जनरेशन III रिएक्टर

जनरेशन III रिएक्टर, या जेन III रिएक्टर, जनरेशन II रिएक्टरों को सफल करने के लिए डिज़ाइन किए गए परमाणु रिएक्टरों का वर्ग है, जिसमें डिजाइन में विकास सुधार सम्मिलित हैं। इनमें परमाणु ईंधन, उच्च तापीय दक्षता, महत्वपूर्ण रूप से उन्नत सुरक्षा प्रणालियां (निष्क्रिय परमाणु सुरक्षा सहित) सुरक्षा और वित्त मूल्य को अल्प करने के उद्देश्य से मानकीकृत डिजाइन सम्मिलित हैं। उन्हें जनरेशन IV अंतरराष्ट्रीय फोरम (GIF) द्वारा पदोन्नति किया जाता है।
1996 और 1997 में काशीवाज़की 6 और 7 उबलते जल रिएक्टर (एबीडब्ल्यूआर) ऑपरेशन प्रारम्भ करने वाले प्राथम जनरेशन III रिएक्टर थे। 2012 से सुरक्षा विचारों के कारण दोनों को बंद कर दिया गया है। नए रिएक्टरों के निर्माण में स्थिरता, की लंबी अवधि और नए निर्माण में जेनरेशन II/II+ डिजाइनों की निरंतर (यद्यपि गिरावट) लोकप्रियता के कारण, अपेक्षाकृत कुछ तीसरी जनरेशन के रिएक्टरों का निर्माण किया गया है।
अवलोकन
प्राचीन जनरल II रिएक्टरों में वर्तमान परमाणु रिएक्टरों का विशाल बहुमत सम्मिलित है। जनरल III रिएक्टर तथाकथित उत्कृष्ट प्रकाश-जल रिएक्टर (LWRs) हैं। जनरल III+ रिएक्टरों को "विकसित डिजाइन" के रूप में क्रमित किया गया है। चूंकि जनरल II और III रिएक्टरों के मध्य का अंतर इच्छानुसार है, कुछ जेन III रिएक्टर 2022 तक व्यावसायिक स्तर पर पहुंच गए हैं। जनरेशन IV अंतरराष्ट्रीय फोरम जेन IV को "क्रांतिकारी डिजाइन" कहा जाता है। ये ऐसी अवधारणाएं हैं जिनके लिए उस समय प्राप्ति के लिए कोई ठोस पूर्वानुमान उपस्थित नहीं था।[1] तीसरी जनरेशन के रिएक्टरों में रिएक्टर प्रौद्योगिकी में सुधार का उद्देश्य वर्तमान में उपयोग किए जाने वाले जनरेशन II रिएक्टरों की तुलना में लंबे परिचालन जीवन (60 वर्षों के संचालन के लिए डिज़ाइन किया गया है, जीर्णाद्धार और रिएक्टर दबाव जलयान प्रतिस्थापन को पूर्ण करने से पूर्व 100+ वर्षों के संचालन के लिए बढ़ाया जा सकता है) का परिणाम है। (ऑपरेशन के 40 वर्षों के लिए डिज़ाइन किया गया, जीर्णाद्धार और दबाव जलयान प्रतिस्थापन को पूर्ण करने से पूर्व ऑपरेशन के 60+ वर्षों तक बढ़ाया जा सकता है)।[2][3]इन रिएक्टरों के लिए मुख्य क्षति आवृत्तियों जनरेशन II रिएक्टरों की तुलना में अल्प करने के लिए डिज़ाइन किया गया है - यूरोपीय दबावित रिएक्टर (ईपीआर) के लिए 60 कोर क्षति घटनाएं और आर्थिक सरलीकृत उबलते जल रिएक्टर (ईएस बीडब्ल्यूआर) [4] के लिए 3 कोर क्षति घटनाएं प्रति 100 मिलियन रिएक्टर-वर्ष बीडब्लूआर/4 जेनरेशन II रिएक्टरों के लिए प्रति 100 मिलियन रिएक्टर-वर्ष में 1,000 कोर क्षति की घटनाओं से अधिक अल्प होते हैं।[4]
