डिजर्मेन

From Vigyanwiki

डिजर्मे एक अकार्बनिक यौगिक है जिसका रासायनिक सूत्र Ge 2H6 है। जर्मेनियम के कुछ हाइड्राइड्स में से एक, यह एक रंगहीन द्रव है। इसकी आणविक ज्यामिति एथेन के समान है।[1]


संश्लेषण

1924 में डेनिस, कोरी और मूर द्वारा डिजर्मेनको पहली बार संश्लेषित और जांचा गया था। उनकी विधि में हाइड्रोक्लोरिक अम्ल का उपयोग करके मैग्नीशियम जर्मेनाइड का जल अपघटन सम्मिलित है।[2] अगले दशक में इलेक्ट्रॉन विवर्तन अध्ययनों का उपयोग करते हुए डिजर्मेन और ट्राइजर्मेन के कई गुण निर्धारित किए गए थे।[3] यौगिक के आगे के विचारों में पायरोलिसिस और ऑक्सीकरण जैसी विभिन्न अभिक्रियाओं की परीक्षा सम्मिलित है।

सोडियम बोरोहाइड्राइड के साथ जर्मेनियम डाइऑक्साइड के अपचयन से जर्मेन के साथ डिजर्मेन का उत्पादन होता है। यद्यपि प्रमुख उत्पाद जर्मेन है, ट्राइजर्मेन के निशान के अतिरिक्त डिजर्मेन की एक मात्रात्मक मात्रा का उत्पादन किया जाता है।[4] यह मैग्नीशियम-जर्मेनियम मिश्र धातुओं के जल अपघटन से भी उत्पन्न होता है।[5]


अभिक्रियाएं

डिजर्मेनकी अभिक्रियाएं समूह 14 तत्वों कार्बन और सिलिकॉन के समान यौगिकों के बीच कुछ अंतर दर्शाती हैं। यद्यपि, अभी भी , विशेष रूप से पायरोलिसिस अभिक्रियाओं के संबंध में कुछ समानताएँ देखी जा सकती हैं।

डिगरमेन का ऑक्सीकरण मोनोगेरमेन की तुलना में कम तापमान पर होता है। अभिक्रिया का उत्पाद, जर्मेनियम ऑक्साइड, बदले में अभिक्रिया के उत्प्रेरक के रूप में कार्य करने के लिए दिखाया गया है। यह जर्मेनियम और अन्य समूह 14 तत्वों कार्बन और सिलिकॉन (कार्बन डाइऑक्साइड और सिलिकॉन डाइऑक्साइड समान उत्प्रेरक गुणों का प्रदर्शन नहीं करते) के बीच मूलभूत अंतर का उदाहरण देता है।[6]

2 Ge2H6 + 7O2 → 4 GeO2 + 6H2O

द्रव अमोनिया में, डिजर्मेनअनुपातहीनता से गुजरता है। अमोनिया एक दुर्बल क्षारीय उत्प्रेरक के रूप में कार्य करता है। अभिक्रिया के उत्पाद हाइड्रोजन, जर्मेन और एक ठोस बहुलक जर्मेनियम हाइड्राइड हैं।[7]

डिजर्मेनके पायरोलिसिस के लिए कई चरणों को पालन करने का प्रस्ताव है:

Ge2H6 → 2 GeH3
GeH3 + Ge2H6 → GeH4 + Ge2H5
Ge2H5 → GeH2 + GeH3
GeH2 →Ge+ H2
2GeH2 → GeH4 + Ge
nGeH2 → (GeH2)n

यह पाइरोलिसिस डिसिलेन के पायरोलिसिस की तुलना में अधिक ऊष्माशोषी पाया गया है। इस अंतर को Ge-H बंध विरुद्ध Si-H बंध की अधिक शक्ति के लिए उत्तरदायी ठहराया गया है। जैसा कि ऊपर तंत्र की अंतिम अभिक्रिया में देखा गया है, डिजर्मेनकी पायरोलिसिस GeH2 समूह के बहुलकीकरण को प्रेरित कर सकती है, जहां GeH3 एक श्रृंखला प्रसारक के रूप में कार्य करता है और आणविक हाइड्रोजन गैस निकलती है।[8] सोने पर डिजर्मेनके डीहाइड्रोजनीकरण से जर्मेनियम नैनोवायर का निर्माण होता है।[9]

