ज्यामितीय मात्राकरण
गणितीय विज्ञान में, ज्यामितीय परिमाणीकरण एक प्रतिष्ठित नियम के अनुरूप क्वांटम नियम को परिभाषित करने के लिए एक गणितीय दृष्टिकोण है। यह मात्राकरण करने का प्रयास करता है, जिसके लिए सामान्य रूप से कोई सटीक उपाय नहीं है, इस तरह प्रतिष्ठित नियम और क्वांटम नियम के बीच कुछ समानताएं प्रकाशित होती हैं। उदाहरण के लिए, क्वांटम नियम हाइजेनबर्ग प्रतिमा में हाइजेनबर्ग समीकरण और प्रतिष्ठित हैमिल्टन समीकरण के बीच समानता का निर्माण किया जाना चाहिए।
उत्पत्ति
1927 में हरमन वेइल द्वारा प्रस्तावित, प्राकृतिक परिमाणीकरण के प्रारंभिक प्रयासों में से एक वेइल परिमाणीकरण था। यहां, एक क्वांटम-नियम प्रत्यक्ष (हिल्बर्ट स्पेस पर एक स्व-आसन्न ऑपरेटर) को एक वास्तविक-मूल्यवान फ़ंक्शन के साथ जोड़ने का प्रयास किया गया है। प्रतिष्ठित हाइजेनबर्ग समूह के जनक के लिए मैप बनाया गया है, और हिल्बर्ट स्पेस हाइजेनबर्ग समूह के एक प्रतिनिधित्व के रूप में प्रकट होता है। 1946 में, एच. जे ग्रोएनवॉल्ड ने इस तरह के अवलोकनों की एक जोड़ी के उत्पाद पर विचार किया और पूछा कि प्रतिष्ठित चरण स्पेस संबंधित कार्य पर क्या होगा।[1] इसलिए उन्हें कार्यों की एक जोड़ी चरण-स्पेस स्टार उत्पाद की खोज करने के लिए प्रेरित किया गया है।
1970 के दशक में बर्ट्रम कॉन्स्टेंट और जीन मैरी सोरियाउ द्वारा ज्यामितीय परिमाणीकरण का आधुनिक नियम विकसित किये गये थे। सिद्धांत की प्रेरणाओं में से एक प्रतिनिधित्व नियम में किरिलोव की कक्षा पद्धति को समझना और सामान्य बनाना था।
विरूपण परिमाणीकरण
यह अधिक सामान्यतः, शिल्प-कला विकृति परिमाणीकरण की ओर ले जाती है, जहां ★- उत्पाद को सहानुभूतिपूर्ण कई गुना या प्वाइजन कई गुना कार्यों के बीजगणित विरूपण के रूप में लिया जाता है। चूंकि, एक प्राकृतिक परिमाणीकरण योजना के रूप में, वेइल का मैप संतोषजनक नहीं है। उदाहरण के लिए, प्रतिष्ठित कोणीय-संवेग-वर्ग का वेइल मैप एकमात्र क्वांटम कोणीय संवेग वर्ग ऑपरेटर नहीं है, अपेक्षाकृत इसमें एक स्थिर शब्द 3ħ सम्मलित है2/2. (इसके अतिरिक्त यह शब्द वास्तव में वास्तविक रूप से महत्वपूर्ण है, चूंकि यह हाइड्रोजन परमाणु में भू-अवस्था बोह्र कक्षा के अविच्छिन्न कोणीय संवेग के लिए उत्तरदायित्वपुर्ण है।[2]) एकमात्र प्रतिनिधित्व परिवर्तन के रूप में, चूंकि, वेइल का मैप परंपरागत क्वांटम नियम के वैकल्पिक चरण-स्थान सूत्रीकरण को रेखांकित करते है।
ज्यामितीय परिमाणीकरण
ज्यामितीय परिमाणीकरण प्रक्रिया निम्नलिखित तीन चरणों में होती है: पूर्व-परिमाणीकरण, ध्रुवीकरण और मेटाप्लेक्टिक सुधार होते है। यह पूर्व-परिमाणीकरण एक प्राकृतिक हिल्बर्ट स्पेस का निर्माण करता है, साथ में वेधशालाओं के लिए एक परिमाणीकरण प्रक्रिया के साथ जो प्रतिष्ठित पक्ष पर पॉइज़न कोष्ठक को क्वांटम पक्ष पर दिकपरिवर्तक में बदल देता है। पुनः, प्रीक्वांटम हिल्बर्ट स्पेस को सामान्यतः बहुत बड़ा समझा जाता है।[3] विचार यह है कि तब किसी को 2एन-आयामी चरण स्पेस पर n चर के पॉइसन-कम्यूटिंग सेट का चयन करना चाहिए, और उन कार्यों पर यथार्थ रूप से अनुभागों पर विचार करना चाहिए जो एकमात्र इन n चर पर निर्भर करते हैं। n चर या तो वास्तविक-मूल्यवान हो सकते हैं, जिसके परिणामस्वरूप एक स्थिति-शैली हिल्बर्ट स्पेस, या जटिल विश्लेषणात्मक हो सकती है, जो सेगल-बार्गमैन स्पेस में कुछ का उत्पादन होता है।