तीसरी जनरेशन के ईपीआर रिएक्टर को भी प्राचीन जेनरेशन II रिएक्टरों की तुलना में यूरेनियम का अधिक कुशलता से उपयोग करने के लिए डिज़ाइन किया गया था, जो इन प्राचीन रिएक्टर प्रौद्योगिकियों की तुलना में लगभग 17% अल्प प्रति यूनिट विद्युत् का उपयोग करता है।[5] अधिक दक्षता पर पर्यावरण वैज्ञानिक बैरी ब्रूक (वैज्ञानिक) द्वारा किया गया स्वतंत्र विश्लेषण और इसलिए जेन III रिएक्टरों की अल्प सामग्री की आवश्यकता होती है, इस अविष्कार की पुष्टि करता है।[6]
विकास

जेन III+ रिएक्टर डिज़ाइन, का विकास है, जो जनरेशन III रिएक्टर डिज़ाइनों की तुलना में सुरक्षा में सुधार को प्रस्तुत करता है। निर्माताओं ने 1990 के दशक में अमेरिकी, जाजल और पश्चिमी यूरोपीय प्रकाश-जल रिएक्टर के परिचालन अनुभव के आधार पर जेन III+ प्रणाली का विकास प्रारम्भ किया।
परमाणु उद्योग ने परमाणु पुनर्जागरण को बढ़ावा देना प्रारम्भ किया, जिसमें विचार दिया गया कि जनरल III+ डिजाइनों को तीन प्रमुख समस्याओं का समाधान करना चाहिए: सुरक्षा, वित्त और निर्माण क्षमता US$1,000/kW की निर्माण वित्त का अनुमान लगाया गया था, ऐसा स्तर जो परमाणु को गैस के साथ प्रतिस्पर्धी बना देगा, और चार वर्ष या उससे अल्प के निर्माण समय की उपेक्षा थी। चूंकि, ये अनुमान अति-आशावादी प्रमाणित हुए। दूसरी जनरेशन के डिजाइनों पर जनरल III + प्रणाली का उल्लेखनीय सुधार निष्क्रिय सुरक्षा सुविधाओं के कुछ डिजाइनों में सम्मिलित है, जिन्हें सक्रिय नियंत्रण या ऑपरेटर के हस्तक्षेप की आवश्यकता नहीं है, जबकि असामान्य घटनाओं के प्रभाव को अल्प करने के लिए गुरुत्वाकर्षण या प्राकृतिक संवहन पर विश्वास करते हैं।

2011 में फुकुशिमा दाइची परमाणु आपदा में हुई आपदा से बचने के लिए जनरेशन III+ रिएक्टरों में अतिरिक्त सुरक्षा विशेषताएं सम्मिलित हैं। जनरेशन III+ डिज़ाइन, निष्क्रिय सुरक्षा, जिसे निष्क्रिय शीतलन के रूप में भी जाना जाता है, संयंत्र को सुरक्षित रूप से बंद करने के लिए किसी निरंतर ऑपरेटर इलेक्ट्रॉनिक प्रतिक्रिया की आवश्यकता नहीं होती है। आपात स्थिति जनरेशन III+ के कई परमाणु रिएक्टरों में कोर उन्नत होता है। यदि ईंधन आवरण और रिएक्टर जलयान प्रणाली और संबद्ध पाइपिंग पिघल जाती है, तो कोरियम कोर उन्नत में गिर जाएगा जो पिघली हुई सामग्री को धारण करता है और इसे ठंडा करने की क्षमता रखता है। यह परिवर्तन में अंतिम बाधा, नियंत्रण भवन की सुरक्षा करता है। उदाहरण के रूप में, रोसाटॉम ने वीवीईआर-1200 रिएक्टर में 200-टन कोर उन्नत को रूपपुर परमाणु ऊर्जा संयंत्र के रिएक्टर भवन में उपकरण के पूर्व बड़े भाग के रूप में स्थापित किया, इसे "अनूठी सुरक्षा प्रणाली" के रूप में वर्णित किया।[7][8] 2017 में, रोसाटॉम ने मध्य रूस में नोवोवोरोनिश परमाणु ऊर्जा संयंत्र II एनवीएनपीपी-2 यूनिट 1 वीवीईआर-1200 रिएक्टर का व्यावसायिक संचालन आरम्भ कर दिया है, जो कि विश्व की प्राथम जनरेशन III+ रिएक्टर का पूर्ण संचालन है।[9]
