तार्किक निगमन
तार्किक निगमन तर्क में मौलिक अवधारणा है जो कथन (तर्क) के बीच के संबंध का वर्णन करता है जो तब सही होता है जब कथन तार्किक रूप से एक या एक से अधिक कथनों का अनुसरण करता है। वैधता (तर्क) तार्किक तर्क वह है जिसमें परिसर द्वारा निगमनी प्रवेश किया जाता है, क्योंकि निष्कर्ष परिसर का निगमन है। तार्किक निगमन के दार्शनिक विश्लेषण में प्रश्न सम्मिलित हैं: किस अर्थ में निष्कर्ष अपने परिसर से निकलता है? और निष्कर्ष के लिए आधारवाक्य का निगमन होने का क्या अर्थ है?[1] सभी दार्शनिक तर्क तार्किक निगमन की प्रकृति और तार्किक सत्य की प्रकृति का विवरण प्रदान करने के लिए हैं।[2]
तार्किक निगमन तार्किक सत्य और विधिवतता (गणित का दर्शन) है, उदाहरणों के माध्यम से जो विधिवत प्रमाण और व्याख्या (तर्क) के साथ समझाते हैं।[1] वाक्य को वाक्यों के एक समुच्चय का तार्किक निगमन कहा जाता है, दी गई विधिवत भाषा के लिए, यदि और केवल यदि, केवल तर्क का उपयोग करते हुए (अर्थात, वाक्यों की किसी भी व्यक्तिगत व्याख्या के संबंध में) वाक्य सत्य होना चाहिए यदि प्रत्येक वाक्य समुच्चय में सच है।[3]
तर्कशास्त्री दी गई विधिवत भाषा के संबंध में तार्किक निगमन का स्पष्ट लेखा-जोखा बनाते हैं , या तो के लिए कटौती प्रणाली का निर्माण करके या भाषा के लिए विधिवत अभिप्रेत व्याख्या द्वारा . पोलिश तर्कशास्त्री अल्फ्रेड टार्स्की ने प्रवेश के पर्याप्त लक्षण वर्णन की तीन विशेषताओं की पहचान की: (1) तार्किक निगमन संबंध वाक्यों के तार्किक रूप पर निर्भर करता है: (2) संबंध प्राथमिकता और पश्चगामी है, अर्थात, इसे निर्धारित किया जा सकता है या अनुभवजन्य साक्ष्य (भावना अनुभव) के संबंध में; और (3) तार्किक निगमन संबंध में एक प्रायिकता तर्क घटक है।[3]
विधिवत स्पष्टीकरण
विधिवतता के लिए अपील करना तार्किक निगमन के लिए सबसे अच्छा कैसे है, इस पर सबसे व्यापक रूप से प्रचलित दृष्टिकोण है। कहने का तात्पर्य यह है कि कथन एक दूसरे से तार्किक रूप से अनुसरण करते हैं या नहीं यह उस रूप की सामग्री की परवाह किए बिना कथन की संरचना या तार्किक रूप पर निर्भर करता है।
तार्किक निगमन के सिंटैक्टिक स्पष्टीकरण अनुमान नियमो का उपयोग करके स्कीमा (तर्क) पर निर्भर करते हैं। उदाहरण के लिए, हम मान्य तर्क के तार्किक रूप को इस प्रकार व्यक्त कर सकते हैं:
- सभी X, Y हैं
- सभी Y, Z हैं
- इसलिए, सभी X, Z हैं।
यह तर्क विधिवत रूप से मान्य है, क्योंकि इस योजना का उपयोग करके निर्मित तर्कों का प्रत्येक प्रतिस्थापन (तर्क) मान्य है।
यह तर्क के विपरीत है जैसे फ्रेड माइक के भाई का बेटा है। इसलिए फ्रेड माइक का भतीजा है। चूंकि यह तर्क भाई, बेटा और भतीजा शब्दों के अर्थ पर निर्भर करता है, इसलिए फ्रेड माइक का भतीजा है, यह कथन फ्रेड माइक के भाई का बेटा है एक तथाकथित भौतिक शर्त है, विधिवत निगमन नहीं। एक विधिवत निगमन सभी स्थितियों में सही होना चाहिए, चूंकि यह विधिवत निगमन की अधूरी परिभाषा है, क्योंकि तर्क P भी Q के भाई का बेटा है, इसलिए P, Q का भतीजा है, सभी स्थितियों में मान्य है, किन्तु विधिवत तर्क नहीं है।[1]
