गणित में, गाऊसी फलन, जिसे अधिकांशतः गाऊसी के रूप में जाना जाता है, आधार रूप का फलन (गणित) है
और पैरामीट्रिक विस्तार के साथ
वास्तविक संख्या स्थिरांक के लिए a, b और गैर-शून्य c. इसका नाम गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। गॉसियन के किसी फलन का ग्राफ़ विशिष्ट सममित सामान्य वितरण आकार है। मापदंड a वक्र के शिखर की ऊंचाई है, b शिखर के केंद्र की स्थिति है, और c (मानक विचलन, जिसे कभी-कभी गॉसियन रूट माध्य वर्ग चौड़ाई भी कहा जाता है) घंटी की चौड़ाई को नियंत्रित करता है।
गॉसियन फलन का उपयोग अधिकांशतः अपेक्षित मूल्य के साथ सामान्य वितरण यादृच्छिक चर की संभाव्यता घनत्व फलन μ = b का प्रतिनिधित्व करने के लिए किया जाता है और विचरण σ2 = c2. इस स्थिति में, गॉसियन रूप का है [1]
गॉसियन फलन का व्यापक रूप से सामान्य वितरण का वर्णन करने के लिए आंकड़ों में उपयोग किया जाता है, गाऊसी फिल्टर को परिभाषित करने के लिए सिग्नल प्रोसेसिंग में, इमेज प्रसंस्करण में जहां गौस्सियन के लिए दो-आयामी गॉसियन का उपयोग किया जाता है, और गणित में गर्मी समीकरणों और प्रसार समीकरण को हल करने और वीयरस्ट्रैस को परिभाषित करने के लिए उपयोग किया जाता है।
गौसियन फलन अवतल फलन द्विघात फलन के साथ घातीय फलन की रचना करके उत्पन्न होते हैं:
जहाँ
(नोट: में ,भ्रमित न हों )
इस प्रकार गॉसियन फलन वे फलन हैं जिनका लघुगणक अवतल द्विघात फलन है।
मापदंड c के अनुसार शिखर की आधी अधिकतम पर पूरी चौड़ाई (एफडब्ल्यूएचएम) से संबंधित है
फिर फलन को एफडब्ल्यूएचएम के संदर्भ में व्यक्त किया जा सकता है, जिसका प्रतिनिधित्व w किया जाता है :
वैकल्पिक रूप से, मापदंड c की व्याख्या यह कहकर की जा सकती है कि फलन x = b ± c के दो विभक्ति बिंदु घटित होते हैं .
गाऊसी के लिए अधिकतम (एफडब्ल्यूटीएम) के दसवें भाग पर पूरी चौड़ाई रुचिकर हो सकती है
गॉसियन फलन विश्लेषणात्मक फलन हैं, और उनकी सीमा (गणित) इस प्रकार है x → ∞ 0 है (उपरोक्त स्थिति के लिए b = 0).
गॉसियन फलन उन फलन में से हैं जो प्राथमिक फलन (विभेदक बीजगणित) हैं किन्तु प्राथमिक प्रतिव्युत्पन्न का अभाव है; गॉसियन फलन का अभिन्न अंग त्रुटि फलन है:
फिर भी, गाऊसी अभिन्न का उपयोग करके संपूर्ण वास्तविक रेखा पर उनके अनुचित इंटीग्रल का स्पष्ट मूल्यांकन किया जा सकता है
और प्राप्त करता है
अपेक्षित मान के साथ स्थिर गाऊसी वक्रों को सामान्य बनाना μ और विचरण σ2. संबंधित मापदंड हैं , b = μ और c = σ.
यह समाकलन 1 यदि और केवल यदि है (सामान्यीकरण स्थिरांक), और इस स्थिति में गाऊसी अपेक्षित मूल्य के साथ सामान्य वितरण यादृच्छिक चर μ = b और विचरण σ2 = c2: की संभाव्यता घनत्व फलन है
इन गाऊसी को संलग्न चित्र में दर्शाया गया है।
शून्य पर केन्द्रित गॉसियन फलन फूरियर फूरियर रूपांतरण अनिश्चितता सिद्धांत को न्यूनतम करते हैं.