प्राथम रिएक्टर
प्राथम जनरेशन III रिएक्टर जापान में उन्नत उबलते जल रिएक्टरों के रूप में बनाए गए थे। 5 अगस्त 2016 को, जनरेशन III+ वीवीईआर-1200/392M रिएक्टर रूस में नोवोवोरोनेज़ न्यूक्लियर विद्युत् संयंत्र II में प्रारम्भ (प्राथम ग्रिड संयोजन) हो गया, [10] जो प्राथम ऑपरेशनल जनरेशन III+ रिएक्टर था।[11] कई अन्य जनरेशन III+ रिएक्टर यूरोप, चीन, भारत और संयुक्त राज्य अमेरिका में अंतिम चरण के निर्माण के अधीन हैं। ऑनलाइन आने वाली अगली जनरेशन III+ रिएक्टर, ताइशन परमाणु ऊर्जा स्टेशन में अरेवा (AREVA) इपीआर (परमाणु रिएक्टर) रिएक्टर (2018-06-29 को प्राथम ग्रिड कनेक्शन) और सैनमेन परमाणु ऊर्जा स्टेशन पर वेस्टिंगहाउस एपी1000 रिएक्टर (2018-06 को प्राथम ग्रिड संयोजन) चीन में थे।[12]
संयुक्त राज्य अमेरिका में, रिएक्टर डिजाइन परमाणु नियामक आयोग (एनआरसी) द्वारा प्रमाणित हैं।अगस्त 2020 तक, आयोग ने सात नए डिजाइनों को अनुमति दे दी है, और डिजाइन के साथ-साथ समाप्त हो चुके प्रमाणन के नवीनीकरण पर विचार कर रहा है।[13]
प्रतिक्रिया और आलोचना
परमाणु ऊर्जा के समर्थकों और ऐतिहासिक रूप से आलोचना करने वाले कुछ लोगों ने स्वीकार किया है कि तीसरी जनरेशन के रिएक्टर प्राचीन रिएक्टरों की तुलना में पूर्ण रूप से सुरक्षित हैं। संबंधित वैज्ञानिकों का संघ के वरिष्ठ कर्मचारी वैज्ञानिक एडविन लाइमैन ने दो जनरेशन III रिएक्टरों, एपी1000 और इएस बीडब्लूआर दोनों के लिए बनाए गए विशिष्ट वित्त-लाभ डिज़ाइन विकल्पों को बढ़ावा दिया है। लाइमैन, जॉन मा (एनआरसी में वरिष्ठ संरचनात्मक इंजीनियर), और अर्नोल्ड गुंडर्सन (परमाणु-विरोधी सलाहकार) इस कथन से चिंतित हैं कि वे स्टील नियंत्रण जलयान और एपी1000 के निकट कंक्रीट ढाल निर्माण में दोष के रूप में क्या देखते हैं, जिसमें इसका नियंत्रण जलयान है। सीधे हवाई आघात की स्थिति में पर्याप्त सुरक्षा अंतर नहीं है।[14][15] अन्य इंजीनियर इन विचारो से सहमत नहीं हैं, और गर्व करते हैं कि सुरक्षा अंतर और सुरक्षा के कारकों में प्रतिबंध भवन पर्याप्त से अधिक है। [16] 2008 में संबंधित वैज्ञानिकों के संघ ने ईपीआर को संयुक्त राज्य अमेरिका में विचाराधीन एअल्पात्र नए रिएक्टर डिजाइन के रूप में संदर्भित किया कि "आज के रिएक्टरों की तुलना में प्रहार के विरुद्ध अधिक सुरक्षित होने की क्षमता प्रतीत होती है।"[17]: 7 इन रिएक्टरों के सुरक्षित संचालन को बनाए रखने के लिए आवश्यक त्रुटिहीन भागों को बनाने में भी समस्याएँ रही हैं, जिसमें वित्त में वृद्धि, टूटे हुए भाग, और अत्यधिक सूक्ष्म स्टील की सहनशीलता के कारण फ्रांस में फ्लेमनविले परमाणु ऊर्जा संयंत्र में निर्माणाधीन नए रिएक्टरों के साथ समस्याएँ उत्पन्न हुई हैं।[18]
