क्रायोपंप
क्रायोपंप या क्रायोजेनिक पंप एक निर्वात पंप है जो गैसों और वाष्प को ठंडे सतह पर संघनित करके फंसाता है, लेकिन यह केवल कुछ गैसों पर ही प्रभावी होता है। प्रभावशीलता क्रायोपंप के तापमान के सापेक्ष गैस के हिमांक और क्वथनांक पर निर्भर करती है। वे कभी-कभी विशेष संदूषकों को अवरुद्ध करने के लिए उपयोग किए जाते हैं, उदाहरण के लिए बैकस्ट्रीमिंग तेल को फंसाने के लिए प्रसार पंप के सामने, या पानी को बाहर रखने के लिए मैकलियोड गेज के सामने। भौतिक तंत्र एक क्रायोपंप के समान क्यों ही न हो, लेकिन उन्हें क्रायोट्रैप वॉटरपंप या कोल्ड ट्रैप ही कहा जाता है।
क्रायोट्रैपिंग कुछ अलग प्रभाव को भी संदर्भित कर सकता है, जहां अणु वास्तविक में ठंड (सुपरकूलिंग) के बिना ठंडी सतह पर अपने निवास समय को बढ़ा देंगे। और सतह पर अणु के टकराने और उससे पलटने के बीच विलंब होता है। जिससे अणुओं की गति धीमी होने से गतिज ऊर्जा नष्ट हो चुकी होगी। उदाहरण के लिए, हाइड्रोजन 8 केल्विन पर संघनित नहीं होता है, लेकिन इसे क्रायोट्रैप किया जा सकता है। यह प्रभावी रूप से विस्तारित अवधि के लिए अणुओं को फँसाता है और इस प्रकार उन्हें क्रायोपम्पिंग के प्रकार निर्वात वातावरण से हटा देता है।
इतिहास
सक्रिय कार्बन में गैसों के क्रायोट्रैपिंग पर प्रारंभिक प्रयोग 1874 तक किए गए थे।[1]
पहले क्रायोपंप में मुख्य रूप से तरल हीलियम का उपयोग पंप को या तो एक बड़े तरल हीलियम जलाशय में या क्रायोपंप में निरंतर प्रवाह द्वारा ठंडा करने के लिए किया जाता था। चूंकि, समय के साथ बेहतर क्रायोकूलर के आविष्कार द्वारा सक्षम गैसीय हीलियम का उपयोग करने के लिए अधिकांश क्रायोपंप को फिर से डिजाइन किया गया।[2] प्रमुख रेफ्रिजरेशन तकनीक की खोज 1950 के दशक में मैसाचुसेट्स स्थित कंपनी आर्थर डी. लिटिल इंक., विलियम ई. गिफोर्ड और हावर्ड ओ. मैकमोहन के दो कर्मचारियों द्वारा की गई थी। इस तकनीक को जिफ़र्ड-मैकमोहन क्रायोकूलर के रूप में जाना जाने लगा।[3][4][5][6] और 1970 के दशक में, गिफोर्ड-मैकमोहन क्रायोकूलर का उपयोग हेलिक्स टेक्नोलॉजी कॉरपोरेशन और इसकी सहायक कंपनी क्रायोजेनिक टेक्नोलॉजी इंक द्वारा निर्वात पंप बनाने के लिए किया गया था। 1976 में, आईबीएम के एकीकृत परिपथ के निर्माण में क्रायोपंप का उपयोग किया जाने लगा।[7] 1981 में हेलिक्स और यूएलवीएसी (जेपी: アルバック) द्वारा संयुक्त रूप से स्थापित क्रायोजेनिक्स कंपनी जैसे विस्तार के साथ संसार में अर्धचालक निर्माण में क्रायोपंप का उपयोग सामान्य हो गया।
ऑपरेशन
