टीएल431

From Vigyanwiki
TL431
धारा नियामक IC
समतुल्य (कार्यात्मक स्तर) योजनाबद्ध
समतुल्य (कार्यात्मक स्तर) योजनाबद्ध
प्रकारसमायोज्य शंट धारा नियामक
परिचय का वर्ष1977
मूल निर्माताटेक्सस उपकरण

टीएल431 तीन-टर्मिनल समायोज्य परिशुद्धता रैखिक नियामक शंट नियामक एकीकृत सर्किट है। बाहरी धारा विभक्त के उपयोग से, टीएल431 100 एमए तक की धाराओं पर 2.5 से 36 वी तक के धारा को नियंत्रित कर सकता है। नाममात्र 2.495 वी स्तर से संदर्भ धारा का विशिष्ट प्रारंभिक विचलन मिलीवोल्ट में मापा जाता है, अधिकतम सबसे निकृष्ट स्थिति विचलन दसियों मिलीवोल्ट में मापा जाता है। सर्किट सीधे पावर ट्रांजिस्टर को नियंत्रित कर सकता है; पावर एमओएस ट्रांजिस्टर के साथ टीएल431 के संयोजन का उपयोग उच्च दक्षता, अधिक अर्घ्य ड्रॉपआउट रैखिक नियामकों में किया जाता है। टीएल431 इनपुट एवं आउटपुट नेटवर्क के ऑप्टोइलेक्ट्रॉनिक कपलिंग के साथ स्विच-मोड विद्युत आपूर्ति के लिए वास्तविक उद्योग मानक त्रुटि प्रवर्धक सर्किट है।

टेक्सस उपकरण ने 1977 में टीएल431 प्रस्तुत किया। 21वे दशक में, मूल टीएल431 कई क्लोन एवं डेरिवेटिव (TL432, Aटीएल431, KA431, LM431, TS431, 142ЕН19 एवं अन्य) के साथ उत्पादन में बना हुआ है। ये कार्यात्मक रूप से समान सर्किट डाई (एकीकृत सर्किट) आकार एवं लेआउट, परिशुद्धता एवं गति विशेषताओं, न्यूनतम ऑपरेटिंग धाराओं एवं सुरक्षित ऑपरेटिंग क्षेत्रों में अत्यधिक भिन्न हो सकते हैं।

निर्माण एवं संचालन

ट्रांजिस्टर-स्तर योजनाबद्ध। स्थिर-अवस्था विनियमन के लिए निर्दिष्ट DC धारा VCA=7 V[1]
छोटी त्रुटि वोल्टेज के लिए वर्तमान-धारा वक्र।[2] ग्रीन ज़ोन अनुशंसित उच्च ट्रांसकंडक्टेंस क्षेत्र है, जो अधिकतम वर्तमान रेटिंग तक ऊपर की ओर विस्तारित है। येलो ज़ोन में ऑपरेशन संभव है, किन्तु अनुशंसित नहीं है।[3][2][4]

टीएल431 तीन-टर्मिनल द्विध्रुवी ट्रांजिस्टर स्विच है, जो कार्यात्मक रूप से स्थिर 2.5 V स्विचिंग थ्रेशोल्ड एवं कोई स्पष्ट हिस्टैरिसीस के साथ आदर्श एन-प्रकार ट्रांजिस्टर के समान है। इस ट्रांजिस्टर के आधार, संग्राहक एवं उत्सर्जक को पारंपरिक रूप से संदर्भ (आर या आरईएफ), कैथोड (C) एवं एनोड (A) कहा जाता है।[5] सकारात्मक नियंत्रण धारा, VREF, संदर्भ इनपुट एवं एनोड के मध्य लगाया जाता है, आउटपुट करंट, ICA, कैथोड तक प्रवाहित होता है।[5]

कार्यात्मक स्तर पर टीएल431 में 2.5 V धारा संदर्भ एवं ओपन-लूप ऑपरेशनल एंप्लीफायर होता है जो संदर्भ के साथ इनपुट नियंत्रण धारा की तुलना करता है।[5] चूंकि, यह केवल अमूर्तता है, दोनों फलन टीएल431 के फ्रंट एंड के अंदर निरन्तर रूप से जुड़े हुए हैं। कोई भौतिक 2.5 वी स्रोत नहीं है।[1] वास्तविक आंतरिक संदर्भ 1.2 वी बैंडगैप धारा संदर्भ (ट्रांजिस्टर T3, T4, T5) द्वारा प्रदान किया जाता है, जो इनपुट एमिटर अनुयायियों T1, T6 द्वारा संचालित होता है।[6] यह तब भी सही संचालन को सक्षम बनाता है जब कैथोड-एनोड धारा 2.5 वी से नीचे, लगभग 2.0 वी न्यूनतम तक गिर जाता है। विभेदक एम्पलीफायर दो वर्तमान स्रोतों (T8, T9) से बना है; उनकी धाराओं का सकारात्मक अंतर T10 के आधार में डूब जाता है।[6] आउटपुट विवृत कलेक्टर ट्रांजिस्टर, T11, 100 एमए तक की धाराओं को सिंक कर सकता है, एवं रिवर्स डायोड के साथ ध्रुवीयता उत्क्रमण से सुरक्षित है।[1][5] सर्किट अत्यधिक करंट या ओवरहीटिंग से सुरक्षा प्रदान नहीं करता है।[1][5]