जनरेशन III रिएक्टरों की सूची
जनरेशन III रिएक्टर वर्तमान में चालू या निर्माणाधीन
डेवलपर | रिएक्टर का नाम | प्रकार | MWe (net) | MWe (gross) | MWth | टिप्पणियाँ |
---|---|---|---|---|---|---|
जनरल इलेक्ट्रिक, तोशिबा, हिताची | ABWR; US-ABWR |
बीडब्ल्यूआर | 1350 | 1420 | 3926 | 1996 से काशीवाज़ाकी में संचालन में एनआरसी 1997 में प्रमाणित हुआ।.[17] |
केपको (KEPCO) | APR-1400 | पीडब्ल्यूआर | 1383 | 1455 | 3983 | जनवरी 2016 से कोरी में संचालन में। |
सीजीएनपीजी | ACPR-1000 | 1061 | 1119 | 2905 | सीपीआर-1000. का उन्नत संस्करण। पहला रिएक्टर 2018 में यांगजियांग-5 में ऑनलाइन आया था। | |
सीजीएनपीजी,सीएनएनसी | Hualong One (HPR-1000) | 1090 | 1170 | 3050 | आंशिक रूप से चीनी एसीपीआर-1000 और एसीपी-1000 डिज़ाइनों का विलय, लेकिन अंततः पूर्व सीएनपी-1000 और सीपी-1000 डिज़ाइनों में वृद्धिशील रूप से विकसित सुधार।[19]इसे आरम्भ में "एसीसी-1000" नाम देने का विचार था, लेकिन अंततः इसे "हुआलोंग वन" या "एचपीआर-1000" नाम दिया गया। फ़ैंगचेंगगैंग 3-6 इकाइयां एचपीआर-1000 डिजाइन का उपयोग करने वाली पहली होंगी, 2017 तक यूनिट 3 और 4 वर्तमान में निर्माणाधीन हैं।.[20] | |
ओकेबीएम (OKBM)अफ्रीकांटोव | VVER-1000/428 | 990 | 1060 | 3000 | एईएस-91 डिजाइन का पहला संस्करण, जिसे तियानवान यूनिट 1और 2 के लिए डिजाइन और उपयोग किया गया, जो 2007 में ऑनलाइन आया था। | |
VVER-1000/428M | 1050 | 1126 | 3000 | एईएस-91 डिज़ाइन का संस्करण, तियानवान के लिए भी डिज़ाइन और उपयोग किया गया (इसमें यूनिट 3 और 4 के लिए, जो क्रमशः 2017 और 2018 में ऑनलाइन आया था)। | ||
VVER-1000/412 | 917 | 1000 | 3000 | कुडनकुलम के लिए पहली बार निर्मित एईएस-92 डिजाइन का उपयोग किया गया। |
जनरेशन III डिजाइन अभी तक अपनाए या निर्मित नहीं किए गए हैं
डेवलपर | रिएक्टर का नाम | प्रकार | MWe (net) | MWe (gross) | MWth | टिप्पणियाँ |
---|---|---|---|---|---|---|
जनरल इलेक्ट्रिक, हिताची | ABWR-II | बीडब्ल्यूआर | 1638 | 1717 | 4960 | एबीडब्ल्यूआर का उन्नत संस्करण ,अनिश्चित विकास की स्थिति। |
मित्सुबिशी | APWR; US-APWR; EU-APWR; APWR+ |
पीडब्ल्यूआर | 1600 | 1700 | 4451 | 2011 में (Tsuruga) त्सुरुगा में नियोजित दो इकाइयों को रद्द कर दिया गया। कोमांचे चोटी पर नियोजित दो इकाइयों के लिए यूएस एनआरसी लाइसेंसिंग को 2013 में निलंबित कर दिया गया था। मूल एपीडब्ल्यूआर और अद्यतन यूएस-एपीडब्ल्यूआर/इयू-एपीडब्ल्यूआर (एपीडब्ल्यूआर+ के रूप में भी जाना जाता है) उनकी डिज़ाइन विशेषताओं में काफी भिन्न हैं। ,एपीडब्ल्यूआर+ के साथ उच्च दक्षता और विद्युत उत्पादन होता है। |