दो गाऊसी कार्यों का उत्पाद गाऊसी है, और दो गाऊसी कार्यों का कनवल्शन भी गाऊसी है, जिसमें भिन्नता मूल भिन्नताओं का योग है: . चूँकि, दो गाऊसी संभाव्यता घनत्व फलन (पीडीएफ) का उत्पाद सामान्यतः गाऊसी पीडीएफ नहीं है।
मापदंडों के साथ गाऊसी फलन का फूरियर ट्रांसफॉर्म अन्य कन्वेंशन या फूरियर ट्रांसफॉर्म (एकात्मक, कोणीय-आवृत्ति सम्मेलन) माना a = 1, b = 0 और c मापदंड के साथ और गॉसियन फलन उत्पन्न करता है , b = 0 और . [2] तो विशेष रूप से गाऊसी कार्य करता है b = 0 और फ़ोरियर ट्रांसफ़ॉर्म द्वारा स्थिर रखे जाते हैं (वे आइजेनवैल्यू 1 के साथ फ़ोरियर ट्रांसफ़ॉर्म के आइजेनफलन हैं)।
एक भौतिक अहसास फ्राउनहोफर विवर्तन का है गाऊसी प्रोफ़ाइल के साथ एपर्चर द्वारा विवर्तन: उदाहरण के लिए, फोटोग्राफिक स्लाइड जिसके संप्रेषण में गाऊसी भिन्नता है वह भी गाऊसी फलन है।
तथ्य यह है कि गॉसियन फलन निरंतर फूरियर रूपांतरण का आइजनफंक्शन है जो हमें निम्नलिखित रोचक निष्कर्ष निकालने की अनुमति देता है पॉइसन योग सूत्र से पहचान:
गाऊसी फलन का अभिन्न अंग
एक इच्छानुसार गाऊसी फलन का अभिन्न अंग है
एक वैकल्पिक रूप है
जहां अभिन्न अभिसरण के लिए एफ को सख्ती से धनात्मक होना चाहिए।
मानक गॉसियन इंटीग्रल से संबंध
अभिन्न
कुछ वास्तविक संख्या स्थिरांकों के लिए a, b, c > 0 की गणना गाऊसी इंटीग्रल के रूप में करके की जा सकती है। सबसे पहले, स्थिरांक a को केवल समाकलन से गुणनखंडित किया जा सकता है। इसके बाद, एकीकरण का चर x से y = x − b बदल दिया जाता है :
और फिर :
फिर, गॉसियन इंटीग्रल का उपयोग करना
अपने पास
द्वि-आयामी गाऊसी फलन
द्वि-आयामी डोमेन के साथ गाऊसी फलन का 3डी प्लॉट
आधार फार्म:
दो आयामों में, गॉसियन फलन में ई को जिस शक्ति तक बढ़ाया गया है वह कोई ऋणात्मक-निश्चित द्विघात रूप है। परिणाम स्वरुप, गाऊसी के स्तर समुच्चय सदैव दीर्घवृत्त होतें है।
द्वि-आयामी गाऊसी फलन का विशेष उदाहरण है
यहां गुणांक A आयाम है, x0, y0 केंद्र है, और σx, σy बूँद के x और y फैलाव हैं। दाईं ओर का चित्र A = 1, x0 = 0, y0 = 0, σx = σy = 1 का उपयोग करके बनाया गया था।
गॉसियन फलन के अंतर्गत वॉल्यूम दिया गया है
सामान्यतः, द्वि-आयामी अण्डाकार गॉसियन फलन को इस प्रकार व्यक्त किया जाता है
इस सूत्रीकरण का उपयोग करके दाईं ओर A = 1, (x0, y0) = (0, 0), a = c = 1/2, b = 0. का चित्र बनाया जा सकता है
सामान्य समीकरण के लिए मापदंडों का अर्थ
समीकरण के सामान्य रूप के लिए गुणांक A शिखर की ऊंचाई है (x0, y0) बूँद का केंद्र है.
