तापीय द्रव्यमान

From Vigyanwiki
तापीय द्रव्यमान का लाभ इस तुलना में दिखाया गया है कि कैसे भारी और हल्के भार के निर्माण आंतरिक तापमान को प्रभावित करते हैं

भवन के डिजाइन में, तापीय द्रव्यमान भवन के द्रव्यमान का एक गुण है जो इसे ताप को संग्रहीत करने और तापमान में उच्चावचन के विरुद्ध तापीय जड़ता प्रदान करने में सक्षम बनाता है। इसे कभी-कभी तापीय संचयन प्रभाव के रूप में जाना जाता है।[1] ऊर्जा कुशल भवनों को बनाने के लिए भारी संरचनात्मक तत्वों के तापीय द्रव्यमान को निर्माण के हल्के तापीय प्रतिरोध घटकों के साथ कार्य करने के लिए डिज़ाइन किए जा सकतेहै।

उदाहरण के लिए, जब बाहर के तापमान में दिवस भर उच्चावचन होता रहता है, तो घर के ऊष्मारोधी भाग के भीतर बड़ा तापीय द्रव्यमान दैनिक तापमान में उच्चावचन को समतल करने का कार्य कर सकता है, क्योंकि तापीय द्रव्यमान तापीय ऊर्जा को अवशोषित कर लेगा, जब निकट के तापमान की तुलना में तापमान अधिक होगा। द्रव्यमान, और ऊष्मीय ऊर्जा वापस दें जब परिवेश शीत हो, बिना तापीय संतुलन तक पहुंचे। यह पदार्थ के तापीय रोधन मान से अलग है, जो भवन की तापीय चालकता को कम करते है, जिससे इसे बाहर से अपेक्षाकृत अलग से उष्ण या शीत किया जा सकता है, या यहां तक ​​​​कि रहने वालों की तापीय ऊर्जा को लंबे समय तक बनाए रखा जा सकता है।

वैज्ञानिक रूप से, तापीय द्रव्यमान ऊष्मा धारिता या तापीय संधारिता के बराबर है, तापीय ऊर्जा को संग्रहीत करने के लिए निकाय की क्षमता। इसे सामान्यतः प्रतीक Cth द्वारा संदर्भित किया जाता है,और इसकी SI इकाई J/°C या J/K (जो समतुल्य हैं) है। तापीय द्रव्यमान का उपयोग जल, मशीनों या मशीन के भागों, जीवित वस्तुओं, या किसी अन्य संरचना या इंजीनियरिंग या जीव विज्ञान में निकाय के लिए भी किए जा सकतेहै। उन संदर्भों में, ताप क्षमता शब्द का सामान्यतः इसके अतिरिक्त उपयोग किया जाता है।

पृष्ठभूमि

ऊष्मीय ऊर्जा का तापीय द्रव्यमान से संबंधित समीकरण है:

जहां Q स्थानांतरित तापीय ऊर्जा है, Cth निकाय का ऊष्मीय द्रव्यमान है, और ΔT तापमान में परिवर्तन है।

उदाहरण के लिए, यदि 38.46 J/°C के तापीय द्रव्यमान वाले तांबे के गियर में 250 J ऊष्मा ऊर्जा जोड़ी जाती है, तो इसका तापमान 6.50 °C बढ़ जाएगा। यदि निकाय में पर्याप्त रूप से ज्ञात भौतिक गुणों के साथ सजातीय पदार्थ होती है, तो तापीय द्रव्यमान उस पदार्थ की विशिष्ट ताप क्षमता के वर्तमान समय में पदार्थ का द्रव्यमान होता है। कई पदार्थों से बने निकायों के लिए, उनके शुद्ध घटकों के लिए ताप क्षमता का योग गणना में उपयोग किया जा सकता है, या कुछ स्थितियों में (उदाहरण के लिए सभी प्राणियों के लिए) संख्या को पूरे निकाय के लिए प्रश्न में मापा जा सकता है, स्पष्ट रुप से।