वेस्टिंगहाउस | AP600 | 600 | 619 | ? | एनआरसी1999 में प्रमाणित हुआ।[17] बड़े (AP)एपी1000 डिज़ाइन में विकसित हुआ।.[21] | |
दहन इंजीनियरिंग | System 80+ | 1350 | 1400 | ? | 1997 में एनआरसी प्रमाणित.[17] कोरियाई एपीआर-1400 के लिए आधार प्रदान किया।[22] | |
ओकेबीएम (OKBM)अफ्रीकांटोव | VVER-1000/466(B) | 1011 | 1060 | 3000 | यह विकसित किया जाने वाला पहला एईएस-92 डिजाइन था, मूल रूप से प्रस्तावित बेलेन परमाणु ऊर्जा संयंत्र, में बनाया जाना था, लेकिन बाद में निर्माण प्रतिबंध कर दिया गया था। | |
कैंडू एनर्जी इंक | EC6 | पीएचडब्ल्यूआर | ? | 750 | 2084 | EC6 (एन्हांस्ड कैंडू 6) पिछले कैंडू डिज़ाइनों का विकासवादी उन्नयन है। अन्य कैंडू डिजाइनों की तरह, यह ईंधन के रूप में अपरिष्कृत प्राकृतिक यूरेनियम का उपयोग करने में सक्षम है |
AFCR | ? | 740 | 2084 | उन्नत ईंधन कैंडू रिएक्टर संशोधित EC6 डिज़ाइन है जिसे कई संभावित पुनर्संसाधित ईंधन मिश्रणों और यहां तक कि थोरियम को बनाये रखने की क्षमता के साथ चरम ईंधन लचीलेपन के लिए अनुकूलित किया गया है। यह वर्तमान में एसएनसी-लवलीन,सीएनएनसी, और शंघाई इलेक्ट्रिक.के मध्य संयुक्त उद्यम के भाग के रूप में अंतिम चरण के विकास के दौर से निर्वाह हो रहा है। | ||
विभिन्न | MKER | बीडब्ल्यूआर | 1000 | ? | 2085 | आरबीएमके परमाणु ऊर्जा रिएक्टर का विकास आरबीएमके रिएक्टर की सभी डिज़ाइन त्रुटियों और अवगुण को ठीक करता है और पूर्ण प्रतिबंध भवन जोड़ता है और पैसिव कोर कूलिंग प्रणाली जैसी पैसिव न्यूक्लियर सेफ्टी फीचर्स एमकेईआर-1000 का भौतिक प्रोटोटाइप एमकेईआर-1000 की 5वीं इकाई है कुर्स्क परमाणु ऊर्जा संयंत्र।. कुर्स्क 5 का निर्माण 2012 में रद्द कर दिया गया था और वीवीइआर-टीओआई(TOI) जिसका निर्माण 2018 से चल रहा है, 2018 के अतिरिक्त बनाया जा रहा है।[23][24][25](आरबीएमके लेख देखें) |
जनरेशन III+ रिएक्टरों की सूची
जनरेशन III+ रिएक्टर वर्तमान में चालू या निर्माणाधीन
डेवलपर | रिएक्टर का नाम | प्रकार | MWe (net) | MWe (gross) | MWth | First grid connection | टिप्पणियाँ |
---|---|---|---|---|---|---|---|
वेस्टिंगहाउस, तोशिबा | AP1000 | पीडब्ल्यूआर | 1117 | 1250 | 3400 | 2018-06-30 सैनमेन[26][27] | एनआरसी प्रमाणित दिसंबर 2005।[17] |
एसएनपीटीसी, वेस्टिंगहाउस | CAP1400 | 1400 | 1500 | 4058 | एपी1000 का पहला चीनी सह-विकसित और अपसाइज़्ड "देशी" संस्करण/व्युत्पन्न। वेस्टिंगहाउस का सह-विकास समझौता चीन को सभी सह-विकसित संयंत्रों >1350 मेगावाट के लिए आईपी अधिकार देता है। शिदाओ खाड़ी. में पहले दो इकाइयां निर्माणाधीन हैं। सीएपीई1400 को सीएपीई1700 और सीएपीई2100 डिज़ाइन द्वारा अनुसरित करने की योजना है यदि शीतलन प्रणाली को पर्याप्त रूप से बढ़ाया जा सकता है। | ||