यदि हम समुच्चय करते हैं
फिर हम बूँद को धनात्मक, वामावर्त कोण से घुमाते हैं (ऋणात्मक, दक्षिणावर्त घुमाव के लिए, b गुणांक में चिह्नों को उल्टा करें)।[3] गुणांक वापस पाने के लिए , और से , और उपयोग करते है
गॉसियन बूँदों के उदाहरण घूर्णन निम्नलिखित उदाहरणों में देखे जा सकते हैं:
निम्नलिखित जीएनयू ऑक्टेव कोड का उपयोग करके, मापदंड बदलने का प्रभाव सरलता से देखा जा सकता है:
फ़्लैट-टॉप और गॉसियन फ़ॉल-ऑफ़ के साथ गॉसियन फलन का अधिक सामान्य सूत्रीकरण प्रतिपादक की पदार्थ को घात तक बढ़ाकर लिया जा सकता है :
इस फलन को सुपर-गॉसियन फलन के रूप में जाना जाता है और इसका उपयोग अधिकांशतः गाऊसी बीम फॉर्मूलेशन के लिए किया जाता है।[4] इस फलन को आधी अधिकतम (एफडब्ल्यूएचएम) पर पूरी चौड़ाई के संदर्भ में भी व्यक्त किया जा सकता है, जिसे w द्वारा दर्शाया गया है :
द्वि-आयामी सूत्रीकरण में, गाऊसी कार्य करता है और जोड़ा जा सकता है [5] संभावित रूप से भिन्न के साथ और आयताकार गाऊसी वितरण बनाने के लिए:
फोटोमेट्री (खगोल विज्ञान), गाऊसी किरण लक्षण वर्णन, और उत्सर्जन स्पेक्ट्रम उत्सर्जन स्पेक्ट्रोस्कोपी उत्सर्जन/अवशोषण लाइन स्पेक्ट्रोस्कोपी जैसे कई क्षेत्र प्रतिरूप गॉसियन कार्यों के साथ काम करते हैं और फलन की ऊंचाई, स्थिति और चौड़ाई मापदंड का स्पष्ट अनुमान लगाने की आवश्यकता होती है। 1डी गॉसियन फलन के लिए तीन अज्ञात मापदंड हैं (ए, बी, सी) और 2डी गॉसियन फलन के लिए पांच अज्ञात मापदंड हैं .
गाऊसी मापदंडों का अनुमान लगाने के लिए सबसे आम विधि डेटा का लघुगणक और परिणामी डेटा समुच्चय में बहुपद फिटिंग लेना है। [6][7] चूँकि यह सरल वक्र फिटिंग प्रक्रिया प्रदान करता है, परिणामी एल्गोरिदम छोटे डेटा मानों को अत्यधिक भार देकर पक्षपाती हो सकता है, जो प्रोफ़ाइल अनुमान में बड़ी त्रुटियां उत्पन्न कर सकता है। भारित न्यूनतम वर्ग अनुमान के माध्यम से, छोटे डेटा मानों के वजन को कम करके इस समस्या की आंशिक रूप से भरपाई की जा सकती है, किन्तु गॉसियन की पूंछ को फिट पर हावी होने की अनुमति देकर इसे भी पक्षपाती किया जा सकता है। पूर्वाग्रह को दूर करने के लिए, कोई व्यक्ति पुनरावृत्तीय रूप से पुनः भारित न्यूनतम वर्ग प्रक्रिया का उपयोग कर सकता है, जिसमें प्रत्येक पुनरावृत्ति पर भार अद्यतन किया जाता है।[7] लॉगरिदमिक डेटा परिवर्तन को सम्मिलित किए बिना, डेटा पर सीधे गैर-रेखीय प्रतिगमन करना भी संभव है; अधिक विकल्पों के लिए, संभाव्यता वितरण फिटिंग देखें।
मापदंड परिशुद्धता
