धारा प्रतिबिंब
धारा प्रतिबिंब एक ऐसा परिपथ होता है जो एक परिपथ को दूसरे सक्रिय उपकरण में धारा को नियंत्रित करके एक सक्रिय उपकरण के माध्यम से विद्युत प्रवाह की प्रतिलिपि बनाने के लिए डिज़ाइन किया जाता है, जो विद्युत भार की परवाह किए बिना निष्पाद धारा को स्थिर रखता है। और कॉपी किया जा रहा धारा हो सकता है, और कभी-कभी, एक अलग संकेतक धारा होता है। वैचारिक रूप से, एक अनुकुल धारा प्रतिबिंब एक आदर्श इनवर्टिंग धारा प्रवर्धक होता है जो धारा निर्देशो को भी उलट देता है या इसमें एक प्रवर्धक शामिल हो सकता है, इनपुट और प्रक्षेपण चर धारा-नियंत्रित स्रोत (सीसीसीएस) धारा प्रतिबिंब का उपयोग परिपथ को बायस धारा और सक्रिय भार प्रदान करने के लिए किया जाता है। इसका उपयोग अधिक यथार्थवादी धारा मॉडल को करने के लिए भी किया जा सकता है, चूंकि आदर्श धारा स्रोत मौजूद नहीं हैं।
यहां शामिल परिपथ टोपोलॉजी वह है, जो कई एकीकृत परिपथ आईसी में दिखाई देती है। यह फॉलोअर (प्रक्षेपण) ट्रांजिस्टर में उत्सर्जक डिजनरेशन रेसिस्टर के बिना एक विडलर धारा स्रोत है। यह टोपोलॉजी केवल एक आईसी में ही की जा सकती है, क्योंकि संधि बेहद करीब होना चाहिए और यह असतत के साथ प्राप्त नहीं किया जा सकता है।
एक अन्य टोपोलॉजी विल्सन धारा प्रतिबिंब है। विल्सन दर्पण इस डिजाइन में प्रारंभिक प्रभाव वोल्टेज की समस्या को हल करता है।
धारा प्रतिबिंब को एनालॉग और मिक्स्ड में बड़े पैमाने पर एकीकरण परिपथ में लगाया जाता है।
दर्पण विशेषताएँ
तीन मुख्य विनिर्देश हैं जो धारा दर्पण की विशेषता रखते हैं। पहला स्थानांतरण अनुपात (धारा प्रवर्धक के मामले में) या प्रक्षेपण धारा परिमाण (स्थिर धारा स्रोत सीसीएस के मामले में) है। दूसरा इसका एसी प्रक्षेपण प्रतिरोध है, जो यह निर्धारित करता है कि दर्पण पर लागू वोल्टेज के साथ प्रक्षेपण धारा कितना भिन्न होता है। तीसरा विनिर्देश दर्पण के प्रक्षेपण भाग में न्यूनतम वोल्टेज ड्रॉप है जो इसे ठीक से काम करने के लिए अनिवार्य है। यह न्यूनतम वोल्टेज दर्पण के प्रक्षेपण ट्रांजिस्टर को सक्रिय प्रणाली में रखने की आवश्यकता से निर्धारित होता है। वोल्टेज की क्षेत्र जहां दर्पण काम करता है उसे अनुपालन क्षेत्रकहा जाता है और अच्छे और बुरे व्यवहार के बीच की सीमा को चिह्नित करने वाले वोल्टेज को अनुपालन वोल्टेज कहा जाता है। दर्पण के साथ कई माध्यमिक प्रदर्शन मुद्दे भी हैं, उदाहरण के लिए, तापमान स्थिरता।
व्यावहारिक सन्निकटन
लघु-संकेत विश्लेषण के लिए धारा दर्पण को इसके समकक्ष नॉर्टन के प्रमेय द्वारा अनुमानित किया जा सकता है।
बड़े संकेत हैंड विश्लेषण में, एक धारा प्रतिबिंब आमतौर पर एक आदर्श धारा सोर्स द्वारा अनुमानित किया जाता है। हालांकि, एक आदर्श धारा स्रोत कई मायनों में अवास्तविक है।