जब VREF 2.5 V थ्रेशोल्ड (वर्तमान-धारा वक्र पर बिंदु A) से सुरक्षित रूप से नीचे होता है, तो आउटपुट ट्रांजिस्टर संवृत हो जाता है। अवशिष्ट कैथोड-एनोड वर्तमान ICA, फ्रंट-एंड सर्किट को फीड करते हुए, 100 एवं 200 μA के अंदर रहता है।[7] जब VREF सीमा के निकट पहुंचता है, तो ICA 300-500 μA तक बढ़ जाता है, किन्तु आउटपुट ट्रांजिस्टर संवृत रहता है।[7] अपनी सीमा (बिंदु B) पर पहुंचने पर, आउटपुट ट्रांजिस्टर मंद गति से विवृत होता है, एवं ICA लगभग 30 mA/V की दर से बढ़ना प्रारम्भ होता है।[7] जब VREF सीमा से लगभग 3 mV अधिक है, एवं ICA 500 तक पहुँच जाता है–600 μA (बिंदु C), ट्रांसकंडक्टेंस तीव्रता से 1.0 –1.4 A/V तक बढ़ जाता है।[7] इस बिंदु से ऊपर टीएल431 अपने सामान्य, उच्च ट्रांसकंडक्टेंस मोड में कार्य करता है एवं सरलता से एवं सिंगल-एंडेड से वर्तमान कनवर्टर मॉडल के के अंतर धारा के साथ सरलता से अनुमान लगाया जा सकता है।[8][7] करंट तब तक बढ़ता है जब तक कैथोड को नियंत्रण इनपुट से जोड़ने वाला नकारात्मक फीडबैक लूप VREF को स्थिर नहीं कर देता। यह बिंदु (Vref) वास्तव में, संपूर्ण नियामक का संदर्भ धारा है।[2][9] वैकल्पिक रूप से, टीएल431 तुलनित्र के रूप में फीडबैक के बिना, या श्मिट ट्रिगर के रूप में सकारात्मक फीडबैक के साथ कार्य कर सकता है; ऐसे अनुप्रयोगों में ICA केवल एनोड लोड एवं विद्युत आपूर्ति क्षमता द्वारा सीमित है।[10]

संदर्भ इनपुट वर्तमान IREF ICA से स्वतंत्र है एवं लगभग 2 μA पर अत्यधिक स्थिर है। नेटवर्क फीडिंग संदर्भ इनपुट इस मात्रा (4 μA या अधिक) से अर्घ्य से अर्घ्य दोगुना स्रोत प्राप्त करने में सक्षम होना चाहिए। हैंगिंग आरईएफ इनपुट के साथ संचालन निषिद्ध है, किन्तु इससे टीएल431 को सीधे हानि नहीं होगी।[10] यह किसी भी पिन पर विवृत सर्किट, किसी भी पिन के ग्राउंड पर शॉर्ट सर्किट, या पिन के किसी भी जोड़े के मध्य शॉर्ट सर्किट से बचेगा, संयोजक कि पिनों पर धारा सुरक्षा सीमा के अंदर रहे।[11]

परिशुद्धता

परीक्षण स्थितियों में संदर्भ धारा के प्रति मुक्त-वायु तापमान, डिज़ाइन-केंद्र (मध्य प्लॉट) एवं सबसे निकृष्ट स्थिति में ±2% का विचलन (ऊपरी एवं निचले प्लॉट)[12]

डेटाशीट में बताए गए नाममात्र संदर्भ VREF=2.495 V, का परीक्षण जेनर मोड में +25 °C (77 °F) एवं ICA=10 एमए के परिवेश तापमान पर किया जाता है।[13] थ्रेसहोल्ड धारा एवं निम्न-ट्रांसकंडक्टेंस एवं उच्च-ट्रांसकंडक्टेंस मोड के मध्य की सीमा निर्दिष्ट नहीं है एवं परीक्षण नहीं किया गया है।[7] वास्तविक VREF वास्तविक विश्व के अनुप्रयोग में विशिष्ट टीएल431 द्वारा बनाए रखा गया चार कारकों के आधार पर 2.495 V से अधिक या अर्घ्य हो सकता है:

  • किसी विशिष्ट चिप का व्यक्तिगत प्रारंभिक विचलन, टीएल431 के विभिन्न ग्रेडों के लिए, सामान्य परिस्थितियों में विचलन ±0.5%, ±1%, या ±2% के अंदर है।[14]
  • तापमान, बैंडगैप संदर्भ धारा के थर्मल प्लॉट में कूबड़ जैसी आकृति होती है। डिज़ाइन के अनुसार, कूबड़ + 25 °C (77 °F) पर केंद्रित है, जहां VREF=2.495 V; ऊपर एवं नीचे +25 °C (77 °F), VREF मंद-मंद कुछ मिलीवोल्ट अर्घ्य हो जाता है। चूंकि, यदि कोई विशिष्ट आईसी मानक से अत्यधिक सीमा तक विचलित हो जाता है, तो कूबड़ अर्घ्य या उच्च तापमान पर स्थानांतरित हो जाता है, सबसे निकृष्ट आउटलेर्स में यह नीरस रूप से बढ़ते या गिरते वक्र में परिवर्तित हो जाता है।[15] [12]
  • सीमित आउटपुट प्रतिबाधा के कारण, VCA धारा में परिवर्तन ICA एवं, अप्रत्यक्ष रूप से, VREF, को प्रभावित करते हैं, जैसे वे ट्रांजिस्टर या ट्रायोड में करते हैं। किसी दिए गए निश्चित ICA के लिए, VCA में 1 V की वृद्धि ≈1.4 mv (सबसे निकृष्ट स्थिति में अधिकतम 2.7 mv) VREF कमी के साथ ऑफसेट किया जाना चाहिए।[13] अनुपात μ = 1 V / 1.4 mv ≈ 300-1000, या ≈ 50-60 db DC एवं अर्घ्य आवृत्तियों पर सैद्धांतिक अधिकतम ओपन-लूप धारा लाभ है;[16]
  • परिमित ट्रांसकंडक्टेंस के कारण, ICA में वृद्धि से VREF में 0.5-1 mV/mA ​​की दर से वृद्धि होती है।[17]

गति एवं स्थिरता

टीएल431 की ओपन-लूप आवृत्ति प्रतिक्रिया को प्रथम-क्रम लो पास फिल्टर के रूप में विश्वसनीय रूप से अनुमानित किया जा सकता है। आवृत्ति क्षतिपूर्ति आउटपुट चरण में अपेक्षाकृत बड़ी आवृत्ति क्षतिपूर्ति द्वारा प्रदान की जाती है।[16][10] समकक्ष मॉडल में आदर्श 1 A/V धारा-टू-करंट कनवर्टर होता है, जो 70 एनएफ कैपेसिटर के साथ शंट किया जाता है।[16] 230 ओम के विशिष्ट कैथोड लोड के लिए, यह 10 किलोहर्ट्ज़ की ओपन-लूप कटऑफ आवृत्ति एवं 2 मेगाहर्ट्ज की एकता लाभ आवृत्ति में अनुवाद करता है।[16][18] विभिन्न दूसरे क्रम के प्रभावों के कारण, वास्तविक एकता लाभ आवृत्ति केवल 1 मेगाहर्ट्ज है, व्यवहार में, 1 एवं 2 मेगाहर्ट्ज के मध्य का अंतर महत्वहीन है।[18]

ICA VCA की निर्धारित दरें एवं VREF का निपटान समय निर्दिष्ट नहीं हैं। टेक्सस उपकरण के अनुसार, पावर-ऑन क्षणिक लगभग 2 μs तक रहता है। प्रारंभ में, VCA तीव्रता से ≈2 V तक बढ़ जाता है, एवं तत्पश्चात इस स्तर पर लगभग 1 μs के लिए लॉक हो जाता है। आंतरिक कैपेसिटेंस को स्थिर-अवस्था धारा में चार्ज करने में 0.5-1 μs अधिक लगता है।[19]

कैपेसिटिव कैथोड लोड (CL) अस्थिरता एवं दोलन का कारण बन सकता है।[20] मूल डेटाशीट में प्रकाशित स्थिरता सीमा चार्ट के अनुसार, सी होने पर टीएल431 कदापि स्थिर है, जब CL या तो 1 nF से अर्घ्य है, या 10 μF से अधिक है।[21][22] 1 nF-10 μF रेंज के अंदर दोलन की संभावना कैपेसिटेंस ICA एवं VCA के संयोजन पर निर्भर करती है,[21][22] सबसे निकृष्ट स्थिति निम्न ICA एवं VCA पर होती है। इसके विपरीत, उच्च ICA एवं उच्च VCA, का संयोजन जब टीएल431 अपनी अधिकतम अपव्यय रेटिंग के निकट संचालित होता है, तो कदापि स्थिर होता है।[22] चूंकि, उच्च ICA एवं उच्च VCA के लिए डिज़ाइन किया गया नियामक भी पावर-ऑन पर दोलन कर सकता है, जब VCA अभी तक स्थिर अवस्था के स्तर तक नहीं पहुंचा है।[21]2014 के आवेदन नोट में, टेक्सास उपकरण ने स्वीकार किया कि उनके स्थिरता सीमा चार्ट अनुचित रूप से आशावादी हैं।[22] वे शून्य चरण मार्जिन पर विशिष्ट IC नमूने का वर्णन करते हैं; व्यवहार में, ठोस डिज़ाइनों को अर्घ्य से अर्घ्य 30 डिग्री चरण अंतर का लक्ष्य रखना चाहिए।[22] सामान्यतः, कैथोड एवं लोड कैपेसिटेंस के मध्य श्रृंखला प्रतिरोध डालना, पश्चात के समतुल्य श्रृंखला प्रतिरोध को प्रभावी रूप से बढ़ाना, अवांछित दोलनों को दबाने के लिए पर्याप्त है। श्रृंखला प्रतिरोध अपेक्षाकृत अर्घ्य आवृत्ति पर अर्घ्य आवृत्ति वाले शून्य एवं ध्रुव का परिचय देता है, जो अकेले लोड कैपेसिटेंस के कारण होने वाले अधिकांश अवांछित चरण अंतराल को रद्द कर देता है। श्रृंखला प्रतिरोधकों का न्यूनतम मान 1 ओम (उच्च CL) एवं 1 कोहम (अर्घ्य CL, उच्च VCA) के मध्य होता है।[23]