Areva (अरेवा) | EPR | 1660 | 1750 | 4590 | 2018-06-29 ताइशन[28] | ||
ओकेबी गिड्रोप्रेस | VVER-1200/392M | 1114 | 1180 | 3200 | 2016-08-05 नोवोवोरोनिश II[29][30] | वीवीइआर-1200 श्रृंखला को एईएस-2006/ एमआईआर-1200 डिज़ाइन के रूप में भी जाना जाता है। यह विशेष मॉडल वीवीइआर-टीओआई (TOI) प्रोजेक्ट के लिए उपयोग किया जाने वाला मूल संदर्भ मॉडल था।. | |
VVER-1200/491 | 1085 | 1199 | 3200 | 2018-03-09 लेनिनग्राद II[31] | |||
VVER-1200/509 | 1114 | 1200 | 3200 | अक्कुयू एनपीपी, निर्माणाधीन, अक्कुयू 1 और 2 के रूप में 2023 [32] और 2024 के कारण ग्रिड कनेक्शन।[33] | |||
VVER-1200/523 | 1080 | 1200 | 3200 | 2.4 जीडब्ल्यूई रूपपुर बांग्लादेशt का परमाणु ऊर्जा संयंत्र निर्माणाधीन है। वीवीइआर- 1200/523 की दो इकाइयाँ 2.4 जीडब्ल्यूई उत्पन्न करने की योजना 2023 और 2024 में प्रारम्भ होने की है।[34] | |||
VVER-1200/513 | ? | 1200 | 3200 | वीवीइआर-1300/510 डिज़ाइन (जो वीवीइआर-टीओआई प्रोजेक्ट के लिए वर्तमान संदर्भ डिज़ाइन है) पर आधारित वीवीइआर-1200 का मानकीकृत संस्करण अक्कुयू- 3, के रूप में पहली इकाई 2022 तक अक्कुयू में पूरी होने की आशा है।.[35][needs update] | |||
VVER-1300/510 | 1115 | 1255 | 3300 | वीवीइआर-1300 डिज़ाइन को एईएस-2010 डिज़ाइन के रूप में भी जाना जाता है, और कभी-कभी इसे गलती से वीवीइआर-टीओआई डिज़ाइन के रूप में नामित किया जाता है। वीवीइआर-1300/510 वीवीइआर-1200/392M पर आधारित है जिसे मूल रूप से वीवीइआर-टीओआई परियोजना के लिए संदर्भ डिजाइन के रूप में उपयोग किया गया था, चूंकि वीवीइआर-1300/510 वह भूमिका निभाता है (जिसके कारण वीवीइआर-टीओआई परियोजना के मध्य संका उत्पन्न हो गयी है) -टीओआई संयंत्र डिजाइन और वीवीइआर-1300/510 रिएक्टर डिजाइन)। वर्तमान में कई रूसी परमाणु संयंत्रों में निर्माण के लिए कई इकाइयों की योजना बनाई गई है। कुर्स्क परमाणु ऊर्जा संयंत्र में निर्माणाधीन पहली इकाइयाँ। [36][37] | |||
बीएआरसी | IPHWR-700 | पीएचडब्ल्यूआर | 630 | 700 | 2166 | 2021 | बढ़े हुए उत्पादन और अतिरिक्त सुरक्षा सुविधाओं के साथ स्वदेशी 540(Mwe)एमडब्ल्यूई पीएचडब्ल्यूआर का उत्तरवर्ती, निर्माणाधीन और 2020 में ऑनलाइन होने के कारण काकरापार परमाणु ऊर्जा स्टेशन परमाणु ऊर्जा स्टेशन में यूनिट 3 ने 22 जुलाई 2020 को पहली क्रिटिकलिटी प्राप्त की। यूनिट 3 को 10 जनवरी 2021 को ग्रिड से जोड़ा गया था।[38] |
जनरेशन III+ डिज़ाइन को अभी तक अपनाया या निर्मित नहीं किया गया है
डेवलपर | रिएक्टर का नाम | प्रकार | MWe (net) | MWe (gross) | MWth | टिप्पणियाँ |
---|---|---|---|---|---|---|
तोशीबा | EU-ABWR | बीडब्ल्यूआर | ? | 1600 | 4300 | एबीडब्ल्यूआर का अद्यतन संस्करण यूरोपीय संघ के दिशानिर्देशों को पूर्ण करने, रिएक्टर आउटपुट बढ़ाने और III+ के लिए डिज़ाइन जनरेशन में सुधार करने के लिए डिज़ाइन किया गया है। |