एक विस्तारी गुणधर्म के रूप में, ताप क्षमता किसी वस्तु की विशेषता है; इसकी संबंधित गहन गुणधर्म विशिष्ट ताप क्षमता है, जो द्रव्यमान या मोल की संख्या जैसी पदार्थ की मात्रा के माप के रूप में व्यक्त की जाती है, जिसे पदार्थ के पूरे निकाय की ताप क्षमता देने के लिए समान इकाइयों से गुणा किया जाना चाहिए। इस प्रकार ऊष्मा क्षमता की गणना निकाय के द्रव्यमान m के उत्पाद और पदार्थ के लिए विशिष्ट ताप क्षमता c के उत्पाद के रूप में की जा सकती है, या स्थित अणुओं के मोल (इकाई) की संख्या और मोलर की विशिष्ट ताप क्षमता के उत्पाद के रूप में की जा सकती है। शुद्ध पदार्थों की तापीय ऊर्जा भंडारण क्षमताएं क्यों बदलती हैं, इसकी चर्चा के लिए विशिष्ट ताप क्षमता को प्रभावित करने वाले कारक देखें।

एकसमान संघटन वाले पिंड के लिए, को

द्वारा सन्निकटित किया जा सकता है जहाँ पिंड का द्रव्यमान है और पदार्थ की समदाबीय विशिष्ट ऊष्मा क्षमता है जिसका औसत तापमान सीमा पर है। कई अलग-अलग पदार्थों से बने पिंडों के लिए, विभिन्न घटकों के तापीय द्रव्यमान को एक साथ जोड़ा जा सकता है।

भवनों में तापीय द्रव्यमान

तापीय द्रव्यमान किसी भी स्थान पर भवन के आराम को ठीक बनाने में प्रभावी है जो इस प्रकार के दैनिक तापमान में उच्चावचन का अनुभव करते है - दोनों शीत ऋतु में और साथ ही ग्रीष्म ऋतु में। जब ठीक रूप से उपयोग किया जाता है और निष्क्रिय सौर डिजाइन के साथ जोड़े जाते है, तो तापीय द्रव्यमान एचवीएसी में ऊर्जा के उपयोग में बड़ी कमी लाने में महत्वपूर्ण भूमिका निभा सकते है। तापीय द्रव्यमान वाली पदार्थों का उपयोग सबसे अधिक लाभदायक होता है जहां दिवस से रात्रि के बाहरी तापमान में बड़ा अंतर होता है (या, जहां रात्रि का तापमान तापस्थापी निर्देश बिंदु से कम से कम 10 डिग्री शीत होता है)।[2] भारी-भार और हल्के-भार वाले शब्दों का उपयोग प्रायः विभिन्न तापीय द्रव्यमान कार्यनीतियों वाले भवनों का वर्णन करने के लिए किया जाता है, और ऊष्मा और शीतलन के लिए उनकी तापीय प्रतिक्रिया का वर्णन करने के लिए बाद की गणनाओं में उपयोग किए जाने वाले संख्यात्मक कारकों के चुनाव को प्रभावित करते है। भवन सर्विसेज इंजीनियरिंग में, गतिशील अनुकरण संगणनात्मक मॉडलिंग सॉफ़्टवेयर के उपयोग ने विभिन्न निर्माणों के साथ और विभिन्न वार्षिक जलवायु डेटा समूहों के लिए भवनों के भीतर पर्यावरणीय निष्पादन की यथार्थ गणना की अनुमति दी है। यह स्थापत्य या इंजीनियर को एचवीएसी के लिए ऊर्जा खपत को कम करने, या पूर्ण रूप से ऐसी प्रणालियों की आवश्यकता को दूर करने में भारी भार और हल्के भार के निर्माण, साथ ही रोधन स्तरों के बीच संबंधों का विस्तार से पता लगाने की अनुमति देते है।

ठीक तापीय द्रव्यमान के लिए आवश्यक गुण

तापीय द्रव्यमान के लिए आदर्श पदार्थ वे पदार्थ हैं जिनमें:

  • उच्च विशिष्ट ताप क्षमता,
  • उच्च घनत्व

द्रव्यमान वाले किसी भी ठोस, तरल या गैस में कुछ तापीय द्रव्यमान होगा। एक सामान्य मिथ्या धारणा यह है कि मात्र ठोस या मृदा की मृदा में तापीय द्रव्यमान होता है; यहाँ तक कि वायु में भी ऊष्मीय द्रव्यमान होता है (यद्यपि बहुत कम)।

निर्माण पदार्थ के लिए आयतनी ताप क्षमता की एक तालिका उपलब्ध है,[3] परन्तु ध्यान दें कि तापीय द्रव्यमान की उनकी परिभाषा किंचित् अलग है।

विभिन्न जलवायु में तापीय द्रव्यमान का प्रयोग

ऊष्मीय द्रव्यमान का उचित उपयोग और अनुप्रयोग एक जिले में प्रचलित जलवायु पर निर्भर करते है।

समशीतोष्ण और शीत समशीतोष्ण जलवायु

सौर-अनावृत तापीय द्रव्यमान

तापीय द्रव्यमान आदर्श रूप से भवन के भीतर रखा जाता है और स्थित होता है जहां यह अभी भी कम कोण वाली शीत ऋतु की सूर्यप्रकाश (खिड़कियों के माध्यम से) के संपर्क में आ सकते है परन्तु ताप की हानि से ऊष्मारोधी रहता है। ग्रीष्म ऋतु में संरचना के अति ताप को रोधन के लिए एक ही तापीय द्रव्यमान को उच्च-कोण ग्रीष्मकालीन सूर्य के प्रकाश से अस्पष्ट किया जाना चाहिए।

तापीय द्रव्यमान को निष्क्रिय रूप से सूर्य द्वारा या इसके अतिरिक्त दिवस के समय आंतरिक ताप प्रणालियों द्वारा उष्ण किया जाता है। द्रव्यमान में संग्रहीत ऊष्मीय ऊर्जा रात्रि के समय वापस आंतरिक भाग में छोड़ी जाती है। यह आवश्यक है कि इसका उपयोग निष्क्रिय सौर डिजाइन के मानक सिद्धांतों के संयोजन में किया जाए।

तापीय द्रव्यमान के किसी भी रूप का उपयोग किया जा सकता है। एक कंक्रीट शिला मूल या तो विवृत छोड़ दिया या प्रवाहकीय पदार्थ के साथ आच्छादित किया गया, उदा. टाइल्स, एक सरल उपाय है। एक और नवीन विधि लकड़ी की संरचना वाले गृह के चय विधि के अग्रभाग को भीतर ('उत्क्रम-ईंट आवरण') में रखना है। इस स्थिति में ऊष्मीय द्रव्यमान बड़ी मात्रा या मोटाई के अतिरिक्त बड़े क्षेत्र पर सबसे ठीक लगाया जाता है। 7.5–10 सेमी (3″–4″) प्रायः पर्याप्त होते है।

चूंकि तापीय ऊर्जा का सबसे महत्वपूर्ण स्रोत सूर्य है, कलप से तापीय द्रव्यमान का अनुपात विचार करने के लिए महत्वपूर्ण कारक है। इसे निर्धारित करने के लिए विभिन्न सूत्र तैयार किए गए हैं।[4] एक सामान्य नियम के रूप में, कुल तल क्षेत्र का 7% से ऊपर सौर-मुख (दक्षिणी गोलार्ध में उत्तर की ओर या उत्तरी गोलार्ध में दक्षिण की ओर) कलप के किसी भी क्षेत्र के लिए 6: 1 से 8: 1 के अनुपात में अतिरिक्त सौर-अनावृत तापीय द्रव्यमान को लागू करने की आवश्यकता होती है। उदाहरण के लिए, 200 मीटर2 के घर में 20 मीटर2 सूर्यमुखी कलप में कुल तल क्षेत्र का 10% कलप है; उस कलप के 6 मीटर2 को अतिरिक्त तापीय द्रव्यमान की आवश्यकता होगी। इसलिए, ऊपर दिए गए 6:1 से 8:1 के अनुपात का उपयोग करके, अतिरिक्त 36–48 मी2 सौर-अनावृत तापीय द्रव्यमान की आवश्यकता है। यथार्थ आवश्यकताएं जलवायु से जलवायु में भिन्न होती हैं।