- इसमें अनंत एसी प्रतिबाधा है, जबकि एक व्यावहारिक दर्पण में परिमित प्रतिबाधा है।
- यह वोल्टेज की परवाह किए बिना समान धारा प्रदान करता है, अर्थात कोई अनुपालन सीमा की आवश्यकता नहीं है।
- इसकी कोई आवृत्ति सीमा नहीं है, जबकि एक वास्तविक दर्पण में ट्रांजिस्टर के परजीवी क्षमता के कारण सीमाएं होती हैं
- आदर्श स्रोत में हलचल जैसे वास्तविक क्षेत्र के प्रभावों के प्रति कोई संवेदनशीलता नहीं है। जैसे बिजली आपूर्ति में वोल्टेज भिन्नता और घटक में सहनशीलता।
धारा दर्पणों परिपथ का प्रत्यक्षीकरण
मूल कल्पना
एक द्विध्रुवी ट्रांजिस्टर का उपयोग सबसे सरल धारा-टू-धारा कन्वर्टर के रूप में किया जा सकता है, लेकिन इसका स्थानान्तरण अनुपात तापमान भिन्नता, β (बीटा) टॉलरेंस आदि पर अत्यधिक निर्भर करेगा। इन अवांछित गड़बड़ी को खत्म करने के लिए, एक धारा प्रतिबिंब दो कैस्केड धारा-टू-वोल्टेज से बना होता है। और वोल्टेज-टू-धारा कन्वर्टर्स समान परिस्थितियों में रखे गए हैं और विपरीत विशेषताओं वाले हैं। उनका रैखिक होना अनिवार्य नहीं है, केवल उनकी विशेषताओं को दर्पण की तरह होना आवश्यकता है, उदाहरण के लिए, नीचे बी जी टी और धारा दर्पण में, वे लघुगणक और घातीय हैं। आमतौर पर, दो समान कन्वर्टर्स का उपयोग किया जाता है, लेकिन पहले वाले की विशेषता नकारात्मक प्रतिक्रिया को लागू करके उलट जाती है। इस प्रकार एक धारा प्रतिबिंब में दो कैस्केड समान कन्वर्टर्स होते हैं ,पहला - उल्टा और दूसरा - डायरेक्ट।
बेसिक (BJT) बी जी टी धारा प्रतिबिंब
यदि इनपुट मात्रा के रूप में (BJT) बी जी टी बेस-उत्सर्जक संधि पर एक वोल्टेज लागू किया जाता है और संग्राहकधारा को प्रक्षेपण मात्रा के रूप में लिया जाता है, तो ट्रांजिस्टर एक घातीय वोल्टेज-से-धारा कनवर्टर के रूप में कार्य करेगा। एक नकारात्मक प्रतिक्रिया लागू करके बस आधार और संग्राहकको मिलाकर ट्रांजिस्टर को उलटा किया जा सकता है और यह विपरीत लघुगणकीय धारा-टू-वोल्टेज कनवर्टर के रूप में कार्य करना शुरू कर देगा, अब यह प्रक्षेपण बेस-उत्सर्जक वोल्टेज को समायोजित करेगा ताकि लागू इनपुट संग्राहकधारा को पास किया जा सके।
सरलतम द्विध्रुवी दर्पण चित्र 1 में दिखाया गया है, इस कल्पना को लागू करता है। इसमें दो कैस्केड ट्रांजिस्टर चरण होते हैं जो एक उलट और प्रत्यक्ष वोल्टेज-टू-धारा कन्वर्टर्स के रूप में कार्य करते हैं। ट्रांजिस्टर Q1 का उत्सर्जक जमीन से जुड़ा होता है। इसका संग्रहकर्ता-बेस वोल्टेज शून्य है जैसा कि दिखाया गया है।
