भी सिंगलटन समुच्चय का चयन करना (फंक्टर का चयन करना) और (आईडेन्टिटी कारक) समूह की श्रेणी को दर्शाती है। इस श्रेणी का प्रत्येक ऑब्जेक्ट समुच्चय के कुछ तत्व का चयन करने वाले फलन के साथ एक समुच्चय का निर्माण करता है। बेसपॉइंट मोर्फिज्म समुच्चय पर फलन होते हैं। जो बेसपॉइंट्स को बेसपॉइंट्स को मैप करते हैं। इसी प्रकार कोई भी पॉइंटेड स्पेस की श्रेणी का निर्माण कर सकता है।
  • रिंग के ऊपर साहचर्य बीजगणित की श्रेणी कॉसलिस श्रेणी है। किसी भी विशेष समरूपता के बाद से सहयोगी -बीजगणित संरचना पर को प्रेरित करता है और इसके विपरीत। मोर्फिज़्म तब मानचित्र होते हैं। जो आरेख को कम्यूट करने का कार्य करते हैं।।
  • ग्राफ (असतत गणित) की श्रेणी ,है। इसके साथ कार्यकर्ता एक समुच्चय को प्राप्त करता है। वस्तुएं फिर दो समुच्चय और एक फलन से मिलकर बनता है। एक अनुक्रमण समुच्चय है, नोड्स का एक समुच्चय है और के तत्वों के जोड़े चुनता है। जो प्रत्येक इनपुट a के लिए वह स्थित है। जो कि समुच्चय से कुछ संभावित किनारों को चुनता है। इस श्रेणी में एक मॉरफिज्म दो कार्यों से बना है, एक अनुक्रमण सेट पर और एक नोड सेट पर स्थित होते हैं। उपरोक्त सामान्य परिभाषा के अनुसार उन्हें "सहमत" होना चाहिए, जिसका अर्थ यह है कि दिये गये फलन से संतुष्ट करना चाहिए। दूसरे शब्दों में इंडेक्सिंग समुच्चय के एक निश्चित तत्व के अनुरूप किनारे, अनुवादित होने पर, अनुवादित इंडेक्स के किनारे के समान होना चाहिए।
  • कॉमा श्रेणियों के संदर्भ में कई वृद्धि या लेबलिंग संचालन व्यक्त किए जा सकते हैं। माना कि प्रत्येक ग्राफ को उसके किनारों के समुच्चय तक ले जाने वाला फ़ंक्टर बनें और (एक फंक्टर चयन) कुछ विशेष समुच्चय हो। फिर ग्राफ़ की श्रेणी है। जिसके किनारों को के तत्वों द्वारा लेबल किया गया है। कॉमा श्रेणी के इस रूप को अधिकांशतः वस्तु -ओवर - ओवर की वस्तुओं से निकटता से संबंधित -ओवर वार्तालाप को कहा जाता है। प्रत्येक वस्तु का रूप लेती है। जहाँ एक ग्राफ है और के किनारों से एक फलन को . ग्राफ़ के नोड्स को अनिवार्य रूप से उसी प्रकार लेबल किया जा सकता है।
  • एक श्रेणी को स्थानीय रूप से कार्तीय बंद कहा जाता है यदि इसका प्रत्येक टुकड़ा कार्तीय बंद है (स्लाइस की धारणा के लिए ऊपर देखें)। स्थानीय रूप से कार्तीय बंद श्रेणियां निर्भर प्रकार के सिद्धांतों की वर्गीकृत श्रेणियां हैं।

सीमाएं और सार्वभौम मॉरफिज्म

कॉमा श्रेणियों में लिमिट (श्रेणी सिद्धांत) और लिमिट (श्रेणी सिद्धांत) पूर्व से ही प्राप्त हो सकती है। यदि और कम्प्लीट श्रेणी हैं, जो एक सीमा (श्रेणी सिद्धांत)

या लिमिट का संरक्षण है और एक अन्य कारक है (आवश्यक रूप से निरंतर नहीं), फिर कॉमा श्रेणी उत्पादित पूर्ण है[2] और प्रक्षेपण कारक और निरंतर हैं। इसी प्रकार यदि और अपूर्ण हैं और लिमिट (श्रेणी सिद्धांत) या लिमिट का संरक्षण है। फिर सह-पूर्ण है और प्रक्षेपण कारक सह-सतत हैं।