ग्रीष्म ऋतु के तापमान को नियंत्रित करने में सहायता करने के लिए एक ठोस कंक्रीट के तल अध: स्तल से खिड़कियाँ विवृत करके और तापीय द्रव्यमान को अनावृत करके प्राकृतिक संवातित के साथ एक आधुनिक विद्यालय कक्षा

ताप के समय में अधिक ताप को सीमित करने के लिए तापीय द्रव्यमान

तापीय द्रव्यमान आदर्श रूप से भवन के भीतर रखा जाता है जहां इसे सीधे सौर लाभ से बचाया जाता है परन्तु भवन में रहने वालों के संपर्क में आता है। इसलिए यह सामान्यतः प्राकृतिक रूप से वायुदार या कम ऊर्जा वाले यांत्रिक रूप से वायुदार भवनों में ठोस कंक्रीट के तल के शिला से जुड़ा होता है, जहां कंक्रीट के अध: स्तल को अधिकृत स्थान के संपर्क में छोड़ दिया जाता है।

दिवस के समय सूर्य से ताप प्राप्त होती है, भवन के रहने वालों, और किसी भी विद्युत प्रकाश व्यवस्था और उपकरण से, जिससे स्थान के भीतर वायु का तापमान बढ़ जाता है, परन्तु यह ताप ऊपर अनावृत कंक्रीट शिला द्वारा अवशोषित हो जाती है, इस प्रकार तापमान में वृद्धि सीमित हो जाती है। स्थान के भीतर मानव तापीय आराम के लिए स्वीकार्य स्तर के भीतर होना चाहिए। इसके अतिरिक्त कंक्रीट शिला की निचली सतह का तापमान भी सीधे रहने वालों से विकिरण ऊष्मा को अवशोषित करते है, जिससे उनके तापीय आराम को भी लाभ होता है।

दिवस के अंत तक शिला उष्ण हो गया है, और अब, जैसे बाहरी तापमान में कमी आती है, ताप को छोड़ा जा सकता है और शिला शीत हो जाता है, अगले दिवस के प्रारंभ के लिए तैयार होते है। यद्यपि यह पुनर्जनन प्रक्रिया तभी प्रभावी होती है जब शिला से ताप दूर करने के लिए रात्रि में भवन संवातित तंत्र संचालित किया जाता है। स्वाभाविक रूप से वायुदार भवनों में इस प्रक्रिया को स्वचालित रूप से सुविधाजनक बनाने के लिए स्वचालित खिड़कियाँ विवृत करके प्रदान करना सामान्य है।

उष्ण, शुष्क जलवायु (जैसे रेगिस्तान)

सांता फ़े, न्यू मैक्सिको में एक ईंट के दीवार वाला भवन

यह ऊष्मीय द्रव्यमान का शास्त्रीय उपयोग है। उदाहरणों में सम्मिलित हैं एडोब, रेमेड पृथ्वी, या चूना पत्थर सुदृढ़ गृह। इसका कार्य चिह्नित दैनिक तापमान भिन्नताओं पर अत्यधिक निर्भर है। दीवार मुख्य रूप से दिवस के समय बाहरी से आंतरिक तक ताप हस्तांतरण को मंद करने का कार्य करती है। उच्च आयतन ताप क्षमता और मोटाई तापीय ऊर्जा को आंतरिक सतह तक पहुँचने से रोकती है। जब रात्रि में तापमान गिरता है, तो दीवारें ऊष्मीय ऊर्जा को रात्रि के आकाश में वापस विकीर्ण कर देती हैं। इस अनुप्रयोग में अंतस्थ में ताप हस्तांतरण को रोधन के लिए ऐसी दीवारों को बड़े पैमाने पर होना महत्वपूर्ण है।