क्रायोपंप को सामान्यतः संपीड़ित हीलियम द्वारा ठंडा किया जाता है, चूंकि वे शुष्क बर्फ, तरल नाइट्रोजन या स्टैंड-अलोन संस्करणों का उपयोग भी कर सकते हैं जिनमें अंतर्निहित क्रायोकूलर सम्मिलित हो सकता है। संक्षेपण के लिए उपलब्ध सतह क्षेत्र का विस्तार करने के लिए बैफल्स अधिकांश ठंडे सिर से जुड़े होते हैं, लेकिन ये क्रायोपंप के विकिरण संबंधी ताप को भी बढ़ाते हैं। और समय के साथ, सतह अंततः घनीभूत हो जाती है और इस प्रकार पंपिंग गति धीरे-धीरे शून्य हो जाती है। जब तक यह ठंडा रहता है, तब तक यह फंसी हुई गैसों को रोके रखेगा, लेकिन जब तक इसे पुनर्जीवित नहीं किया जाता है, तब तक यह लीक या बैकस्ट्रीमिंग से ताजी गैसों को संघनित नहीं करेगा। और कम निर्वात में संतृप्ति बहुत जल्दी होती है, इसलिए क्रायोपंप सामान्यतः केवल उच्च या अल्ट्राहाई निर्वात सिस्टम में उपयोग किए जाते हैं।
क्रायोपंप 10-3 से 10 तक−9 टोर रेंज में सभी गैसों का तेज, स्वच्छ पम्पिंग प्रदान करता है। क्रायोपंप इस सिद्धांत पर काम करता है कि गैसों को संघनित किया जा सकता है और उच्च गति और थ्रूपुट प्राप्त करने के लिए बहुत कम वाष्प दबावों पर आयोजित किया जा सकता है। कोल्ड हेड में दो चरणों वाला कोल्ड हेड सिलिंडर (निर्वात वेसल का भाग) और ड्राइव यूनिट डिसप्लेसर असेंबली होती है। ये एक साथ तापमान पर बंद-चक्र प्रशीतन का उत्पादन करते हैं जो पहले चरण के ठंडे स्टेशन के लिए 60 से 80K तक होता है और दूसरे चरण के ठंडे स्टेशन के लिए 10 से 20K तक होता है।
कुछ क्रायोपंप में विभिन्न कम तापमान पर कई चरण होते हैं, जिसमें बाहरी चरण सबसे ठंडे आंतरिक चरणों को बचाते हैं। बाहरी चरण पानी और तेल जैसे उच्च क्वथनांक गैसों को संघनित करते हैं, इस प्रकार नाइट्रोजन जैसे कम क्वथनांक गैसों के लिए सतह क्षेत्र और आंतरिक चरणों की प्रशीतन क्षमता को बचाते हैं।
सूखी बर्फ, तरल नाइट्रोजन, फिर संपीडित हीलियम, कम आणविक-भार वाली गैसों का उपयोग करने पर ठंडा तापमान कम हो जाता है। नाइट्रोजन, हीलियम और हाइड्रोजन को फंसाने के लिए बहुत कम तापमान (~10K) और बड़े सतह क्षेत्र की आवश्यकता होती है जैसा कि नीचे वर्णित है। इस तापमान पर भी, हल्की गैसों हीलियम और हाइड्रोजन में फँसाने की क्षमता बहुत कम होती है और अल्ट्रा-हाई निर्वात सिस्टम में प्रमुख अणु होते हैं।
क्रायोपंप को अधिकांश अत्यधिक सोखने वाली सामग्री जैसे कि सक्रिय चारकोल या ज़ीइलाइट के साथ ठंडे सिर को कोटिंग करके सोखने वाले पंप के साथ जोड़ा जाता है। जैसे ही शर्बत संतृप्त होता है, सोर्प्शन पंप की प्रभावशीलता कम हो जाती है, लेकिन जिओलाइट सामग्री (अधिमानतः कम दबाव की स्थिति में) को गर्म करके इसे फिर से भरने के लिए रिचार्ज किया जा सकता है। जिओलाइट सामग्री की झरझरा संरचना का ब्रेकडाउन तापमान उस अधिकतम तापमान को सीमित कर सकता है जिस तक पुनर्जनन के लिए इसे गर्म किया जा सकता है।
सोरशन पंप एक प्रकार का क्रायोपंप है जिसे अधिकांश वायुमंडलीय की सीमा से दबाव को कम करने के लिए 0.1 पास्कल (यूनिट) (10-3 Torr) के क्रम में दबाव कम करने के लिए रफिंग पंप के रूप में उपयोग किया जाता है। जबकि फिनिशिंग पंप (आउटगैस देखें) का उपयोग करके कम दबाव प्राप्त किए जाते हैं।
पुनर्जनन