Areva (अरेवा) | Kerena | 1250 | 1290 | 3370 | पहले एसडब्ल्यूआर-1000 के रूप में जाना जाता था। जर्मन बीडब्ल्यूआर डिजाइनों पर आधारित, मुख्य रूप से गुंडरेमिंगेन इकाइयों बी/सी की। Areva(अरेवा)और ई.ओ एन.द्वारा सह-विकसित। | |
जनरल इलेक्ट्रिक,, हिताची | ESBWR | 1520 | 1600 | 4500 | अप्रकाशित एसबीडब्ल्यूआर डिज़ाइन के आधार पर जो वास्तव में एबीडब्ल्यूआर पर आधारित थाI उत्तर अन्ना-3 के लिए विचार किया जा रहा है। प्राकृतिक संचलन पर पूरी तरह से निर्भर डिजाइन के पक्ष में पूरी तरह से पुनरावर्तन पंपों के उपयोग को छोड़ देता है (जो उबलते जल रिएक्टर डिजाइन के लिए बहुत ही असामान्य है)। | |
केपको | APR+ | पीडब्ल्यूआर | 1505 | 1560 | 4290 | एपीआर-1400 उन्नत आउटपुट और अतिरिक्त सुरक्षा सुविधाओं के साथ उत्तराधिकारी। |
अरेवा, मित्सुबिशी | ATMEA1 | 1150 | ? | 3150 | प्रस्तावित सिनोप संयंत्र आगे नहीं बढ़ा I | |
ओकेबी गिड्रोप्रेस | VVER-600/498 | ? | 600 | 1600 | अनिवार्य रूप से स्केल-डाउन वीवीइआर-1200 कोला में 2030 तक वाणिज्यिक नियुक्ति की योजना है। | |
कैंडू एनर्जी इंक। | ACR-1000 | पीएचडब्ल्यूआर | 1085 | 1165 | 3200 | उन्नत कैंडू रिएक्टर हाइब्रिड कैंडू डिज़ाइन है जो भारी जल के मॉडरेटर को स्थिर रखता है लेकिन भारी जल के शीतलक को पारंपरिक हल्के जल के शीतलक के साथ परिवर्तित कर देता है, पारंपरिक कैंडू डिजाइनों की तुलना में भारी जल की वित्त को अधिक अल्प कर देता है लेकिन ईंधन के रूप में अपरिष्कृत प्राकृतिक यूरेनियम का उपयोग करने की विशेषता कैंडू क्षमता खो देता है। . |
यह भी देखें
- जनरेशन II रिएक्टर
- जनरेशन IV रिएक्टर
- रिएक्टर प्रकारों की सूची
संदर्भ
- ↑ "Technology Roadmap Update for Generation IV Nuclear Energy Systems" (PDF). January 2014. Archived from the original (PDF) on 25 June 2014.
- ↑ "New material promises 120-year reactor lives". www.world-nuclear-news.org. Retrieved 8 June 2017.
- ↑ "Advanced Nuclear Power Reactors | Generation III+ Nuclear Reactors - World Nuclear Association". www.world-nuclear.org. Retrieved 8 June 2017.
- ↑ 4.0 4.1 "Next-generation nuclear energy: The ESBWR" (PDF).
- ↑ Forsythe, Jan (18 February 2009). 3 R's of Nuclear Power: Reading, Recycling, and Reprocessing: ...Making a Better Tomorrow for Little Joe. AuthorHouse. ISBN 9781438967318 – via Google Books.
- ↑ "Fuel use for Gen III+ nuclear power". 26 October 2011.
- ↑ "Gen III reactor design". Power Engineering. 6 April 2011. Retrieved 24 August 2020.