डिजर्मेनGeH3−GH2−E−CF3 का अग्रदूत है, जहाँ E या तो सल्फर या सेलेनियम है। इन ट्राइफ्लोरोमेथिलथियो (−S−CF3)और ट्राइफ्लोरोमेथिलसेलेनो (−Se−CF3) व्युत्पन्न में डिजर्मेनकी तुलना में एक उल्लेखनीय उच्च तापीय स्थिरता है।[10]

अनुप्रयोग

डिजर्मेनके पास सीमित संख्या में अनुप्रयोग हैं; जर्मेन ही पसंदीदा वाष्पशील जर्मेनियम हाइड्राइड है। सामान्यतः, विभिन्न अनुप्रयोगों में उपयोग के लिए मुख्य रूप से जर्मेनियम के अग्रदूत का उपयोग किया जाता है। डिजर्मेनरासायनिक वाष्प जमाव के माध्यम से Ge-युक्त अर्धचालकों को जमा करने के लिए इस्तेमाल किया जा सकता है।[11]

संदर्भ

  1. Pauling, Linus; Laubengayer, A. W.; Hoard, J. L. (1938). "डिगरमैन और ट्राइगरमैन का इलेक्ट्रॉन विवर्तन अध्ययन". Journal of the American Chemical Society. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
  2. Dennis, L.M.; Corey, R. B.; Moore, R.W. (1924). "जर्मेनियम। सातवीं। जर्मेनियम के हाइड्राइड्स". J. Am. Chem. Soc. 46 (3): 657–674. doi:10.1021/ja01668a015.
  3. Pauling, L.; Laubengayer, A.W.; Hoard, J.L. (1938). "डिगरमैन और ट्राइगरमैन का इलेक्ट्रॉन विवर्तन अध्ययन". J. Am. Chem. Soc. 60 (7): 1605–1607. doi:10.1021/ja01274a024.
  4. Jolly, William L.; Drake, John E. (1963). जर्मेनियम, टिन, आर्सेनिक और एंटीमनी के हाइड्राइड्स. Inorganic Syntheses. Vol. 7. pp. 34–44. doi:10.1002/9780470132388.ch10. ISBN 9780470132388.
  5. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  6. Emeleus, H.J.; Gardner, E.R. "मोनोगर्मेन और डिगरमैन का ऑक्सीकरण". J. Chem. Soc. 1938: 1900–1909. doi:10.1039/jr9380001900.
  7. Dreyfuss, R.M.; Jolly, W.L. (1968). "तरल अमोनिया में डिगरमेन का अनुपातहीनता". Inorganic Chemistry. 7 (12): 2645–2646. doi:10.1021/ic50070a037.
  8. Johnson, O.H. (1951). "जर्मन और उनके ऑर्गनो डेरिवेटिव". Chem. Rev. 48 (2): 259–297. doi:10.1021/cr60150a003. PMID 24540662.
  9. Gamalski, A.D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. (2010). "जर्मेनियम नैनोवायरों के सब्यूटेक्टिक विकास के दौरान मेटास्टेबल तरल उत्प्रेरक का गठन". Nano Lett. 10 (8): 2972–2976. Bibcode:2010NanoL..10.2972G. doi:10.1021/nl101349e. PMID 20608714.
  10. Holmes-Smith, R.D.; Stobart, S.R. (1979). "जर्मेन और डिगरमैन के ट्राइफ्लोरोमेथिलथियो और ट्राइफ्लोरोमेथिलसेलेनो डेरिवेटिव". Inorg. Chem. 18 (3): 538–543. doi:10.1021/ic50193a002.
  11. Xie, J.; Chizmeshya, A.V.G.; Tolle, J.; D'Costa, V.R.; Menendez, J.; Kouventakis, J. (2010). "Si-Ge-Sn सेमीकंडक्टर का संश्लेषण, स्थिरता रेंज और मौलिक गुण सीधे Si (100) और Ge (100) प्लेटफॉर्म पर विकसित होते हैं". Chemistry of Materials. 22 (12): 3779–3789. doi:10.1021/cm100915q.