[lower-alpha 1] एक ध्रुवीकरण n पॉइसन-कम्यूटिंग कार्यों की ऐसी पसंद का एक समन्वय-स्वतंत्र विवरण है। मेटाप्लेक्टिक सुधार (जिसे अर्ध-रूप सुधार के रूप में भी जाना जाता है) उपरोक्त प्रक्रिया का एक तकनीकी संशोधन है जो वास्तविक ध्रुवीकरण की स्थिति में महत्वपूर्ण है और अधिकांशतः जटिल ध्रुवीकरण के लिए सुविधाजनक होता है।
पूर्व परिमाणीकरण
कल्पना करना एक सहानुभूतिपूर्ण अनेक विथ सहानुभूतिपूर्ण विधि के साथ है .पहले सटीक है, जिसका अर्थ है कि विश्व स्तर पर परिभाषित सहानुभूतिपूर्ण क्षमता है साथ . स्क्वायर-अभिन्न कार्य के प्रमात्रा यान्त्रिकी हिल्बर्ट स्पेस पर विचार कर सकते हैं (लिउविल वॉल्यूम माप के संबंध में)। प्रत्येक सुचारू कार्य के लिए च पर , , कोस्टेंट-सोरियाउ प्रीक्वांटम ऑपरेटर को परिभाषित कर सकते हैं
- .
जहाँ हैमिल्टनियन संवाहक क्षेत्र से जुड़ा है .
अधिक सामान्यतः, का समाकल गुण है किसी भी बंद सतह पर एक पूर्णांक होता है। पुनः एक लाइन पर बंडल बना सकते हैं सम्बन्ध के साथ जिसका वक्रता का 2-रूप है . उस स्थिति में, प्रीक्वांटम हिल्बर्ट स्पेस वर्ग-पूर्णांक वर्गों का स्थान है , सूत्र को प्रतिस्थापित करते हैं पूर्व परिमाणीकरण के रूप में जाना जाता है।
- ,
साथ संपर्क। प्रीक्वांटम ऑपरेटर संतुष्ट हैं
सभी सुचारू कार्यों के लिए और .[4] पूर्ववर्ती हिल्बर्ट स्पेस और ऑपरेटरों के निर्माण को पूर्व परिमाणीकरण के रूप में जाना जाता है।
ध्रुवीकरण
ज्यामितीय परिमाणीकरण की प्रक्रिया में अगला चरण ध्रुवीकरण का चुनाव है। प्रत्येक बिंदु पर एक ध्रुवीकरण एक विकल्प है के जटिल स्पर्शरेखा स्थान का लैग्रैंगियन सबस्पेस . उप-स्थानों को एक अभिन्न वितरण बनाना चाहिए, जिसका अर्थ है कि प्रत्येक बिंदु पर उप-स्थान में पड़े दो सदिश क्षेत्रों के कम्यूटेटर को भी प्रत्येक बिंदु पर उप-स्थान में स्थित होना चाहिए। क्वांटम (प्रीक्वांटम के विपरीत) हिल्बर्ट स्पेस के वर्गों का स्थान है जो ध्रुवीकरण की दिशा में सहसंयोजक रूप से स्थिर हैं।[5][lower-alpha 2] विचार यह है कि क्वांटम हिल्बर्ट स्पेस में, वर्गों का एकमात्र कार्य होना चाहिए पर चर -आयामी प्रतिष्ठित स्थान पर होता है।
यदि एक ऐसा कार्य है जिसके लिए संबंधित हैमिल्टनियन प्रवाह ध्रुवीकरण को संरक्षित करता है क्वांटम हिल्बर्ट स्पेस को संरक्षित करेगा।[6] धारणा यह है कि प्रवाह संरक्षित ध्रुवीकरण एक बहुसंख्यक है। सामान्यतः बहुत सारे कार्य इस धारणा को पूरा नहीं कर सकते है।
हाफ-फॉर्म करेक्शन
अर्ध-रूप सुधार - जिसे मेटाप्लेक्टिक सुधार के रूप में भी जाना जाता है - उपरोक्त प्रक्रिया के लिए एक तकनीकी संशोधन है जो गैर-शून्य परिमाण हिल्बर्ट स्पेस प्राप्त करने के लिए वास्तविक ध्रुवीकरण के स्थिति में आवश्यक है; यह अधिकांशतः जटिल स्थिति में भी उपयोगी होता है। रेखा बंडल के प्रदिश उत्पाद द्वारा प्रतिस्थापित किया जाता है के विहित बंडल के वर्गमूल के साथ . लंबवत ध्रुवीकरण की स्थिति में, उदाहरण के लिए, कार्यों पर विचार करने के अतिरिक्त का जो स्वतंत्र हैं , एक रूप की वस्तुओं पर विचार करता है . के लिए सूत्र इसके बाद एक अतिरिक्त अस्तित्व व्युत्पन्न शब्द द्वारा पूरक होना चाहिए।[7] समतल पर एक जटिल ध्रुवीकरण की स्थिति में, उदाहरण के लिए, आधा-रूप सुधार हार्मोनिक ऑसिलेटर के परिमाणीकरण को ऊर्जा के लिए मानक परिमाण यांत्रिक सूत्र को पुन: उपस्थित रहने की अनुमति देता है, , के साथ अर्ध-रूपों के सौजन्य से आ रहा है।[8]