- ↑ "Core catcher installation under way at Rooppur 1". World Nuclear News. Retrieved 5 June 2019.
- ↑ "Russia completes world's first Gen III+ reactor; China to start up five reactors in 2017". Nuclear Energy Insider. 8 February 2017. Retrieved 10 July 2019.
- ↑ Russian Federation Reactors, PRIS IAEA, 21 October 2022
- ↑ "В России запустили не имеющий аналогов в мире атомный энергоблок". ТАСС.
- ↑ People's Republic of China reactors, PRIS IAEA, 21 October 2022
- ↑ "Design Certification Applications for New Reactors, update August 2020". U.S. Nuclear Regulatory Commission.
- ↑ Adam Piore (June 2011). "Nuclear energy: Planning for the Black Swan". Scientific American.
{{cite web}}
: Missing or empty|url=
(help) - ↑ Matthew L. Wald. Critics Challenge Safety of New Reactor Design New York Times, 22 April 2010.
- ↑ "Sunday Dialogue: Nuclear Energy, Pro and Con". New York Times. 25 February 2012.
- ↑ 17.0 17.1 17.2 17.3 17.4 "Nuclear Power in a warming world" (PDF). Union of Concerned Scientists. Dec 2007. Retrieved 1 October 2008.
- ↑ "Flaw found in French nuclear reactor - BBC News". BBC News. 9 July 2015. Retrieved 29 October 2015.
- ↑ Xing, Ji; Song, Daiyong; Wu, Yuxiang (1 March 2016). "HPR1000: Advanced Pressurized Water Reactor with Active and Passive Safety". Engineering. 2 (1): 79–87. doi:10.1016/J.ENG.2016.01.017.
- ↑ "China's progress continues". Nuclear Engineering International. 11 August 2015. Retrieved 30 October 2015.
- ↑ "New Commercial Reactor Designs". Archived from the original on 2 January 2009.
- ↑ "New Reactor Designs". Archived from the original on 11 December 2012. Retrieved 9 January 2009.
- ↑ "Russia's Nuclear Fuel Cycle | Russian Nuclear Fuel Cycle - World Nuclear Association". world-nuclear.org.
- ↑ "Blogging About the Unthinkable: The Future of Water-Cooled Graphite Reactors?". 21 April 2008.
- ↑ "Реакторная установка МКЭР - 1500". reactors.narod.ru.
- ↑ "First Westinghouse AP1000 Plant Sanmen 1 Begins Synchronization to Electrical Grid" (in English). Retrieved 2 July 2018.
- ↑ SANMEN-2 PRIS database (accessed Nov 2021)
- ↑ "China's Taishan 1 reactor connected to grid - World Nuclear News". www.world-nuclear-news.org.
- ↑ "В России запустили не имеющий аналогов в мире атомный энергоблок".
- ↑ "First VVER-1200 reactor enters commercial operation - World Nuclear News". www.world-nuclear-news.org. Retrieved 10 July 2019.
- ↑ "Leningrad II-1 starts pilot operation". World Nuclear News. 9 March 2018. Retrieved 10 March 2018.
- ↑ "Akkuyu 1". Power Reactor Information System (PRIS). International Atomic Energy Agency (IAEA). 24 September 2020. Retrieved 25 September 2020.
- ↑ "Akkuyu 2". PRIS. IAEA. 24 September 2020. Retrieved 25 September 2020.
- ↑ "Rooppur Nuclear Power Plant, Ishwardi". Power Technology.
- ↑ "Akkuyu 3". Nuclear Engineering International. 11 March 2021.
- ↑ "Bellona's experts oppose building a second nuclear power plant in Russia's Kursk Region". Bellona.org. 22 May 2015.
- ↑ "На Курской АЭС-2 началось сооружение новых блоков". www.atominfo.ru.
- ↑ "Unit 3 of Kakrapar nuclear plant synchronised to grid". Live Mint. 11 January 2021. Retrieved 30 September 2021.
बाहरी कड़ियाँ
- Nuclear Reactors Knowledge Base, IAEA
- Advanced Nuclear Power Reactors Archived 6 February 2010 at the Wayback Machine, World Nuclear Association, May 2008