नतीजतन, Q1 के पार वोल्टेज ड्रॉप (VBE) वी बी इ है, यानी यह वोल्टेज डायोड नियम द्वारा निर्धारित किया जाता है और Q1 को डायोड कनेक्टेड कहा जाता है। एबर्स-मोल मॉडल में देखेंते है एक साधारण डायोड के बजाय परिपथ में Q1 का होना महत्वपूर्ण है, क्योंकि Q1 ट्रांजिस्टर Q2 के लिए (VBE) वी बी इ सेट करता है। यदि Q1 और Q2 का मेल किया जाता है, अर्थात, काफी हद तक समान उपकरण गुण हैं, और यदि दर्पण प्रक्षेपण वोल्टेज को चुना जाता है, तो Q2 का संग्रहकर्ता-बेस वोल्टेज भी शून्य है, तो Q1 द्वारा निर्धारित VBE-मान एक उत्सर्जक धारा में परिणाम देता है। मेल किए गए Q2 में जो Q1 में उत्सर्जक धारा के समान है, उद्धरण वांछित क्यूंकि क्यू1 और क्यू2 संधि कर रहे हैं, उनके β0 मान भी सहमत होते हैं, जिससे प्रतिबिंब प्रक्षेपण धारा Q1 के संग्राहकधारा के समान होता है।
मनमाना संग्रहकर्ता-बेस विपरीत बायस के लिए दर्पण द्वारा दिया गया धारा वीसीबी (VCB) द्विध्रुवी संधि ट्रांजिस्टर द्वारा दिया जाता है।
- जहां आईएस रिवर्स संतृप्तिकरण धारा या स्केल धारा है, वीटी vT,, थर्मल वोल्टेज, और वीए vA, प्रारंभिक वोल्टेज। यह धारा सन्दर्भ धारा (आई आर इ एफ) Iref से संबंधित है जब प्रक्षेपण ट्रांजिस्टर (वी सी बी) VCB = 0 V द्वारा
जैसा कि Q1 के संग्राहक नोड पर किरचॉफ के धारा नियम का उपयोग करते हुए पाया गया है
संदर्भ धारा संग्राहक धारा को Q1 और बेस धारा दोनों ट्रांजिस्टर को सप्लाई करता है - जब दोनों ट्रांजिस्टर में शून्य आधार-संग्राहकअभिनति पूर्वाग्रह होता है, तो दो आधार धाराओ के बराबर होती हैं, IB1 = मैंB2 = मैंB.
पैरामीटर β0 ट्रांजिस्टर β-मान के लिए है VCB = 0 वी।
प्रक्षेपण प्रतिरोध
यदि प्रक्षेपण ट्रांजिस्टर Q2 में VBC शून्य से अधिक है, तो Q2 में संग्राहकधारा प्रारंभिक प्रभाव के कारण Q1 की तुलना में व्यापक होगा। दूसरे शब्दों में, दर्पण में प्रक्षेपण ट्रांजिस्टर के (आरओ) r द्वारा दिया गया एक परिमित प्रक्षेपण (या नॉर्टन) प्रतिरोध होता है, अर्थात्,
जहां वीAप्रारंभिक वोल्टेज है; और वीCE, प्रक्षेपण ट्रांजिस्टर का संग्रहकर्ता-टू-उत्सर्जक वोल्टेज।
अनुपालन वोल्टेज
प्रक्षेपण ट्रांजिस्टर को सक्रिय रखने के लिए, VCB0 वी। इसका मतलब है कि सबसे कम प्रक्षेपण वोल्टेज जिसके परिणामस्वरूप सही दर्पण व्यवहार होता है, अनुपालन वोल्टेज, वी हैOUT= वीCV= वीBEप्रक्षेपण धारा स्तर IC पर प्रक्षेपण ट्रांजिस्टर के साथ पूर्वाग्रह स्थितियों के तहत और VCB= 0 के साथ या, ऊपर आई-वी संबंध को उलटना।
जहां VA (वीए) प्रारंभिक वोल्टेज है, और वीसीई, और प्रक्षेपण ट्रांजिस्टर का संग्राहक-टू- उत्सर्जक वोल्टेज है
विस्तार और जटिलताएं
जब Q2 में VCB> 0 V होता है, तो ट्रांजिस्टर का मेल नहीं होता है। विशेष रूप से, उनके β-मान प्रारंभिक प्रभाव के कारण भिन्न होते हैं
जहां VA (वीए) प्रारंभिक वोल्टेज है और (वीसीबी) VCB = 0 (वी)V के लिए β0 ट्रांजिस्टर β है। प्रारंभिक प्रभाव के कारण अंतर के अलावा, ट्रांजिस्टर के β-मान भिन्न होंगे क्योंकि β0 मान धारा पर निर्भर करते हैं, और दो ट्रांजिस्टर अब अलग-अलग धाराएं ले जाते हैं देखें, गुममेल-पून मॉडल।