उदाहरण के लिए, ध्यान दें कि कॉमा श्रेणी के रूप में रेखांकन की श्रेणी के उपरोक्त निर्माण में समुच्चय की श्रेणी पूर्ण और सह-पूर्ण है और आईडेन्टिटी कारक कान्टीन्युअस हैं इस प्रकार रेखांकन की श्रेणी पूर्ण और पूर्ण है।

एक विशेष कोलिमिट या एक लिमिट से यूनिवर्सल क्वालिटी की धारणा को कॉमा श्रेणी के रूप में व्यक्त किया जा सकता है। अनिवार्य रूप से हम एक श्रेणी बनाते हैं। जिसकी वस्तुएँ शंकु हैं और जहाँ सीमित शंकु एक अंतिम वस्तु है। फिर सीमा के लिए प्रत्येक सार्वभौमिक मॉर्फिज्म टर्मिनल वस्तु के लिए सिर्फ मॉरफिज्म है। यह दो स्थिति में काम करता है। जिसमें प्रारंभिक वस्तु वाले कोकोन की एक श्रेणी होती है। उदाहरण के लिए के साथ एक श्रेणी हो और प्रत्येक वस्तु को से प्राप्त करने वाला और प्रत्येक एरो को . से एक यूनिवर्सल मॉरफिज्म को किसी वस्तु की परिभाषा के अनुसार होता है। और आकृतिवाद सार्वभौमिक गुण के साथ कि किसी भी मॉरफिज्म के लिए एक विशेष मॉरफिज्म साथ है। दूसरे शब्दों में यह कॉमा श्रेणी में एक वस्तु है। उस श्रेणी में किसी अन्य वस्तु के लिए मॉरफिज्म होना; यह प्रारंभिक है। यह कोप्रोडक्ट को में परिभाषित करने का कार्य करता है। जब यह उपस्थित होता है।

संयोजन

लॉवरे के द्वारा यह प्रदर्शित किया गया कि फंक्टर और यदि केवल कॉमा श्रेणियां हैं। तो सहायक कारक और , जिसके साथ और , और आईडेन्टिटी कारक क्रमशः प्रारम्भ हैं, आइसोमोर्फिक हैं और कॉमा श्रेणी में समकक्ष तत्वों को उसी तत्व पर प्रक्षेपित किया जा सकता है। यह समुच्चय को सम्मिलित किए बिना संयोजनों को वर्णित करने की अनुमति प्रदान करता है और वस्तुतः कॉमा श्रेणियों को प्रारंभ करने के लिए मूल प्रेरणा उपस्थित थी।

प्राकृतिक परिवर्तन

यदि हैं। जो आरेख के समान है, जो में मॉरफिज्म को के साथ परिभाषित करता है। जो एक प्राकृतिक परिवर्तन को परिभाषित करता है। दो धारणाओं के बीच का अंतर यह है कि एक प्राकृतिक रूपांतरण रूप के मॉरफिज्म का एक विशेष संग्रह है। जबकि कॉमा श्रेणी की वस्तुओं में सभी मॉरफिज्म सम्मिलित होती हैं। इस प्रकार का रूप कॉमा श्रेणी के लिए एक फ़ंक्टर मॉरफिज्म उस विशेष संग्रह का चयन करता है। यह एस.ए. हक [3] द्वारा एक अवलोकन द्वारा संक्षेप में वर्णित है कि एक प्राकृतिक परिवर्तन एक से मिलता जुलता है। जो प्रत्येक वस्तु को से मैप करता है और प्रत्येक मॉरफिज्म को से मैप करता है। यह प्राकृतिक परिवर्तनों और के बीच एक विशेषण पत्राचार है। जो से दोनों फॉरगेटफुल कारको के खंड होते हैं।

संदर्भ

  1. Jump up to: 1.0 1.1 1.2 Adámek, Jiří; Herrlich, Horst; Strecker, George E. (1990). सार और ठोस श्रेणियाँ (PDF). John Wiley & Sons. ISBN 0-471-60922-6.
  2. Rydheard, David E.; Burstall, Rod M. (1988). कम्प्यूटेशनल श्रेणी सिद्धांत (PDF). Prentice Hall.
  3. Mac Lane, Saunders (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (2nd ed.), Springer-Verlag, p. 48, ISBN 0-387-98403-8


बाहरी संबंध