पॉइसन कई गुना
पॉइसन कई गुना और सहानुभूतिपूर्ण संख्यन का ज्यामितीय परिमाणीकरण भी विकसित किया गया है। उदाहरण के लिए, यह आंशिक रूप से पूर्णांक अभिन्न प्रणाली और सुपरइंटेग्रेबल हैमिल्टनियन सिस्टम और गैर-स्वायत्त यांत्रिकी की स्थिति है।
उदाहरण
इस स्थिति में सहानुभूति गोले का क्षेत्र कई गुना है, इसे सह-संयुक्त कक्षा के रूप में अनुभव किया जा सकता है . यह मानते हुए कि गोले का क्षेत्रफल एक पूर्णांक गुणक है , हम ज्यामितीय परिमाणीकरण कर सकते हैं और परिणामी हिल्बर्ट स्पेस एसयू (2) का एक अलघुकरणीय प्रतिनिधित्व होता है। इस स्थिति में कि गोले का क्षेत्रफल है , हम द्वि-आयामी स्पिन-½ प्रतिनिधित्व प्राप्त करते हैं।
यह भी देखें
- अर्ध-रूप
- लाग्रंगियन पत्ते
- किरिलोव कक्षा विधि
- परिमाणीकरण कमी के साथ शुरू होता है
टिप्पणियाँ
उद्धरण
स्रोत
- बेट्स, S; वीन्स्टीन, A. (1996). आयामीकरण की ज्यामिति पर व्याख्या. अमेरिकी गणितीय सोसायटी. ISBN 978-082180798-9.
- डाहल, J.; श्लेच, W. (2002). "रेडियल और कोणीय गतिज ऊर्जा की अवधारणा". भौतिक समीक्षा ए. 65 (2). arXiv:quant-ph/0110134. Bibcode:2002PhRvA..65b2109D. doi:10.1103/PhysRevA.65.022109.
- गियाचेट्टा, G.; मंगियारोटी, L.; सरदानाश्विली, G. (2005). क्वांटम यांत्रिकी में ज्यामितीय और बीजगणितीय सामयिक तरीके. विश्व वैज्ञानिक. ISBN 981-256-129-3.
- ग्रोएनवॉल्ड, H. J. (1946). "प्रारंभिक क्वांटम यांत्रिकी के सिद्धांतों पर". फिजिका. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
- हॉल, B.C. (2013). गणितज्ञों के लिए क्वांटम थ्योरी. गणित में स्नातक ग्रंथ. Vol. 267. कोंपल. ISBN 978-146147115-8.
- काँग, K. (2006). माइक्रो से मैक्रो क्वांटम सिस्टम तक, (सुपरसेलेक्शन नियमों और इसके अनुप्रयोगों के साथ एक एकीकृत औपचारिकता). विश्व वैज्ञानिक. ISBN 978-1-86094-625-7.
- Śniatycki, J. (1980). ज्यामितीय परिमाणीकरण और क्वांटम यांत्रिकी. कोंपल. ISBN 0-387-90469-7.
- वैसमैन, I. (1991). पोइसन मैनिफोल्ड्स की ज्यामिति पर व्याख्यान. Birkhauser. ISBN 978-3-7643-5016-1.
- वुड्हाउस, N.M.J. (1991). ज्यामितीय परिमाणीकरण. क्लेरेंडन प्रेस. ISBN 0-19-853673-9.
बाहरी संबंध
- ज्यामितीय परिमाणीकरण की विलियम रिटर की समीक्षा में सभी समस्याओं के लिए एक सामान्य ढांचा प्रस्तुत करता है भौतिक विज्ञान और इस ढांचे में ज्यामितीय परिमाणीकरण को फिट करता है arXiv:math-ph/0208008
- John Baez's review of Geometric Quantization, by जॉन बैज छोटा और शैक्षणिक है
- Matthias Blau's primer on Geometric Quantization, बहुत कम अच्छे प्राइमरों में से एक (पीएस प्रारूप केवल)
- ए. एचेवरिया-एनरिकेज़, एम. मुनोज़-लेकांडा, एन. रोमन-रॉय, ज्यामितीय परिमाणीकरण की गणितीय नींव, arXiv:math-ph/9904008.
- गेनाडी सरदानाश्विली,सहानुभूतिपूर्ण पर्णों का ज्यामितीय परिमाणीकरण, arXiv:math/0110196.