उष्ण आर्द्र जलवायु (जैसे उपोष्णकटिबंधीय और उष्णकटिबंधीय)

तापीय द्रव्यमान का उपयोग इस वातावरण में सबसे आक्षेपपूर्ण है जहां रात्रि का तापमान उच्च बना रहता है। इसका उपयोग मुख्य रूप से अस्थायी ऊष्माशोषी के रूप में होते है। यद्यपि, अति ताप को रोधन के लिए इसे कार्यनीतिक रूप से स्थित होना चाहिए। इसे ऐसे क्षेत्र में रखा जाना चाहिए जो सीधे सौर लाभ के संपर्क में न हो और रात्रि में पर्याप्त संवातित (वास्तुकला) की अनुमति देते है ताकि आंतरिक तापमान को और बढ़ाए बिना संग्रहीत ऊर्जा को दूर किया जा सके। यदि उपयोग ही करना है तो इसका उपयोग विवेकपूर्ण मात्रा में किया जाना चाहिए और फिर से बड़ी मोटाई में नहीं।

सामान्यतः तापीय द्रव्यमान के लिए प्रयुक्त पदार्थ

  • जल: जल में सामान्यतः उपयोग की जाने वाली सभी पदार्थ की उच्चतम मात्रा में ऊष्मा क्षमता होती है। सामान्यतः, इसे बड़े पात्र (पात्रों), ऐक्रेलिक राल नलिकाओं में रखा जाता है, उदाहरण के लिए, सीधे सूर्यप्रकाश वाले क्षेत्र में। इसका उपयोग ताप क्षमता बढ़ाने के लिए मृदा जैसे अन्य प्रकार की पदार्थ को संतृप्त करने के लिए भी किए जा सकतेहै।
  • ठोस, मृदा की ईंटें और चय विधि के अन्य रूप: कंक्रीट की तापीय चालकता इसकी संरचना और उपचार की तकनीक पर निर्भर करती है। राख, पेर्लाइट, फाइबर और अन्य ऊष्मारोधी समुच्चय वाले कंक्रीट की तुलना में पत्थरों के साथ कंक्रीट अधिक तापीय प्रवाहकीय होते हैं। मृदु दारु काष्ठ की तुलना में कंक्रीट के तापीय द्रव्यमान गुण वार्षिक ऊर्जा लागत में 5-8% की बचत करते हैं।[5]
  • ऊष्मारोधी कंक्रीट पैनल में तापीय द्रव्यमान कारक प्रदान करने के लिए कंक्रीट की एक आंतरिक परत होती है। यह एक पारंपरिक फेनयुक्त रोधन द्वारा बाहर से ऊष्मारोधी किया जाता है और फिर कंक्रीट की बाहरी परत के साथ फिर से आच्छादित किया जाता है। प्रभाव अत्यधिक कुशल भवन रोधन आवरण है।
  • ऊष्मारोधी ठोस रूप का उपयोग सामान्यतः भवन संरचनाओं को तापीय द्रव्यमान और रोधन दोनों प्रदान करने के लिए किया जाता है। ठोस द्रव्यमान ठीक तापीय जड़ता के लिए आवश्यक विशिष्ट ताप क्षमता प्रदान करते है। पृष्ठ के किनारे या आंतरिक सतहों पर बनाई गई ऊष्मारोधी परतें ठीक तापीय प्रतिरोध प्रदान करती हैं।
  • मृदा की ईंट, कच्ची ईंट या मृदा की ईंट: ईंट और ईंट देखें।
  • पृथ्वी, मृदा और सोड: अशुद्धि की ताप क्षमता इसकी घनत्व, नमी पदार्थ, कण आकार, तापमान और संरचना पर निर्भर करती है। नेब्रास्का के प्रारंभिक निवासियों ने अशुद्धि और घास से बनी मोटी दीवारों वाले घरों का निर्माण किया क्योंकि लकड़ी, पत्थर और अन्य निर्माण पदार्थ दुर्लभ थी। दीवारों की अत्यधिक मोटाई कुछ रोधन प्रदान करती है, परन्तु मुख्य रूप से तापीय द्रव्यमान के रूप में कार्य करती है, दिवस के समय तापीय ऊर्जा को अवशोषित करती है और रात्रि के समय इसे जारी करती है। आजकल, लोग कभी-कभी उसी प्रभाव के लिए अपने घरों के निकट मृदा के आश्रय का उपयोग करते हैं। पृथ्वी आश्रय में, तापीय द्रव्यमान न मात्र भवन की दीवारों से आता है, बल्कि निकट की पृथ्वी से भी आता है जो भवन के साथ भौतिक संपर्क में है। यह अत्यधिक स्थिर, मध्यम तापमान प्रदान करते है जो आसन्न दीवार के माध्यम से ताप के प्रवाह को कम करते है।
  • रेमेड पृथ्वी: रेमेड पृथ्वी अपने उच्च घनत्व और इसके निर्माण में उपयोग की जाने वाली मृदा की उच्च विशिष्ट ताप क्षमता के कारण उत्कृष्ट तापीय द्रव्यमान प्रदान करते है।
  • प्राकृतिक चट्टान और पत्थर: पत्थर की चय विधि देखें।
  • घरों की बाहरी, और संभवतः आंतरिक, दीवारों को बनाने के लिए लट्ठों का उपयोग भवन निर्माण पदार्थ के रूप में किया जाता है। लट्ठ घर ऊपर सूचीबद्ध कुछ अन्य निर्माण पदार्थ से भिन्न होते हैं क्योंकि ठोस लकड़ी में मध्यम R-मान (रोधन) और महत्वपूर्ण तापीय द्रव्यमान दोनों होते हैं। इसके विपरीत, जल, पृथ्वी, चट्टानें और कंक्रीट सभी का R-मान कम है।[6] यह ऊष्मीय द्रव्यमान एक लट्ठ घर को शीत ऋतु में ठीक ताप रखने और उष्ण ऋतु में अपने शीतलक तापमान को ठीक बनाए रखने की अनुमति देते है।
  • चरण-परिवर्तन पदार्थ