तार्किक निगमन की प्राथमिक गुण
यदि यह ज्ञात हो से तार्किक रूप से अनुसरण करता है , तो की संभावित व्याख्याओं के बारे में कोई जानकारी नहीं या उस ज्ञान को प्रभावित करेगा। हमारा ज्ञान है कि का तार्किक निगमन है प्राथमिकता और पश्चगामी से प्रभावित नहीं किया जा सकता है।[1] निगमनात्मक रूप से मान्य तर्कों को बिना अनुभव के सहारा लिए जाना जा सकता है, इसलिए उन्हें प्राथमिक रूप से जानने योग्य होना चाहिए।[1] चूंकि, केवल विधिवतता इस बात की गारंटी नहीं देती है कि अनुभवजन्य ज्ञान से तार्किक निगमन प्रभावित नहीं होते हैं। तो तार्किक निगमन की प्राथमिकता गुण को विधिवतता से स्वतंत्र माना जाता है।[1]
प्रमाण और मॉडल
तार्किक निगमन के खातों को प्रदान करने के लिए दो प्रचलित विधियो में प्रमाणों के संदर्भ में और मॉडल के माध्यम से अवधारणा को व्यक्त करना सम्मिलित है। वाक्यात्मक निगमन (एक तर्क के) के अध्ययन को (इसका) प्रमाण सिद्धांत कहा जाता है जबकि (इसके) शब्दार्थ निगमन के अध्ययन को (इसका) मॉडल सिद्धांत कहा जाता है।[4]
वाक्यात्मक निगमन
एक सूत्र एक वाक्यगत निगमन है[5][6][7][8][9] कुछ विधिवत प्रणाली के अंदर एक समुच्चय का सूत्रों का यदि कोई विधिवत प्रमाण है का समुच्चय से . यह निरूपित है . घुमक्कड़ प्रतीक मूल रूप से 1879 में फ्रीज द्वारा प्रस्तुत किया गया था, किन्तु इसका वर्तमान उपयोग केवल रोसेर और क्लेन (1934-1935) तक ही है। [9]
वाक्यात्मक निगमन विधिवत प्रणाली की किसी भी व्याख्या (तर्क) पर निर्भर नहीं करता है।[10]
सिमेंटिक निगमन
एक सूत्र कुछ विधिवत प्रणाली के अंदर एक शब्दार्थ निगमन है बयानों का समुच्चय यदि और केवल यदि कोई मॉडल नहीं है जिसमें सभी सदस्य सत्य हैं और गलत है।[11] यह निरूपित है . या, दूसरे शब्दों में, व्याख्याओं का वह समूह जिसके सभी सदस्य बनाते हैं सत्य व्याख्याओं के समुच्चय का उपसमुच्चय है जो बनाता है सत्य।
मॉडल स्पष्टीकरण
तार्किक निगमन के मोडल लॉजिक स्पष्टीकरण निम्नलिखित मूल विचार पर भिन्नताएं हैं:
- सत्य है यदि और केवल यदि यह आवश्यक है कि यदि सभी तत्व सच हैं, तो क्या सच है।
वैकल्पिक रूप से (और, अधिकांश कहेंगे, समतुल्य):
- सत्य है यदि और केवल यदि यह के सभी तत्वों के लिए असंभव है सच होना और असत्य।
ऐसे खातों को मोडल कहा जाता है क्योंकि वे तार्किक सत्य और तार्किक संभावना की मॉडल धारणाओं को अपील करते हैं। 'यह आवश्यक है कि' अधिकांशतः संभावित संसार पर सार्वभौमिक परिमाणीकरण के रूप में व्यक्त किया जाता है, जिससे उपरोक्त खातों का अनुवाद इस प्रकार हो:
- सच है यदि और केवल यदि कोई संभव संसार नहीं है जिसमें सभी तत्व हैं सत्य हैं और मिथ्या (असत्य) है।
उपरोक्त उदाहरण के रूप में दिए गए तर्क के संदर्भ में मोडल अकाउंट पर विचार करें:
- सभी मेंढक हरे हैं।
- केर्मिट एक मेंढक है।
- इसलिए, केर्मिट हरा है।
निष्कर्ष परिसर का तार्किक निगमन है क्योंकि हम संभावित संसार की कल्पना नहीं कर सकते हैं जहां (ए) सभी मेंढक हरे हैं; (बी) केर्मिट एक मेंढक है; और (सी) केर्मिट हरा नहीं है।
मॉडल-विधिवत स्पष्टीकरण