इसके अलावा, सम्बद्ध उच्च शक्ति अपव्यय के कारण Q2 Q1 (क्यू टू क्यू वन ) की तुलना में काफी अधिक गर्म हो सकता है। संधि बनाए रखने के लिए, ट्रांजिस्टर का तापमान लगभग समान होना चाहिए। एकीकृत परिपथ और ट्रांजिस्टर सरणियों में जहां दोनों ट्रांजिस्टर एक ही डाई पर हैं, यह प्राप्त करना आसान है। लेकिन अगर दो ट्रांजिस्टर व्यापक रूप से अलग हो जाते हैं, तो धारा दर्पण की शुद्धता से समझौता किया जाता है।
अतिरिक्त संधि किए गए ट्रांजिस्टर को एक ही आधार से जोड़ा जा सकता है और एक ही संग्राहकधारा की आपूर्ति करेगा। दूसरे शब्दों में, परिपथ के दाहिने आधे हिस्से को कई बार दोहराया जा सकता है जिसमें प्रत्येक पर प्रतिरोधक मान R2 की जगह विभिन्न प्रतिरोधक मान होते हैं। ध्यान दें, हालांकि प्रत्येक अतिरिक्त दायां-आधा ट्रांजिस्टर दाएं-आधे ट्रांजिस्टर के गैर-शून्य आधार धाराओं के कारण Q1 से कुछ संग्राहकधारा से चोरी करता है। इसके परिणामस्वरूप प्रोग्राम किए गए धारा में थोड़ी कमी आएगी।
दर्पण प्रतिरोध को बढ़ाने के लिए उत्सर्जक अध: पतन दर्पण के लिए एक उदाहरण भी देखें।
आरेख में दिखाए गए साधारण दर्पण के लिए, विशिष्ट मान ( ) बीटा 1% या या इससे बेहतर का वर्तमान मिलान होगे।
मूल मॉस्फ़ेट धारा दर्पण
मूल धारा दर्पण को मॉस्फ़ेट ट्रांजिस्टर का उपयोग करके भी कार्यान्वित किया जा सकता है, जैसा कि चित्र 2 में दिखाया गया है। ट्रांजिस्टर M1 मॉस्फ़ेट प्रणाली ऑफ़ शल्य प्रणाली में काम कर रहा है, और इसी तरह M2 इस सेटअप में, प्रक्षेपण धारा IOUT सीधे IREF, से संबंधित है, जैसा कि आगे चर्चा की गई है।
मॉस्फ़ेट का ड्रेन धारा ID द्वारा दिए गए मॉस्फ़ेट के गेट-सोर्स वोल्टेज और ड्रेन-टू-गेट वोल्टेज दोनों का एक कार्य है ID = f (VGS, VDG) मॉस्फ़ेट उपकरण की कार्य क्षमता से प्राप्त संबंध। ट्रांजिस्टर M1 के मामले में ID = IREF सन्दर्भ धारा IREF एक ज्ञात धारा है, और एक प्रतिरोधक द्वारा प्रदान किया जा सकता है जैसा कि दिखाया गया है, या एक थ्रेशोल्ड-संदर्भित या पूर्वाग्रह द्वारा प्रदान किया जा सकता है | स्व-पक्षपाती धारा स्रोत यह सुनिश्चित करने के लिए कि यह स्थिर है, वोल्टेज आपूर्ति विविधताओं से स्वतंत्र है।[1]
VDG = 0 का उपयोग करना ट्रांजिस्टर M1 के लिए ड्रेन धारा ID = f(VGS, VDG=0) इसलिए हम पाते हैं, f(VGS, 0) = IREF, परोक्ष रूप से VGS का मान निर्धारित करता है। इस प्रकार मैं IREF का मान VGS पर .निर्धारित करता है, आरेख में सर्किट उसी वीजीएस को ट्रांजिस्टर एम 2 पर लागू करने के लिए मजबूर करता है। यदि M2 भी शून्य VDG के साथ पक्षपाती है VDG और ट्रांजिस्टर प्रदान किया (M1) एम वन और (M2) एम टू उनके गुणों का अच्छा संधि है, जैसे कि चैनल की लंबाई, चौड़ाई, थ्रेशोल्ड, वोल्टेज, सीमावोल्टेज,आदि संबंध IOUT = f(VGS, VDG = 0) लागू होता है, इस प्रकार सेट करना IOUT = IREF, यानी, प्रक्षेपण धारा रेफरेंस धारा के समान होता है जब प्रक्षेपण ट्रांजिस्टर के लिए VDG = 0 होता है, तो दोनों ट्रांजिस्टर का संधि किया जाता है।