ऋतुनिष्ठ ऊर्जा भंडारण

यदि पर्याप्त द्रव्यमान का उपयोग किया जाता है तो यह ऋतुनिष्ठ लाभ उत्पन्न कर सकते है। अर्थात यह शीत ऋतु में उष्ण और ग्रीष्म ऋतु में शीत हो सकता है। इसे कभी-कभी ऋतुनिष्ठ तापीय ऊर्जा भंडारण या पीएएचएस कहा जाता है। पीएएचएस तंत्र को कोलोराडो में 7000 फ़ीट और मोंटाना में कई घरों में सफलतापूर्वक उपयोग किया गया है।[citation needed] भूपोत निष्क्रिय ऊष्मा और शीतलन के साथ-साथ अधिकतम पीएएचएस/एसटीईएस देने वाली मूल की दीवार के लिए पुनर्नवीनीकरण टायर का उपयोग करते हैं। यूके में हॉकर्टन हाउसिंग प्रोजेक्ट में भी इसका सफलतापूर्वक उपयोग किया गया है।

यह भी देखें

संदर्भ

  1. Principles of eco-design Archived 2005-04-04 at the Wayback Machine
  2. "दक्षता में सुधार के लिए इंसुलटेक के थर्मल मास का लाभ उठाना". www.echelonmasonry.com. Retrieved 2019-09-25.
  3. "Thermal mass | YourHome".
  4. Chiras, D. The Solar House: Passive Heating and Cooling. Chelsea Green Publishing Company; 2002.
  5. "प्रयोग को तेयार रोड़े" (PDF). Build With Strength.
  6. "Thermal Mass – Energy Savings Potential in Residential Buildings". Archived from the original on 2004-06-16. Retrieved 2018-12-12.