अनुप्रयोग

रैखिक नियामक

मूल रैखिक नियामक विन्यास, चौथे सर्किट को कम-ड्रॉपआउट ऑपरेशन के लिए अतिरिक्त सकारात्मक विद्युत आपूर्ति धारा, ΔU की आवश्यकता होती है। श्रृंखला अवरोधक आरए गेट कैपेसिटेंस से टीएल431 को भिन्न करता है।

सबसे सरल टीएल431 रेगुलेटर सर्किट कैथोड में नियंत्रण इनपुट को अल्प करके बनाया गया है। परिणामी दो-टर्मिनल नेटवर्क में ज़ेनर डायोड जैसी वर्तमान-धारा विशेषता होती है, जिसमें स्थिर थ्रेशोल्ड धारा VREF≈2.5 V, एवं लगभग 0.2 ओम की अर्घ्य आवृत्ति प्रतिबाधा होती है।[24] प्रतिबाधा लगभग 100 किलोहर्ट्ज़ पर बढ़ने लगती है एवं लगभग 10 मेगाहर्ट्ज पर 10 ओम तक पहुंच जाती है।[24]

2.5 V से अधिक धारा के विनियमन के लिए बाहरी धारा विभक्त की आवश्यकता होती है। डिवाइडर रेसिस्टर्स R2 एवं R1 के साथ, कैथोड धारा एवं आउटपुट प्रतिबाधा 1+R2/R1 गुना बढ़ जाती है।[25] अधिकतम निरंतर, विनियमित धारा 36 V से अधिक नहीं हो सकता, अधिकतम कैथोड-एनोड धारा 37 V तक सीमित है।[26] ऐतिहासिक रूप से, टीएल431 को इस एप्लिकेशन को ध्यान में रखते हुए डिजाइन एवं निर्मित किया गया था, एवं इसे उच्च व्यय, तापमान-क्षतिपूर्ति वाले जेनर के लिए अत्यधिक आकर्षक प्रतिस्थापन के रूप में विज्ञापित किया गया था।[27]

एमिटर अनुयायी जोड़ने से शंट रेगुलेटर श्रृंखला रेगुलेटर में परिवर्तित हो जाता है। दक्षता औसत श्रेणी की है क्योंकि एकल एनपीएन-प्रकार ट्रांजिस्टर या डार्लिंगटन ट्रांजिस्टर को अत्यधिक उच्च कलेक्टर-एमिटर धारा ड्रॉप की आवश्यकता होती है।[28] एकल सामान्य-उत्सर्जक पीएनपी-प्रकार ट्रांजिस्टर केवल ≈0.25 वी धारा ड्रॉप के साथ, किन्तु अव्यवहारिक रूप से उच्च आधार धाराओं के साथ, संतृप्ति मोड में उचित रूप से कार्य कर सकता है।[29] पीएनपी-प्रकार ट्रांजिस्टर को अधिक ड्राइव करंट की आवश्यकता नहीं होती है, किन्तु इसके लिए कम से कम 1 V धारा ड्रॉप की आवश्यकता होती है।[29] एन-चैनल पावर मोसफेट डिवाइस कम ड्राइव करंट, अधिक कम ड्रॉपआउट धारा एवं स्थिरता का सर्वोत्तम संयोजन सक्षम करता है।[29] चूंकि, कम-ड्रॉपआउट मोसफेट ऑपरेशन के लिए मोसफेट गेट को चलाने के लिए संचलाने के लिए एक अतिरिक्त हाई-साइड वोल्टेज स्रोत (योजनाबद्ध में ΔU) की आवश्यकता होती है।[29] यदि कमी मोड मोसफेट का उपयोग किया जाता है, तो ΔU को रोका जा सकता है।