निकासन स्रोत वोल्टेज को VDS = VDG + VGS के रूप में व्यक्त किया जा सकता है। इस प्रतिस्थापन के साथ, शिचमैन-होजेस मॉडल फलन के लिए अनुमानित रूप प्रदान करता है।[2]
जहाँ पे ट्रांजिस्टर से जुड़ा एक प्रौद्योगिकी-संबंधी स्थिरांक है, W/L ट्रांजिस्टर की चौड़ाई से लंबाई का अनुपात है, गेट-सोर्स वोल्टेज है, सीमावोल्टेज है, चैनल लंबाई मॉडुलन स्थिरांक है, और नाली-स्रोत वोल्टेज है।
प्रक्षेपण प्रतिरोध
चैनल-लंबाई मॉडुलन के कारण, दर्पण में ro द्वारा दिया गया एक परिमित प्रक्षेपण (या नॉर्टन) प्रतिरोध होता है, प्रक्षेपण ट्रांजिस्टर का,चैनल लंबाई मॉडुलन देखें।
जहाँ = चैनल-लंबाई मॉडुलन पैरामीटर और VDS= नाली-टू-उद्गम पूर्वाग्रह।
अनुपालन वोल्टेज
प्रक्षेपण ट्रांजिस्टर प्रतिरोध को उच्च रखने के लिए, VDG ≥ 0 V. (बेकर देखें)। इसका मतलब है कि सबसे कम प्रक्षेपण वोल्टेज जिसके परिणामस्वरूप सही दर्पण व्यवहार होता है, अनुपालन वोल्टेज, VOUT = VCV = VGS , (वी आउट ) =(वी सी वी ) = (वी जी एस ) के साथ प्रक्षेपण धारा स्तर पर प्रक्षेपण ट्रांजिस्टर के लिए (वी डी जी ) VDG = 0 V या f-फलन के व्युत्क्रम का उपयोग करते हुए, f-1,
शिचमैन-होजेस मॉडल के लिए, f−1 लगभग एक वर्गमूल फलन है।
एक्सटेंशन और आरक्षण
इस दर्पण की एक उपयोगी विशेषता उपकरण की चौड़ाई पर f की रैखिक निर्भरता है, जो कि शिचमैन-होजेस मॉडल की तुलना में अधिक सटीक मॉडल के लिए भी लगभग संतुष्ट है। इस प्रकार, दो ट्रांजिस्टर की चौड़ाई के अनुपात को समायोजित करके, सन्दर्भ धारा के गुणक उत्पन्न किए जा सकते हैं।
शिचमैन-होजेस मॉडल[3] केवल दिनांकित के लिए सटीक है[when?] प्रौद्योगिकी, हालांकि इसका उपयोग अक्सर सुविधा के लिए आज भी किया जाता है। नवीन पर आधारित कोई भी मात्रात्मक डिजाइन[when?] प्रौद्योगिकी उन उपकरणों के लिए कंप्यूटर मॉडल का उपयोग करती है जो परिवर्तित धारा-वोल्टेज विशेषताओं के लिए जिम्मेदार हैं। एक सटीक डिज़ाइन में जिन अंतरों का हिसाब होना चाहिए, उनमें Vgs में वर्ग नियम की विफलता है, वोल्टेज निर्भरता और Vds के बहुत खराब मॉडलिंग के लिए प्रदान की गई λVds नाली वोल्टेज निर्भरता समीकरणों की एक और विफलता जो बहुत महत्वपूर्ण साबित होती है,समीकरणों की एक और विफलता जो बहुत महत्वपूर्ण साबित होती है, वह है चैनल की लंबाई L पर गलत निर्भर करती है ।, एल-निर्भरता महत्वपूर्ण स्रोत λ से उपजा है, जैसा कि ग्रे और मेयर ने उल्लेख किया है, जो यह भी नोट करते हैं कि को आमतौर पर प्रयोगात्मक डेटा से लिया जाना चाहिए।[4] V
