निरंतर अंश गुणनखंडन
From Vigyanwiki
संख्या सिद्धांत में निरंतर गुणनखंड विधि (CFRAC) एक पूर्णांक कलन विधि है यह एक सामान्य उद्देश्य वाला प्रारूप है जिसका अर्थ है कि यह किसी भी पूर्णांक एन को गुणनखण्ड करने के लिए उपयुक्त है तथा गुणों के आधार पर उपयुक्त नहीं है इसका वर्णन डेरिक हेनरी लेहमर डी द्वारा किया गया था 1931 में एच. लेहमर और आर.ई. पॉवर्स [1] और 1975 में माइकल ए मॉरिसन और जॉन ब्रिलहार्ट द्वारा एक कंप्यूटर प्रारूप के रूप में विकसित किया गया [2]निरंतर भिन्न विधि गुणनखंड विधि पर आधारित है यह निरंतर भिन्न में अभिसरण निरंतर अंश का उपयोग करता है।
चूँकि यह एक द्विघात अपरिमेय है इसे आवधिक निरंतर अंश होना चाहिए जब तक कि n वर्गाकार न हो जिस स्थिति में गुणनखंड स्पष्ट है
इसकी समय जटिलता है तथा बिग ओ टिप्पणी और एल अंकन टिप्पणी में समय जटिलता होती है।[3]
संदर्भ
- ↑ Lehmer, D.H.; Powers, R.E. (1931). "बड़ी संख्या में फैक्टरिंग पर". Bulletin of the American Mathematical Society. 37 (10): 770–776. doi:10.1090/S0002-9904-1931-05271-X.
- ↑ Morrison, Michael A.; Brillhart, John (January 1975). "A Method of Factoring and the Factorization of F7". Mathematics of Computation. American Mathematical Society. 29 (129): 183–205. doi:10.2307/2005475. JSTOR 2005475.
- ↑ Pomerance, Carl (December 1996). "ए टेल ऑफ़ टू सिव्स" (PDF). Notices of the AMS. Vol. 43, no. 12. pp. 1473–1485.
अग्रिम पठन
- Samuel S. Wagstaff, Jr. (2013). The Joy of Factoring. Providence, RI: American Mathematical Society. pp. 143–171. ISBN 978-1-4704-1048-3.