टीएल431 का उपयोग करने वाले संवृत-लूप नियामक सर्किट को सदैव उच्च ट्रांसकंडक्टेंस मोड में संचालित करने के लिए डिज़ाइन किया गया है, जिसमें ICA 1mA (वर्तमान-धारा वक्र पर बिंदु D) से कम नहीं है।[3][2][4] उत्तम नियंत्रण लूप स्थिरता के लिए, इष्टतम ICA इसे लगभग 5 mA पर सेट किया जाना चाहिए, चूंकि इससे समग्र दक्षता प्रभावित हो सकती है।[30][2]

स्विच्ड-मोड विद्युत आपूर्ति

एसएमपीएस में टीएल431 का विशिष्ट उपयोग। शंट रेसिस्टर R3 न्यूनतम टीएल431 करंट बनाए रखता है, सीरीज रेसिस्टर R4 फ्रीक्वेंसी कंपंसेशन नेटवर्क (C1R4) का हिस्सा है[31][32]

21वे दशक में, ऑप्टो आइसोलेटर के प्रकाश उत्सर्जक डायोड (LED) से सुसज्जित टीएल431, विनियमित स्विच-मोड विद्युत आपूर्ति (एसएमपीएस) के लिए वास्तविक प्रौद्योगिकी मानक समाधान है।[8][4][9] टीएल431 के नियंत्रण इनपुट को चलाने वाला प्रतिरोधक धारा विभक्त, एवं एलईडी का कैथोड सामान्य रूप से नियामक के आउटपुट से जुड़ा होता है। ऑप्टोकॉप्लर का फोटोट्रांजिस्टर पल्स चौड़ाई उतार - चढ़ाव (पीडब्लूएम) नियंत्रक के नियंत्रण इनपुट से जुड़ा हुआ है।[33] रोकनेवाला R3 (लगभग 1 कोहम), एलईडी को शंट करते हुए, ICA 1 mA सीमा से ऊपर रखने में सहायता करता है ।[33] लैपटॉप के साथ आपूर्ति की जाने वाली विशिष्ट विद्युत आपूर्ति/चार्जर में, औसत ICA लगभग 1.5 mA पर सेट किया गया है, जिसमें 0.5 mA LED करंट एवं 1 mA शंट करंट (2012 डेटा) सम्मिलित होता है।[2]

टीएल431 के साथ स्थिर, कुशल एवं स्थिर SMPS का डिज़ाइन सामान्य किन्तु समष्टि कार्य है।[34] सबसे सरल संभव कॉन्फ़िगरेशन में, आवृत्ति क्षतिपूर्ति जोड़नेवाला C1R4 द्वारा बनाए रखा जाता है।[34] इस स्पष्ट क्षतिपूर्ति नेटवर्क के अतिरिक्त, नियंत्रण लूप की आवृत्ति प्रतिक्रिया आउटपुट चौरसाई संधारित्र, टीएल431 एवं फोटोट्रांसिस्टर की परजीवी कैपेसिटेंस से प्रभावित होती है।[35] टीएल431 नहीं, अन्यथा दो नियंत्रण लूपों द्वारा नियंत्रित होता है, मुख्य, मंद लेन लूप धारा डिवाइडर के साथ आउटपुट कैपेसिटर से जुड़ा होता है, एवं माध्यमिक फास्ट लेन एलईडी के साथ आउटपुट रेल से जुड़ा होता है।[36] एलईडी की अधिक कम प्रतिबाधा से भरी आईसी, वर्तमान स्रोत के रूप में कार्य करती है। अवांछनीय तरंग (विद्युत) आउटपुट रेल से कैथोड तक लगभग बिना किसी बाधा के निकलता है।[36] यह तीव्र लेन मध्य-बैंड आवृत्तियों (लगभग 10 किलोहर्ट्ज़-1 मेगाहर्ट्ज) पर आच्छादित है,[37] एवं सामान्यतः जेनर डायोड या कम-पास फ़िल्टर के साथ आउटपुट कैपेसिटर से एलईडी को भिन्न करने से टूट जाता है।[38] [37]

धारा तुलनित्र

बेसिक फिक्स्ड-थ्रेसहोल्ड तुलनित्र एवं इसके डेरिवेटिव - सरल समय विलंब रिले एवं कैस्केड विंडो मॉनिटर, तीव्रता से टर्न-ऑफ क्षणिक सुनिश्चित करने के लिए, लोड रेसिस्टर आरएल को कम से कम 5 एमए का ऑन-स्टेट करंट प्रदान करना चाहिए[39]

सबसे सरल टीएल431-आधारित तुलनित्र सर्किट को ICA को को लगभग 5 mA तक सीमित करने के लिए एकल बाहरी अवरोधक की आवश्यकता होती है।[39] लंबे समय तक टर्न-ऑफ क्षणिक होने के कारण कम धाराओं पर संचालन अवांछनीय है।[39] टर्न-ऑन विलंब अधिकतर इनपुट एवं थ्रेशोल्ड धारा (ओवरड्राइव धारा) के मध्य अंतर पर निर्भर करता है, उच्च ओवरड्राइव टर्न-ऑन प्रक्रिया को गति देता है।[39] इष्टतम क्षणिक गति 10% (≈250 mv) ओवरड्राइव एवं 10 kOhm या उससे कम के स्रोत प्रतिबाधा पर प्राप्त की जाती है।[39]