तार्किक निगमन के मोडल-विधिवत स्पष्टीकरण उपरोक्त मोडल और विधिवत खातों को जोड़ते हैं, निम्नलिखित मूल विचार पर भिन्नता उत्पन्न करते हैं:
- यदि और केवल यदि यह तर्क के समान तार्किक रूप के साथ असंभव है / सही परिसर और गलत निष्कर्ष होना।
वारंट-आधारित स्पष्टीकरण
ऊपर विचार किए गए स्पष्टीकरण सभी सत्य-परिरक्षणात्मक हैं, जिसमें वे सभी मानते हैं कि अच्छे अनुमान की विशेषता यह है कि यह कभी भी किसी को सच्चे परिसर से असत्य निष्कर्ष पर जाने की अनुमति नहीं देता है। विकल्प के रूप में, कुछ ने औचित्य-परिरक्षण संबंधी खातों का सिद्धांत प्रस्तावित किया है, जिसके अनुसार अच्छे अनुमान की विशेषता यह है कि यह कभी भी किसी को उचित रूप से मुखर परिसर से निष्कर्ष पर जाने की अनुमति नहीं देता है जो उचित रूप से मुखर नहीं है। यह (मोटे तौर पर) माइकल डमेट जैसे अंतर्ज्ञानवादियों द्वारा पसंद किया गया खाता है।
गैर-मोनोटोनिक तार्किक निगमन
सबसे ऊपर चर्चा किए गए खातों में अनिवार्य निगमन संबंधों की एकरसता उत्पन्न होती है, अर्थात ऐसे हैं कि यदि का निगमन है , तब के किसी सुपरसमुच्चय का निगमन है . इस विचार को पकड़ने के लिए गैर-मोनोटोनिक निगमन संबंधों को निर्दिष्ट करना भी संभव है, उदाहरण के लिए, 'ट्वीटी कैन फ्लाई' तार्किक निगमन है
- {पक्षी सामान्यतः उड़ सकते हैं, ट्वीटी एक पक्षी है}
किन्तु नहीं
- {पक्षी सामान्यतः उड़ सकते हैं, ट्वीटी एक पक्षी है, ट्वीटी एक पेंगुइन है}।
यह भी देखें
- सार बीजगणितीय तर्क
- अम्फेक
- बूलियन बीजगणित (तर्क)
- बूलियन डोमेन
- बूलियन समारोह
- बूलियन तर्क
- कारणता
- निगमनात्मक तर्क
- लॉजिक गेट
- तार्किक ग्राफ
- पियर्स का नियम
- संभाव्य तर्क
- प्रस्तावक कलन
- एकमात्र पर्याप्त ऑपरेटर
- सख्त सशर्त
- टॉटोलॉजी (तर्क)
- तात्विक परिणाम
- इसलिए हस्ताक्षर करें
- घूमने वाला दरवाज़ा (प्रतीक)प्रतीक)
- डबल घूमने वाला दरवाज़ा
- वैधता (तर्क)
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Beall, JC and Restall, Greg, Logical Consequence The Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. Zalta (ed.).
- ↑ Quine, Willard Van Orman, Philosophy of Logic.
- ↑ 3.0 3.1 McKeon, Matthew, Logical Consequence Internet Encyclopedia of Philosophy.
- ↑ Kosta Dosen (1996). "Logical consequence: a turn in style". In Maria Luisa Dalla Chiara; Kees Doets; Daniele Mundici; Johan van Benthem (eds.). Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Springer. p. 292. ISBN 978-0-7923-4383-7.
- ↑ Dummett, Michael (1993) Frege: philosophy of language Harvard University Press, p.82ff
- ↑ Lear, Jonathan (1986) Aristotle and Logical Theory Cambridge University Press, 136p.
- ↑ Creath, Richard, and Friedman, Michael (2007) The Cambridge companion to Carnap Cambridge University Press, 371p.
- ↑ FOLDOC: "syntactic consequence" Archived 2013-04-03 at the Wayback Machine
- ↑ 9.0 9.1 S. C. Kleene, Introduction to Metamathematics (1952), Van Nostrand Publishing. p.88.