एल-प्रयोगात्मकता उच्च गुणवत्ता वाले रन के लिए उपयुक्त है। यहां तक कि एक विशेष उपकरण नंबर के भीतर भी असतत संस्करण समस्याग्रस्त हैं। हालांकि स्रोत डिजनरेट रेसिस्टर का उपयोग करके भिन्नता की कुछ हद तक भरपाई की जा सकती है, लेकिन इसका मूल्य इतना व्यापक हो जाता है कि प्रक्षेपण प्रतिरोध को नुकसान होता है (यानी कम हो जाता है)। यह भिन्नता मॉस्फ़ेट संस्करण को (IC) आई सी / एकीकृत क्षेत्र में ले जाती है।
प्रतिक्रिया-समर्थित धारा दर्पण
चित्र 3 प्रक्षेपण प्रतिरोध को बढ़ाने के लिए नकारात्मक प्रतिक्रिया का उपयोग करते हुए एक दर्पण दिखाता है। (op amp) ऑप एएमपी के कारण, इन परिपथों को कभी-कभी गेन-बूस्टेड धारा प्रतिबिंब कहा जाता है। चूंकि उनके पास अपेक्षाकृत कम अनुपालन वोल्टेज हैं, इसलिए उन्हें विस्तृत-स्विंग धारा दर्पण भी कहा जाता है। इस कल्पना पर आधारित विभिन्न प्रकार के परिपथ उपयोग में हैं,[5][6][7] विशेष रूप से मॉस्फ़ेट दर्पणों के लिए क्योंकि मॉस्फ़ेटs में कम आंतरिक प्रक्षेपण प्रतिरोध के मान होते हैं। चित्र 3 में एक मॉस्फ़ेट संस्करण चित्र 4 में दिखाया गया है, जहाँ मॉस्फ़ेट (M3) एम थ्री और (M4)एम फोर ओमिक प्रणाली में काम करते हैं, जो चित्र 3 में उत्सर्जक प्रतिरोधक (RE) आर इ के समान भूमिका निभाते हैं, और मॉस्फ़ेटs M1 एम वन और M2 एम टू दर्पण ट्रांजिस्टर के समान भूमिकाओं में सक्रिय प्रणाली में काम करते हैं Q1 क्यू वैन और Q2 क्यू टू चित्रा 3 में एक स्पष्टीकरण इस प्रकार है कि परिपथ कैसे काम करता है।
परिचालन प्रवर्धक के वोल्टेज (V1 - V2) वी वन माइनस वी टू में अंतर दिखाया जाता है, मूल्य आर थ्री के दो उत्सर्जक-पैर प्रतिरोधों के शीर्ष पर । यह अंतर ऑप एएमपी द्वारा बढ़ाया जाता है और प्रक्षेपण ट्रांजिस्टर Q2 के आधार को दिखाया जाता है2. यदि संग्राहक Q2 पर विपरीत बायस का आधार रखता है, तो लागू वोल्टेज VA को बढ़ाकर बढ़ाया जाता है, Q2 में धारा2 बढ़ता है और V2 बढ़ता है और वी वन माइनस वी टू का अंतर कम होकर एएमपी में प्रवेश करता है। फलस्वरूपऑप नतीजतन, क्यू टू का बेस वोल्टेज कम हो जाता है, और क्यू टू का वी बी इ घटता है,और प्रक्षेपण धारा में वर्धन का प्रतिकार करता है।
यदि ऑप एएमपी में वृद्धि Av व्यापक है, तो केवल बहुत छोटा अंतर वी वन - वी टू आवश्यक बेस वोल्टेज उत्पन्न करने के लिए पर्याप्त है (VB) वी बी और Q2 क्यू टू के लिए है अर्थात्
नतीजतन, दो समान प्रतिरोधों में धाराओं को लगभग समान रखा जाता है, और दर्पण का प्रक्षेपण धारा लगभग संग्राहकधारा के IC1 में क्यू वन ,समान होता है, जो बदले में सन्दर्भ धारा द्वारा निर्धारित किया जाता है
जहां ट्रांजिस्टर Q1 के लिए β1 और Q2 के लिए β2 प्रारंभिक प्रभाव के कारण भिन्न होते हैं यदि Q2 के संग्राहक-बेस में विपरीत बायस गैर-शून्य है।
प्रक्षेपण प्रतिरोध