ऑन-स्टेट VCA लगभग 2 V तक गिर जाता है, जो 5 V विद्युत आपूर्ति के साथ ट्रांजिस्टर-लॉजिक (TTL) एवं CMOS लॉजिक गेट के साथ संगत है।[40] लो-धारा CMOS (जैसे 3.3 V या 1.8 V लॉजिक) के लिए प्रतिरोधक धारा डिवाइडर के साथ लेवल शिफ्टर की आवश्यकता होती है,[40] या टीएल431 को टीएलवी431 जैसे कम-धारा विकल्प के साथ से परिवर्तित करनी होती है।[41]

टीएल431-आधारित तुलनित्र एवं इनवर्टर को रिले तर्क के नियमों का पालन करते हुए सरलता से कैस्केड किया जा सकता है। उदाहरण के लिए, दो-चरणीय विंडो धारा मॉनीटर तब प्रारम्भ होगा (उच्च-स्थिति से निम्न-स्थिति आउटपुट पर स्विच करना) जब

,[42]

उसे उपलब्ध कराया से बड़ा है जिससे दो ट्रिप धारा के मध्य का विस्तार पर्याप्त व्यापक हो।[42]

अनिर्दिष्ट मोड

2010 तक, यह अपने आप करो पत्रिकाओं ने कई ऑडियो एम्पलीफायर डिज़ाइन प्रकाशित किए, जिन्होंने टीएल431 को धारा गेन डिवाइस के रूप में नियोजित किया।[43]अत्यधिक नकारात्मक प्रतिक्रिया एवं कम लाभ के कारण अधिकांश पूर्णतः असफल रहे।[43]ओपन-लूप गैर-रैखिकता को कम करने के लिए फीडबैक आवश्यक है, किन्तु, टीएल431 के सीमित ओपन-लूप लाभ को देखते हुए,[44] किसी भी व्यावहारिक प्रतिक्रिया स्तर के परिणामस्वरूप अव्यवहारिक रूप से कम संवृत-लूप लाभ होता है।[43]इन एम्पलीफायरों की स्थिरता भी वांछित होने के लिए अधिक कुछ त्याग देती है।[43] स्वाभाविक रूप से अस्थिर टीएल431 कुछ kHz से 1.5 मेगाहर्ट्ज तक की आवृत्तियों के लिए धारा-नियंत्रित ऑसिलेटर के रूप में कार्य कर सकता है।[45]ऐसे थरथरानवाला की आवृत्ति रेंज एवं नियंत्रण कानून दृढ़ता से उपयोग किए गए टीएल431 के विशेष निर्माण पर निर्भर करता है।[45]विभिन्न निर्माताओं द्वारा बनाए गए चिप्स सामान्यतः विनिमेय नहीं होते हैं।[45]टीएल431 की जोड़ी 1 हर्ट्ज से लेकर लगभग 50 किलोहर्ट्ज़ तक की आवृत्तियों के लिए सममित मल्टीवाइब्रेटर में ट्रांजिस्टर को प्रतिस्थापित कर सकती है।[46]यह, तत्पश्चात अनिर्दिष्ट एवं संभावित रूप से असुरक्षित मोड है, जिसमें आवधिक कैपेसिटर चार्ज धाराएं इनपुट चरण सुरक्षा डायोड (योजनाबद्ध टी 2) के माध्यम से प्रवाहित होती हैं।[46]


वेरिएंट, क्लोन एवं डेरिवेटिव

TL431

द्वारा STM इक्रोइलेक्ट्रॉनिक्स और KA431 by अर्धचालक पर, दोनों में थ्रू-होल तो-92

संकुल
डाइस मूल टीआई बायीं ओर मर जाता है। प्रत्येक पासे में सबसे बड़ा चमकीला क्षेत्र क्षतिपूर्ति संधारित्र है; पास में बड़ी कंघी जैसी संरचना आउटपुट ट्रांजिस्टर है। "अनावश्यक" संपर्क पैडका उपयोग VREF निम्न से पूर्व [[एकीकृत सर्किट] से पूर्व के परीक्षण और चरणबद्ध समायोजन के लिए किया जाता है।]][47]