- ↑ Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic, University of California Press, 1971, p. 75.
- ↑ Etchemendy, John, Logical consequence, The Cambridge Dictionary of Philosophy
संसाधन
- Anderson, A.R.; Belnap, N.D. Jr. (1975), Entailment, vol. 1, Princeton, NJ: Princeton.
- Augusto, Luis M. (2017), Logical consequences. Theory and applications: An introduction. लंदन: कॉलेज प्रकाशन। श्रृंखला: गणितीय तर्क और नींव।
- Barwise, Jon; Etchemendy, John (2008), Language, Proof and Logic, Stanford: CSLI Publications.
- Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations पहला संस्करण, क्लुवर एकेडमिक पब्लिशर्स, नॉरवेल, एमए। दूसरा संस्करण, डोवर प्रकाशन, माइनोला, एनवाई, 2003।
- Davis, Martin, ed. (1965), The Undecidable, Basic Papers on Undecidable Propositions, Unsolvable Problems And Computable Functions, New York: Raven Press, ISBN 9780486432281. पेपर्स में गोडेल, अलोंजो चर्च, जे. बार्कले रोसेर, क्लेन और एमिल लियोन पोस्ट सम्मिलित हैं।
- Dummett, Michael (1991), The Logical Basis of Metaphysics, Harvard University Press, ISBN 9780674537866.
- Edgington, Dorothy (2001), Conditionals, Blackwell लो गोबल (संपा.), द ब्लैकवेल गाइड टू फिलोसोफिकल लॉजिक में।
- Edgington, Dorothy (2006), "Indicative Conditionals", Conditionals, Metaphysics Research Lab, Stanford University एडवर्ड एन. ज़ाल्टा (एड.), द स्टैनफोर्ड एनसाइक्लोपीडिया ऑफ़ फिलॉसफी में।
- Etchemendy, John (1990), The Concept of Logical Consequence, Harvard University Press.
- Goble, Lou, ed. (2001), The Blackwell Guide to Philosophical Logic, Blackwell.
- Hanson, William H (1997), "The concept of logical consequence", The Philosophical Review, 106 (3): 365–409, doi:10.2307/2998398, JSTOR 2998398 365–409.
- Hendricks, Vincent F. (2005), Thought 2 Talk: A Crash Course in Reflection and Expression, New York: Automatic Press / VIP, ISBN 978-87-991013-7-5
- Planchette, P. A. (2001), Logical Consequence गोबल, लो, संस्करण, द ब्लैकवेल गाइड टू फिलॉसॉफिकल लॉजिक। ब्लैकवेल।
- Quine, W.V. (1982), Methods of Logic, Cambridge, MA: Harvard University Press (पहला संस्करण 1950), (दूसरा संस्करण 1959), (तीसरा संस्करण 1972), (चौथा संस्करण, 1982)।
- Shapiro, Stewart (2002), Necessity, meaning, and rationality: the notion of logical consequence डी. जैक्वेट, एड., ए कम्पेनियन टू फिलोसोफिकल लॉजिक में। ब्लैकवेल।
- Tarski, Alfred (1936), On the concept of logical consequence टार्स्की, ए., 1983 में पुनर्मुद्रित। लॉजिक, सिमेंटिक्स, मेटामैथमैटिक्स, दूसरा संस्करण। ऑक्सफोर्ड यूनिवरसिटि प्रेस। मूल रूप से पोलिश भाषा और जर्मन भाषा में प्रकाशित।
- Ryszard Wójcicki (1988). तार्किक गणना का सिद्धांत: परिणाम संचालन का मूल सिद्धांत. Springer. ISBN 978-90-277-2785-5.
- math.niu.edu से 'निहितार्थ' पर पेपर, Implication Archived 2014-10-21 at the Wayback Machine
- 'प्रत्यारोपित' की परिभाषा AllWords
बाहरी संबंध
- Beall, Jc; Restall, Greg (2013-11-19). "Logical Consequence". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy (Winter 2016 ed.).
- "Logical consequence". Internet Encyclopedia of Philosophy.
- तार्किक निगमन at the Indiana Philosophy Ontology Project
- तार्किक निगमन at PhilPapers
- "Implication", Encyclopedia of Mathematics, EMS Press, 2001 [1994]