दिशात्मक स्थिरता

From Vigyanwiki

दिशात्मक स्थिरता गतिमान पिंड या वाहन की धुरी के बारे में स्थिरता है जो उसकी गति की दिशा के लंबवत है। जिसमे किसी वाहन की स्थिरता वाहन की उस प्रवृत्ति से संबंधित होती है जो आने वाले माध्यम (जल, वायु , सड़क की सतह, आदि) के संबंध में अपनी मूल दिशा से परेशान (घूमने) पर अपनी मूल दिशा में लौटने की होती है। यदि कोई वाहन दिशात्मक रूप से स्थिर है, तो पुनर्स्थापना टॉर्कः उत्पन्न होता है जो घूर्णी अस्पष्टता के विपरीत दिशा में होता है। यह वाहन को (घूर्णन में) धकेलता है जिससे उसे मूल दिशा में लौटाया जा सकता है, इस प्रकार वाहन मूल दिशा में उन्मुख रहता है।

दिशात्मक स्थिरता को अधिकांशत: वेदर वैनिंग कहा जाता है क्योंकि दिशात्मक रूप से स्थिर वाहन अपने द्रव्यमान के केंद्र के चारों ओर घूमने के लिए स्वतंत्र होता है, जो अपने (ऊर्ध्वाधर) धुरी के चारों ओर घूमने वाले वेदर वैन के समान होता है।

जो की यह अंतरिक्ष यान के अपवाद के साथ, वाहनों में समान्यत: पहचानने योग्य अगला और पिछला भाग होता है और इसे इस तरह से डिज़ाइन किया जाता है कि अगला भाग कमोबेश गति की दिशा में निरुपित करता है। जिसे इस स्थिरता के बिना, वे एक सिरे से दूसरे सिरे तक गिर सकते हैं, घूम सकते हैं या खुद को हमले के उच्च कोण पर उन्मुख कर सकते हैं, यहाँ तक कि गति की दिशा में भी आगे बढ़ सकते हैं। यह हमले के उच्च कोणों पर, ड्रैग गुणांक बल अत्यधिक हो सकते हैं, जहाँ वाहन को नियंत्रित करना असंभव हो सकता है, या संरचनात्मक विफलता का भी अनुभव हो सकता है। सामान्य रूप से, भूमि, समुद्र, वायु और जल के नीचे के वाहनों को गति की दिशा में निरुपित करने की प्राकृतिक प्रवृत्ति के लिए डिज़ाइन किया गया है।

उदाहरण: सड़क वाहन

दिशात्मक स्थिरता प्राप्त करने के लिए तीर, डार्ट, रॉकेट और हवाई जहाजों में टेल की सतह (पंख या पर) होती हैं; जो की एक हवाई जहाज़ इसी उद्देश्य के लिए अपने ऊर्ध्वाधर स्टेबलाइज़र का उपयोग करता है। एक सड़क वाहन में स्थिरता बनाए रखने के लिए विशेष रूप से डिज़ाइन किए गए तत्व नहीं होते हैं, किंतु यह मुख्य रूप से द्रव्यमान के वितरण पर निर्भर करता है।

परिचय

इन बिंदुओं को उदाहरण से सबसे अच्छी तरह समझाया जा सकता है। जिसे सड़क वाहन की स्थिरता का अध्ययन करने का पहला चरण गति के समीकरणों के लिए उचित अनुमान की व्युत्पत्ति है।

Car0 stabilty.png

आरेख चार-पहिया वाहन को दर्शाता है, जिसमें फ्रंट एक्सल कुछ दूरी पर स्थित है जहाँ गुरुत्वाकर्षण के केंद्र और पीछे की धुरी के आगे दूरी है जो की तटरक्षक के पीछे. कार की निकाय दिशा (थीटा) की ओर संकेत कर रही है जब यह दिशा (पीएसआई) में यात्रा कर रहा होता है तो यह सामान्य रूप से, ये समान नहीं हैं। जो की टायर यात्रा की दिशा में संपर्क बिंदु के क्षेत्र में चलता है, किंतु हब वाहन के निकाय के साथ संरेखित होते हैं, जिसमें स्टीयरिंग केंद्रीय होता है। इस गलत संरेखण को समायोजित करने के लिए टायर घूमते समय विकृत हो जाते हैं, और परिणामस्वरूप पार्श्व बल उत्पन्न होते हैं।

वाहन पर नेट पार्श्व बल Y अभिकेन्द्रीय बल है जिसके कारण वाहन अपनी यात्रा की दिशा बदल देता है:

जहाँ M वाहन का द्रव्यमान है और V गति है।

सभी कोण छोटे माने गए हैं, इसलिए पार्श्व बल समीकरण है:

विचलन गति N के अधीन निकाय का घूमना किसके द्वारा नियंत्रित होता है:

जहाँ मैं यव में जड़ता का क्षण है जो की रुचि की शक्तियाँ और क्षण टायरों की विकृति से उत्पन्न होते हैं। जिस दिशा में ट्रेड चल रहा है और हब के बीच के कोण को स्लिप कोण कहा जाता है। यह थोड़ा गलत नाम है, क्योंकि समग्र रूप से टायर वास्तव में फिसलता नहीं है, यह सड़क के संपर्क में आने वाले क्षेत्र का कुछ भाग चिपक जाता है, और क्षेत्र का कुछ भाग फिसल जाता है। हम मानते हैं कि टायर का बल स्लिप कोण के सीधे आनुपातिक () है यह निकाय के कोणीय वेग द्वारा संशोधित वाहन की स्लिप से बना है। फ्रंट एक्सल के लिए:

जबकि रियर एक्सल के लिए:

माना आनुपातिकता का स्थिरांक k है। इसलिए, पार्श्वबल है:

क्षण है:

कोणीय वेग को निरूपित करना , गति के समीकरण हैं:

होने देना (बीटा), संपूर्ण वाहन के लिए स्लिप कोण है:

को हटाने से में निम्नलिखित समीकरण प्राप्त होता है।

इसे दूसरे क्रम का रैखिक सजातीय समीकरण कहा जाता है, और इसके गुण अधिकांश नियंत्रण सिद्धांत का आधार बनते हैं।

स्थिरता विश्लेषण

हमें यह तय करने के लिए गति के समीकरण को स्पष्ट रूप से हल करने की आवश्यकता नहीं है कि क्या समाधान अनिश्चित काल तक विचलन करता है या प्रारंभिक अस्पष्टता के बाद शून्य में परिवर्तित हो जाता है। जो की समाधान का स्वरूप गुणांकों के चिह्नों पर निर्भर करता है।

इस प्रकार का गुणांक द्रव्यमान-स्प्रिंग-डैम्पर के अनुरूप 'डैम्पिंग अनुपात' कहा जाएगा जिसमें गति का समान समीकरण होता है।

उसी सादृश्य से, का गुणांक इसे 'कठोरता' कहा जाएगा, क्योंकि इसका कार्य स्प्रिंग की तरह ही प्रणाली को शून्य विक्षेपण पर लौटाना है।

जिसमे समाधान का रूप केवल अवमन्‍दक और कठोरता नियमो के संकेतों पर निर्भर करता है। जो की चार संभावित समाधान प्रकार चित्र में प्रस्तुत किए गए हैं।

Second Order Solutions.png

एकमात्र संतोषजनक समाधान के लिए कठोरता और नमी दोनों का धनात्मक होना आवश्यक है।

अवमंदन शब्द है:

जिसमे टायर स्लिप गुणांक k धनात्मक है, जैसे द्रव्यमान, जड़ता का क्षण और गति, इसलिए अवमन्‍दक धनात्मक है, और दिशात्मक गति गतिशील रूप से स्थिर होनी चाहिए।

कठोरता शब्द है:

यदि गुरुत्वाकर्षण का केंद्र व्हीलबेस के केंद्र से आगे है (यह सदैव धनात्मक रहेगा, और वाहन सभी गति पर स्थिर रहेगा। चूँकि , यदि यह और पीछे है, तो पद में दी गई गति से ऊपर ऋणात्मक होने की संभावना है:

इस गति से ऊपर, वाहन दिशात्मक रूप से अस्थिर होगा।

आगे और पीछे के टायरों का सापेक्ष प्रभाव

यदि किसी कारण से (गलत मुद्रास्फीति दबाव, घिसा हुआ टायर) धुरी पर टायर महत्वपूर्ण पार्श्व बल उत्पन्न करने में असमर्थ हैं, तो स्थिरता स्पष्ट रूप से प्रभावित होगी।

सर्वप्रथम मान लें कि पीछे के टायर ख़राब हैं, तो स्थिरता पर क्या प्रभाव पड़ेगा?

यदि पीछे के टायर कोई महत्वपूर्ण बल उत्पन्न नहीं करते हैं, तो पार्श्व बल और विचलन आघूर्ण बन जाते हैं:

गति का समीकरण बनता है:

जिसका गुणांक ऋणात्मक है, अत: वाहन अस्थिर होगा।

अब सामने के ख़राब टायरों के प्रभाव पर विचार करें। जो की पार्श्व बल और उबासी का क्षण बन जाता है:

गति का समीकरण बनता है:

जिसका गुणांक धनात्मक है, इसलिए वाहन स्थिर किंतु अस्थिर होगा।

इससे पता चलता है कि दिशात्मक स्थिरता के लिए आगे के टायरों की तुलना में पीछे के टायरों की स्थिति अधिक महत्वपूर्ण है। इसके अतिरिक्त , हैंडब्रेक लगाकर पिछले पहियों को लॉक करने से वाहन दिशात्मक रूप से अस्थिर हो जाता है, जिससे वह घूमने लगता है। चूंकि स्पिन के समय वाहन नियंत्रण में नहीं होता है, इसलिए सार्वजनिक सड़कों पर 'हैंडब्रेक मोड़ ' समान्यत: अवैध है।