विभिन्न निर्माताओं द्वारा टीएल431 के रूप में विपणन किए गए या KA431 या TS431 जैसे समान पदनाम वाले एकीकृत सर्किट, टेक्सस उपकरण मूल से अत्यधिक भिन्न हो सकते हैं। कभी-कभी अंतर केवल अनिर्दिष्ट मोड में परीक्षण द्वारा ही प्रकट किया जा सकता है; कभी-कभी इसे डेटाशीट में सार्वजनिक रूप से घोषित किया जाता है। उदाहरण के लिए, विषय टीएल431 में असामान्य रूप से उच्च (लगभग 75 db) DC धारा लाभ है, जो 100 हर्ट्ज पर लुढ़कना प्रारम्भ हो जाता है; 10 किलोहर्ट्ज़ से अधिक आवृत्तियों पर लाभ मानक पर वापस आ जाता है एवं मानक 1 मेगाहर्ट्ज आवृत्ति पर ता तक पहुँच जाता है।[16] SG6105 SMPS नियंत्रक में टीएल431 के रूप में चिह्नित दो स्वतंत्र नियामक सम्मिलित हैं, किन्तु उनकी अधिकतम ICA एवं VCA क्रमशः केवल 16 V एवं 30 mA हैं; निर्माता परिशुद्धता के लिए इन नियामकों का परीक्षण नहीं करता है।[48] अप्रचलित TL430, टीएल431 की असुन्दर बहन थी, जिसे टेक्सस उपकरण द्वारा केवल थ्रू-होल पैकेज में निर्मित किया गया था, एवं इसमें 2.75 V का VREF था। इसके बैंडगैप संदर्भ को थर्मल रूप से क्षतिपूर्ति नहीं दिया गया था, एवं टीएल431 की तुलना में कम सटीक था, आउटपुट चरण में कोई सुरक्षा डायोड नहीं था।[49][50] टीएल432 विद्युत रूप से टीएल431 के समान है, केवल सतह-माउंट पैकेज में निर्मित होता है, एवं भिन्न पिनआउट होता है।[14]

2015 में, टेक्सस उपकरण ने ATL431 की घोषणा की, जो अधिक उच्च दक्षता वाले स्विच-मोड नियामकों के लिए TL431 का उत्तम व्युत्पन्न है।[51] अनुशंसित न्यूनतम ऑपरेटिंग करंट केवल 35 μA (मानक टीएल431: 1 mA) है; अधिकतम ICA एवं VCA मानक (100 mA एवं 36 V) के समान हैं।[52] उच्च आवृत्ति तरंगों को कम करने के लिए एकता लाभ आवृत्ति को 250 kHz तक कम कर दिया जाता है, जिससे वे नियंत्रक को वापस फ़ीड न हों। ATL431 का अस्थिरता क्षेत्र अधिक भिन्न है।[52] कम धारा एवं धाराओं पर यह किसी भी व्यावहारिक कैपेसिटिव लोड के साथ कदापि स्थिर है, कैपेसिटर उच्च गुणवत्ता वाले, कम-प्रतिबाधा प्रकार के हों।[53][54] श्रृंखला डिकॉउलिंग अवरोधक का न्यूनतम अनुशंसित मान 250 ओम (मानक टीएल431: 1 ओम) है।[55]

टीएल431 एवं उसके वंशजों के अतिरिक्त, 2015 तक, केवल दो शंट नियामक IC को उद्योग में व्यापक उपयोग मिला।[56] दोनों प्रकारों में समान कार्यक्षमता एवं अनुप्रयोग हैं, किन्तु विभिन्न आंतरिक सर्किट, विभिन्न संदर्भ स्तर, अधिकतम धाराएं एवं धारा:[56]

  • टेक्सस उपकरण के द्विध्रुवी LMV431 में 1.24 V का VREF है एवं 80 μA से 30 mA तक की धारा पर 30 V तक धारा को विनियमित करने में सक्षम है।[57][58]
  • ON अर्धचालक द्वारा लो-धारा CMOS NCP100 में 0.7 V का VREF है एवं यह100 μA से 20 mA तक की धारा पर 6 V तक धारा को विनियमित करने में सक्षम है।[59][60]