एक बार जब किसी के पास गॉसियन फलन मापदंडों का अनुमान लगाने के लिए एल्गोरिदम होता है, जिससे यह जानना भी महत्वपूर्ण है कि उन अनुमानों की स्पष्टता और परिशुद्धता कितनी है। कोई भी न्यूनतम वर्ग अनुमान एल्गोरिदम प्रत्येक मापदंड के भिन्नता के लिए संख्यात्मक अनुमान प्रदान कर सकता है (अर्थात, फलन की अनुमानित ऊंचाई, स्थिति और चौड़ाई का भिन्नता) डेटा के बारे में कुछ धारणाओं को देखते हुए, मापदंड भिन्नताओं पर निचली सीमा के लिए विश्लेषणात्मक अभिव्यक्ति प्राप्त करने के लिए क्रैमर-राव बाउंड सिद्धांत का भी उपयोग किया जा सकता है।[8][9]
मापी गई प्रोफ़ाइल में ध्वनि या तो स्वतंत्र है और समान रूप से वितरित यादृच्छिक चर है |. गाऊसी, या ध्वनि पॉइसन वितरण है |
प्रत्येक प्रतिरूप के बीच का अंतर (अर्थात डेटा को मापने वाले पिक्सेल के बीच की दूरी) समान है।
शिखर का अच्छी तरह से प्रतिरूप लिया गया है, जिससे शिखर के नीचे का 10% से कम क्षेत्र या आयतन (क्षेत्र यदि 1D गॉसियन है, आयतन यदि 2D गॉसियन है) माप क्षेत्र के बाहर हो।
शिखर की चौड़ाई प्रतिरूप स्थानों के बीच की दूरी से बहुत बड़ी है (अर्थात डिटेक्टर पिक्सल गॉसियन एफडब्ल्यूएचएम से कम से कम 5 गुना छोटा होना चाहिए)।
जब ये धारणाएँ संतुष्ट हो जाती हैं, तो निम्नलिखित सहप्रसरण आव्यूह K 1D प्रोफ़ाइल मापदंडों के लिए प्रयुक्त होता है इस प्रकार , , और आई.आई.डी. के अंतर्गत गाऊसी ध्वनि और पॉइसन ध्वनि के अनुसार किया जाता है:[8]
जहाँ फलन का प्रतिरूप लेने के लिए उपयोग किए जाने वाले पिक्सेल की चौड़ाई है, डिटेक्टर की क्वांटम दक्षता है, और माप ध्वनि के मानक विचलन को इंगित करता है। इस प्रकार, गॉसियन ध्वनि स्थिति में, मापदंडों के लिए अलग-अलग भिन्नताएं हैं,
और पॉइसन ध्वनि स्थिति में,
आयाम देने वाले 2डी प्रोफ़ाइल मापदंड के लिए , पद , और चौड़ाई प्रोफ़ाइल में, निम्नलिखित सहप्रसरण आव्यूह प्रयुक्त होते हैं:[9]
जहां व्यक्तिगत मापदंड प्रसरण सहप्रसरण आव्यूह के विकर्ण तत्वों द्वारा दिए गए हैं।
स्केल के लिए प्रतिरूप किए गए गॉसियन कर्नेल (धराशायी) के साथ तुलना में असतत गॉसियन कर्नेल (ठोस)
कोई गॉसियन के लिए अलग एनालॉग के लिए पूछ सकता है;
यह अलग-अलग अनुप्रयोगों, विशेषकर अंकीय संकेत प्रक्रिया में आवश्यक है। सरल उत्तर निरंतर गाऊसी का प्रतिरूप लेना है, जिससे प्रतिरूप गाऊसी कर्नेल प्राप्त होता है। चूँकि, इस असतत फलन में निरंतर फलन के गुणों के असतत एनालॉग नहीं होते हैं, और यह अवांछित प्रभाव उत्पन्न कर सकता है, जैसा कि आलेख स्केल स्पेस कार्यान्वयन में वर्णित है।
एक वैकल्पिक विधि असतत गाऊसी कर्नेल का उपयोग करना है:[10]
यह निरंतर गाऊसी का असतत एनालॉग है क्योंकि यह असतत प्रसार समीकरण (अलग स्थान, निरंतर समय) का समाधान है, जैसे निरंतर गाऊसी निरंतर प्रसार समीकरण का समाधान है।[10][11]
सांख्यिकी और संभाव्यता सिद्धांत में, गॉसियन फलन सामान्य वितरण के घनत्व फलन के रूप में प्रकट होते हैं, जो केंद्रीय सीमा प्रमेय के अनुसार, जटिल रकम का सीमित संभाव्यता वितरण है।