क्रायोपंप का पुनर्जनन फंसी हुई गैसों को वाष्पित करने की प्रक्रिया है। पुनर्जनन चक्र के समय, क्रायोपंप को कमरे के तापमान या उससे अधिक तक गर्म किया जाता है, जिससे फंसे हुए गैसों को ठोस अवस्था से गैसीय अवस्था में बदलने की अनुमति मिलती है और इस प्रकार क्रायोपंप से दबाव राहत वाल्व के माध्यम से वातावरण में छोड़ा जाता है।
क्रायोपंप का उपयोग करने वाले अधिकांश उत्पादन उपकरण में क्रायोपंप को निर्वात कक्ष से अलग करने का एक साधन होता है, इसलिए निर्वात प्रणाली को जल वाष्प जैसे जारी किए गए गैसों को प्रकाशित किए बिना पुनर्जनन होता है। मोनोलेयर गठन और हाइड्रोजन बॉन्डिंग के कारण वातावरण के संपर्क में आने पर निर्वात कक्ष की दीवारों से निकालने के लिए जल वाष्प सबसे कठिन प्राकृतिक तत्व है। सूखे नाइट्रोजन पर्ज-गैस में गर्मी जोड़ने से वार्म-अप में तेजी आएगी और पुनर्जनन समय कम होगा।
जब पुनर्जनन पूरा हो जाता है, तो क्रायोपंप को 50μm (50 मिलीटॉर या μmHg) तक खुरदरा कर दिया जाएगा और अलग कर दिया जाएगा, और पूर्ण पुनर्जनन के परीक्षण के लिए दर-वृद्धि (ROR) की निगरानी की जाएगी। यदि ROR 10μm/min से अधिक हो जाता है तो क्रायोपंप को अतिरिक्त पर्ज समय की आवश्यकता होगी।
संदर्भ
- ↑ Tait, P. G.; Dewar, James (1875). "4. Preliminary Note "On a New Method of obtaining very perfect Vacua". Proceedings of the Royal Society of Edinburgh. Cambridge University Press (CUP). 8: 348–349. doi:10.1017/s0370164600029734. ISSN 0370-1646.
- ↑ Baechler, Werner G. (1987). "Cryopumps for research and industry". Vacuum. Elsevier BV. 37 (1–2): 21–29. doi:10.1016/0042-207x(87)90078-9. ISSN 0042-207X.
- ↑ Gifford, W. E.; Longsworth, R. C. (1964), Pulse tube refrigeration (PDF), Trans. ASME, J. Eng. Ind. 63, 264
- ↑ Gifford, W. E.; Longsworth, R. C. (1965), Surface heat pumping, Adv. Cryog. Eng. 11, 171
- ↑ Longsworth, R. C. (1967), An experimental investigation of pulse tube refrigeration heat pumping rate, Adv. Cryog. Eng. 12, 608
- ↑ Matsubara, Yoichi (1994), "Pulse Tube Refrigerator", Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, Volume 11, Issue 2, pp. 89-99, 11 (2): 89, Bibcode:2011TRACE..11...89M
- ↑ Bridwell, M. C.; Rodes, J. G. (1985). "History of the modern cryopump". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. American Vacuum Society. 3 (3): 472–475. doi:10.1116/1.573017. ISSN 0734-2101.
- Van Atta, C. M.; M. Hablanian (1991) [1990]. "Vacuums and Vacuum Technology". In Ed. by Rita G. Lerner and George L. Trigg (ed.). Encyclopedia of Physics (2nd ed.). New York: VCH Publisher. pp. 1330–1334. ISBN 0-89573-752-3.
- Strong, John (1938). Procedures in Experimental Physics. Bradley, IL: Lindsay Publications., Chapter 3