संदर्भ

  1. Jump up to: 1.0 1.1 1.2 1.3 Basso 2012, p. 384.
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 Basso 2012, p. 388.
  3. Jump up to: 3.0 3.1 Texas Instruments 2015, p. 19.
  4. Jump up to: 4.0 4.1 4.2 Brown 2001, p. 78.
  5. Jump up to: 5.0 5.1 5.2 5.3 5.4 Texas Instruments 2015, pp. 20–21.
  6. Jump up to: 6.0 6.1 Basso 2012, pp. 383, 385–386.
  7. Jump up to: 7.0 7.1 7.2 7.3 7.4 7.5 Basso 2012, p. 387.
  8. Jump up to: 8.0 8.1 Basso 2012, p. 383.
  9. Jump up to: 9.0 9.1 Zhanyou Sha 2015, p. 154.
  10. Jump up to: 10.0 10.1 10.2 Texas Instruments 2015, p. 20.
  11. Zamora 2018, p. 4.
  12. Jump up to: 12.0 12.1 Texas Instruments 2015, p. 14.
  13. Jump up to: 13.0 13.1 Texas Instruments 2015, pp. 5–13.
  14. Jump up to: 14.0 14.1 Texas Instruments 2015, p. 1.
  15. Camenzind 2005, pp. 7–5, 7–6, 7–7.
  16. Jump up to: 16.0 16.1 16.2 16.3 16.4 Tepsa & Suntio 2013, p. 94.
  17. Basso 2012, pp. 383, 387.
  18. Jump up to: 18.0 18.1 Schönberger 2012, p. 4.
  19. Texas Instruments 2015, p. 25.
  20. Michallick 2014, p. 1.
  21. Jump up to: 21.0 21.1 21.2 Taiwan Semiconductor (2007). "TS431 Adjustable Precision Shunt Regulator" (PDF). Taiwan Semiconductor Datasheet: 3.
  22. Jump up to: 22.0 22.1 22.2 22.3 22.4 Michallick 2014, p. 2.
  23. Michallick 2014, pp. 3–4.
  24. Jump up to: 24.0 24.1 Texas Instruments 2015, pp. 5–13, 16.
  25. Texas Instruments 2015, p. 24.
  26. Texas Instruments 2015, p. 4.
  27. Pippinger & Tobaben 1985, p. 6.22.
  28. Dubhashi 1993, p. 211.
  29. Jump up to: 29.0 29.1 29.2 29.3 Dubhashi 1993, p. 212.
  30. Tepsa & Suntio 2013, p. 93.
  31. Basso 2012, p. 393.
  32. Ridley 2005, pp. 1, 2.
  33. Jump up to: 33.0 33.1 Basso 2012, pp. 388, 392.
  34. Jump up to: 34.0 34.1 Ridley 2005, p. 2.
  35. Ridley 2005, p. 3.
  36. Jump up to: 36.0 36.1 Basso 2012, pp. 396–397.
  37. Jump up to: 37.0 37.1 Ridley 2005, p. 4.
  38. Basso 2012, pp. 397–398.
  39. Jump up to: 39.0 39.1 39.2 39.3 39.4 Texas Instruments 2015, p. 22.
  40. Jump up to: 40.0 40.1 Texas Instruments 2015, p. 23.
  41. Rivera-Matos & Than 2018, p. 1.
  42. Jump up to: 42.0 42.1 Rivera-Matos & Than 2018, p. 3.
  43. Jump up to: 43.0 43.1 43.2 43.3 Field, Ian (2010). "इलेक्ट्रेट माइक बूस्टर". Elektor (7): 65–66. Archived from the original on 2020-06-15. Retrieved 2020-07-04.
  44. The theoretical DC gain of a silicon bipolar transistor, equal to the product of Early voltage and thermal voltage, is usually in the range of 3000-6000, or 20 dB higher than that of TL431.
  45. Jump up to: 45.0 45.1 45.2 Ocaya, R. O. (2013). "VCO using the TL431 reference". EDN Network (10). Archived from the original on 2018-11-04. Retrieved 2020-07-04.
  46. Jump up to: 46.0 46.1 Clément, Giles (2009). "TL431 Multivibrator". Elektor (July/August): 40–41. Archived from the original on 2020-06-15. Retrieved 2020-07-04.
  47. "Reverse-engineering the TL431: the most common chip you've never heard of". Ken Shiriff. 2014-05-26. Archived from the original on 2020-06-22. Retrieved 2020-07-04.
  48. System General (2004). "SG6105 Power Supply Supervisor + Regulator + PWM" (PDF). System General Product Specification (7): 1, 5, 6. Archived (PDF) from the original on 2020-09-14. Retrieved 2020-07-04.
  49. Texas Instruments (2005). "TL430 Adjustable Shunt Regulator" (PDF). Texas Instruments Datasheet (SLVS050D). Archived (PDF) from the original on 2020-06-20. Retrieved 2020-07-04.
  50. Pippinger & Tobaben 1985, p. 6.21.
  51. Leverette 2015, p. 2.
  52. Jump up to: 52.0 52.1 Leverette 2015, p. 3.
  53. Leverette 2015, p. 4.
  54. Texas Instruments 2016, pp. 7, 8.
  55. Texas Instruments 2016, p. 17.
  56. Jump up to: 56.0 56.1 Zhanyou Sha 2015, p. 153.
  57. Zhanyou Sha 2015, p. 157.
  58. "LMV431x Low-Voltage (1.24-V) Adjustable Precision Shunt Regulators" (PDF). Texas Instruments. 2014. Archived (PDF) from the original on 2020-06-20. Retrieved 2020-07-04.
  59. Zhanyou Sha 2015, p. 155.
  60. "NCP100: Sub 1.0 V Precision Adjustable Shunt Regulator" (PDF). ON Semiconductor. 2009. Archived (PDF) from the original on 2020-06-21. Retrieved 2020-07-04.


ग्रन्थसूची

पुस्तकें एवं पत्रिकाएँ

कॉर्पोरेट प्रकाशन

श्रेणी:रैखिक ीकृत सर्किट श्रेणी:टेक्सास उपकरण श्रेणी:1977 परिचय