गॉसियन फलन (सजातीय और आइसोट्रोपिक) प्रसार समीकरण (और गर्मी समीकरण, जो ही बात है) के लिए ग्रीन का फलन है, आंशिक अंतर समीकरण जो प्रसार के अनुसार द्रव्यमान-घनत्व के समय विकास का वर्णन करता है। विशेष रूप से, यदि समय t=0 पर द्रव्यमान-घनत्व डिराक डेल्टा द्वारा दिया जाता है, जिसका अनिवार्य रूप से कारण है कि द्रव्यमान प्रारंभ में ही बिंदु पर केंद्रित है, तो समय t पर द्रव्यमान-वितरण गाऊसी फलन द्वारा दिया जाएगा, जिसमें मापदंड 'ए' रैखिक रूप से 1/ से संबंधित है√t और सी रैखिक रूप से संबंधित है √t; इस समय-परिवर्तनशील गाऊसी का वर्णन द्वारा किया गया है। अधिक सामान्यतः, यदि प्रारंभिक द्रव्यमान-घनत्व φ(x) है, तो बाद के समय में द्रव्यमान-घनत्व गॉसियन फलन के साथ φ के कनवल्शन को लेकर प्राप्त किया जाता है। गॉसियन के साथ किसी फलन के कन्वोल्यूशन को वीयरस्ट्रैस ट्रांसफॉर्म के रूप में भी जाना जाता है।
कम्प्यूटेशनल रसायन विज्ञान में प्रयुक्त आणविक कक्षाएँ गाऊसी कार्यों के रैखिक संयोजन हो सकती हैं जिन्हें गाऊसी कक्षाएँ कहा जाता है (आधार समुच्चय (रसायन विज्ञान) भी देखें)।
गणितीय रूप से, गाऊसी फलन के व्युत्पन्नों को हर्मिट फलन का उपयोग करके दर्शाया जा सकता है। इकाई विचरण के लिए, गॉसियन का n-वां व्युत्पन्न, गॉसियन फलन को स्केल तक, n-वें हर्मिट बहुपद से गुणा किया जाता है।
गॉसियन बीम का उपयोग ऑप्टिकल सिस्टम, माइक्रोवेव सिस्टम और लेजर में किया जाता है।
स्केल स्पेस प्रतिनिधित्व में, गॉसियन फलन का उपयोग कंप्यूटर दृष्टि और इमेज प्रोसेसिंग में बहु-स्तरीय प्रतिनिधित्व उत्पन्न करने के लिए स्मूथिंग कर्नेल के रूप में किया जाता है। विशेष रूप से, गॉसियन (हर्मिट कार्य करता है) के व्युत्पन्न का उपयोग बड़ी संख्या में प्रकार के दृश्य संचालन को परिभाषित करने के लिए आधार के रूप में किया जाता है।
गॉसियन फलन का उपयोग कुछ प्रकार के कृत्रिम तंत्रिका नेटवर्क को परिभाषित करने के लिए किया जाता है।
सिग्नल प्रोसेसिंग में वे गॉसियन फिल्टर को परिभाषित करने का काम करते हैं, जैसे इमेज प्रोसेसिंग में जहां 2डी गॉसियन का उपयोग गॉसियन ब्लर्स के लिए किया जाता है। डिजिटल सिग्नल प्रोसेसिंग में, अलग गाऊसी कक्षीय का उपयोग किया जाता है, जिसे गॉसियन का प्रतिरूप लेकर या अलग विधि से परिभाषित किया जा सकता है।
भू-सांख्यिकी में इनका उपयोग जटिल प्रशिक्षण इमेज के क्रम के बीच परिवर्तनशीलता को समझने के लिए किया गया है। इनका उपयोग फीचर स्पेस में क्रम को क्लस्टर करने के लिए कर्नेल विधियों के साथ किया जाता है।[12]
↑Caruana, Richard A.; Searle, Roger B.; Heller, Thomas.; Shupack, Saul I. (1986). "स्पेक्ट्रा के रिज़ॉल्यूशन के लिए तेज़ एल्गोरिदम". Analytical Chemistry. American Chemical Society (ACS). 58 (6): 1162–1167. doi:10.1021/ac00297a041. ISSN0003-2700.