संचालन बल

स्टीयरिंग को विक्षेपित करने से सामने के टायरों का स्लिप कोण बदल जाता है, जिससे साइडफोर्स उत्पन्न होता है। जिसमे पारंपरिक स्टीयरिंग के साथ, टायर का अलग-अलग मात्रा में विक्षेपित होते हैं, किंतु इस विश्लेषण के प्रयोजनों के लिए, अतिरिक्त स्लिप को दोनों सामने के टायरों के लिए समान माना जाएगा।

पार्श्व बल बन जाता है:

जहाँ (एटा) स्टीयरिंग विक्षेपण है। इसी प्रकार, उबासी का क्षण बन जाता है:

स्टीयरिंग शब्द को सम्मिलित करने से विवश प्रतिक्रिया का परिचय मिलता है:

यह स्थिर स्थिति प्रतिक्रिया शून्य पर सेट किए गए सभी समय डेरिवेटिव के साथ है। जो की स्थिरता के लिए आवश्यक है कि का गुणांक धनात्मक होना चाहिए, इसलिए प्रतिक्रिया का चिह्न के गुणांक द्वारा निर्धारित किया जाता है :

यह गति का कार्य है. जब गति कम होती है, तो स्लिप ऋणात्मक होती है और निकाय कोने से बाहर की ओर संकेत करती है (यह अंडरस्टीयर होती है)। द्वारा दी गई गति से:

यह निकाय गति की दिशा की ओर संकेत करता है। इस गति से ऊपर, निकाय कोने की ओर संकेत करता है (आगे बढ़ना )।

उदहारण के लिए:

k=10kN/रेडियन, M=1000kg, b=1.0m, a=1.0m के साथ, वाहन 11.3mph से नीचे चलता है।

सामान्यत: यह गुरुत्वाकर्षण के केंद्र को आगे की ओर ले जाने से यह गति बढ़ जाती है, जिससे वाहन की गति धीमी हो जाती है।

ध्यान दें: छोटे इंजन के चारो-ओर डिज़ाइन किए गए हल्के भार वाले उत्पादन वाहन में भारी, शक्तिशाली इंजन स्थापित करने से इसकी दिशात्मक स्थिरता और अंडरस्टीयर की प्रवृत्ति दोनों बढ़ जाती है। इसका परिणाम खराब कॉर्नरिंग प्रदर्शन वाला अत्यधिक शक्तिशाली वाहन है।

निलंबन या बड़े मापदंड पर वितरण के अनुरूप संशोधन के बिना पीछे के इंजन वाले उत्पादन वाहन में बड़े आकार की विद्युत् इकाई की स्थापना और भी व्यर्थ है, क्योंकि परिणाम उच्च गति पर दिशात्मक रूप से अस्थिर होगा।

विश्लेषण की सीमाएँ

स्लिप से उत्पन्न होने वाली शक्तियां टायर पर लोडिंग के साथ-साथ स्लिप कोण पर भी निर्भर करती हैं, इस प्रभाव को अनदेखा कर दिया गया है, किंतु सामने और पीछे के एक्सल के लिए k के अलग-अलग मान मानकर इसे ध्यान में रखा जा सकता है। जिसे कॉर्नरिंग के कारण रोल मोशन वाहन के पास और बाहर के बीच टायर के भार को फिर से वितरित किया जायगा, जिससे टायर की शक्ति फिर से संशोधित होगी। इंजन टॉर्क इसी तरह आगे और पीछे के टायरों के बीच भार को फिर से वितरित करता है।

पूर्ण विश्लेषण में निलंबन (वाहन) प्रतिक्रिया को भी ध्यान में रखा जाना चाहिए।

उच्च प्रदर्शन वाले सड़क वाहनों के डिजाइन के लिए संपूर्ण विश्लेषण आवश्यक है, किंतु यह इस लेख के सीमा से बाहर है।

विमानन

गुरुत्वाकर्षण के केंद्र (सीजी) के पीछे धड़ और टेल फिन दोनों दिशात्मक स्थिरता में योगदान करते हैं।

विमान के ऊर्ध्वाधर अक्ष के बारे में दिशात्मक स्थिरता को विचलन (विमानन) भी कहा जाता है। यह मुख्य रूप से ऊर्ध्वाधर स्टेबलाइज़र के क्षेत्र और गुरुत्वाकर्षण के केंद्र के पीछे धड़ के किनारों द्वारा प्राप्त किया जाता है। जब एक हवाई जहाज सीधी रेखा में उड़ रहा होता है और वायु के एक तरफ के झोंके से टकराता है, तो ऊर्ध्वाधर स्टेबलाइजर के दायीं/बायीं ओर वायु के प्रहार से बायीं/दाहिनी ओर मुड़ने की गति रुक ​​जाएगी।[1]


संदर्भ

  • Barwell F T : Automation and Control in Transport, Pergamon Press, 1972.
  • Synge J L and B A Griffiths : Principles of Mechanics, Section 6.3, McGraw-Hill Kogakusha Ltd,3rd Edition, 1970.
  1. "Pilot's Handbook of Aeronautical Knowledge". Federal Aviation Administration. August 24, 2016. p. 5-19. Retrieved 16 January 2023.


यह भी देखें