फुटनोट में प्रक्षेपण प्रतिरोध का एक आदर्श उपचार दिया गया है।[nb 1] परिमित लाभ के साथ एक ऑप एएमपी के लिए एक छोटा-संकेत विश्लेषण Av है लेकिन आदर्श चित्र 5 को देखें (β, rO and rπ refer to Q2) पर आधारित है, चित्रा 5 पर पहुंचने के लिए, ध्यान दें कि चित्रा 3 में ऑप एएमपी का धनात्मक इनपुट एसी ग्राउंड पर है, इसलिए ऑप एएमपी में वोल्टेज इनपुट केवल एसी उत्सर्जक वोल्टेज वी है जो इसके नकारात्मक इनपुट पर लागू होती है, जिसके परिणामस्वरूप Ve वोल्टेज आउटपुट होता है -एव वी. इनपुट प्रतिरोध में ओम के नियम का उपयोग करना rπ छोटे-सिग्नल बेस धारा Ib को इस प्रकार निर्धारित करता है
इस परिणाम को ओम के नियम के साथ जोड़ने पर , समाप्त किया जा सकता है, खोजने के लिए:[nb 2]
परीक्षण स्रोत IX से RE के आधार तक Kirchhoff का वोल्टेज नियम प्रदान करता है:
Ibआईबी के लिए प्रतिस्थापन और शर्तों को एकत्रित करना प्रक्षेपण प्रतिरोध रूट में पाया जाता है
बृहद् फायदे के लिए Av ≫ rπ / RE इस परिपथ के साथ प्राप्त अधिकतम प्रक्षेपण प्रतिरोध है
मूल दर्पण पर पर्याप्त संशोधन जहां Rout = rO
चित्रा 4 के मॉस्फ़ेट परिपथ का लघु-संकेत विश्लेषण द्विध्रुवी विश्लेषण से β = gm rπ करके प्राप्त किया जाता है सूत्र Rout और फिर rπ → ∞देनाπ→ . परिणाम है
इस बार RE स्रोत-लेग मॉस्फ़ेट का प्रतिरोध है एम थ्री, एम फोर चित्र 3 के विपरीत, हालांकि, Av के रूप में बढ़ा हुआ है RE पकड़े हुए Rout मूल्य में निश्चित वृद्धि जारी है,और बड़े Avपर सीमित मूल्य तक नहीं पहुंचता है
अनुपालन वोल्टेज
चित्र 3 के लिए, एक व्यापक ऑप एएमपी लाभ अधिकतम Rout प्राप्त करता है, केवल एक छोटे RE के साथ RE के लिए कम मान मतलब V2 वी2 भी छोटा है, इस दर्पण के लिए कम अनुपालन वोल्टेज की अनुमति देता है, केवल एक वोल्टेज V2 साधारण द्विध्रुवीय दर्पण के अनुपालन वोल्टेज से बड़ा है। इस कारण से इस प्रकार के दर्पण को विस्तृत-स्विंग धारा प्रतिबिंब भी कहा जाता है, क्योंकि यह प्रक्षेपण वोल्टेज को अन्य प्रकार के प्रतिबिंब की तुलना में कम स्विंग करने की अनुमति देता है जो एक व्यापक Rout प्राप्त करते हैं। केवल बड़े अनुपालन वोल्टेज की कीमत पर।
चित्रा 4 के मॉस्फ़ेट परिपथ के साथ, चित्रा 3 में परिपथ की तरह, व्यापक सेशन ऑप एएमपी लाभ Av, RE छोटा किसी दिए गए Rout पर बनाया जा सकता है और दर्पण का अनुपालन वोल्टेज कम।
अन्य धारा दर्पण
कई परिष्कृत धारा दर्पण हैं जिनमें मूल दर्पण की तुलना में उच्च प्रक्षेपण प्रतिबाधा है प्रक्षेपण वोल्टेज से स्वतंत्र धारा प्रक्षेपण के साथ एक आदर्श दर्पण से अधिक निकटता से संपर्क करें और उत्पादन क्षमता (आईसी) और परिपथ वोल्टेज के लिए तापमान और उपकरण पैरामीटर डिजाइन के प्रति कम संवेदनशील धाराओं का उत्पादन करते हैं। ये उतार-चढ़ाव बहु-ट्रांजिस्टर दर्पण परिपथ द्विध्रुवी और एमओएस ट्रांजिस्टर दोनों के साथ उपयोग किए जाते हैं। इन परिपथों में शामिल हैं
- विडलर धारा स्रोत
- विल्सन धारा प्रतिबिंब को धारा सोर्स के रूप में इस्तेमाल किया जाता है।
- कैसकोड धारा स्रोत
टिप्पणियाँ
- ↑ An idealized version of the argument in the text, valid for infinite op amp gain, is as follows. If the op amp is replaced by a nullor, voltage V2 = V1, so the currents in the leg resistors are held at the same value. That means the emitter currents of the transistors are the same. If the VCB of Q2 increases, so does the output transistor β because of the Early effect: β = β0(1 + VCB / VA). Consequently the base current to Q2 given by IB = IE / (β + 1) decreases and the output current Iout = IE / (1 + 1 / β) increases slightly because β increases slightly. Doing the math,
- ↑ As Av → ∞, Ve → 0 and Ib → IX.
यह भी देखें
- धारा स्रोत
- विडलर धारा सोर्स
- विल्सन धारा प्रतिबिंब
- द्विध्रुवी संधि ट्रांजिस्टर
- मॉसफेट
- चैनल लंबाई मॉडुलन
- प्रारंभिक प्रभाव
संदर्भ
- ↑ Paul R. Gray; Paul J. Hurst; Stephen H. Lewis; Robert G. Meyer (2001). Analysis and Design of Analog Integrated Circuits (Fourth ed.). New York: Wiley. p. 308–309. ISBN 0-471-32168-0.
- ↑ Gray; et al. (27 March 2001). Eq. 1.165, p. 44. ISBN 0-471-32168-0.
- ↑ NanoDotTek Report NDT14-08-2007, 12 August 2007 Archived 17 June 2012 at the Wayback Machine
- ↑ Gray; et al. (27 March 2001). p. 44. ISBN 0-471-32168-0.
- ↑ R. Jacob Baker (7 September 2010). § 20.2.4 pp. 645–646. ISBN 978-0-470-88132-3.
- ↑
Ivanov V. I., Filanovsky I. M. (2004). Operational amplifier speed and accuracy improvement: analog circuit design with structural methodology (The Kluwer international series in engineering and computer science, v. 763 ed.). Boston, Mass.: Kluwer Academic. p. §6.1, p. 105–108. ISBN 1-4020-7772-6.
{{cite book}}
: CS1 maint: uses authors parameter (link) - ↑ W. M. C. Sansen (2006). Analog design essentials. New York; Berlin: Springer. p. §0310, p. 93. ISBN 0-387-25746-2.
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- एकीकृत परिपथ
- अवरोध
- आम emitter
- आभासी मैदान
- सतत प्रवाह
- इंस्ट्रूमेंटेशन प्रवर्धक
- नकारात्मक प्रतिपुष्टि
- बिजली का टूटना
- ढाल (कलन)
- आयनीकरण
- चीनी मिट्टी
- विद्युतीय इन्सुलेशन
- टूटने की संभावना
- आकाशीय बिजली
- खालीपन
- बिजली का धारा
- वर्गमूल औसत का वर्ग
- गेट देरी
- फील्ड इफ़ेक्ट ट्रांजिस्टर
- गेट सरणी
- साइड चैनल अटैक
- प्रचार देरी
- छोटे संकेत
- बयाझिंग
- विनिर्माण क्षमता के लिए डिजाइन (आईसी)
बाहरी संबंध


- 4QD tec - Current sources and mirrors Compendium of circuits and descriptions