न्यूक्लिक अम्ल

From Vigyanwiki
नाभिकीय अम्ल आरएनए (बाएं) और डीएनए (दाएं)।

नाभिकीय अम्ल जैव बहुलक, वृहदणु हैं, जो जीवन के सभी ज्ञात रूपों के लिए आवश्यक हैं।[1] वे न्यूक्लियोटाइडस से बने होते हैं, जो तीन घटकों से बने एकलक होते हैं: एक पेन्टोज़ | 5-कार्बन शर्करा, एक फॉस्फेट समूह और एक नाइट्रोजन मूल। नाभिकीय अम्ल के दो मुख्य वर्ग डीऑक्सीराइबो नाभिकीय अम्ल (डीएनए) और राइबोन्यूक्लिक अम्ल (आरएनए) हैं। यदि शर्करा राइबोज़ है, तो बहुलक आरएनए है; यदि शर्करा राइबोस व्युत्पन्न डीऑक्सीराइबोस है, तो बहुलक डीएनए है।

नाभिकीय अम्ल स्वाभाविक रूप से रासायनिक यौगिक होते हैं जो कोशिकाओं में प्राथमिक सूचना-वाहक अणुओं के रूप में काम करते हैं और आनुवंशिक पदार्थ बनाते हैं। सभी जीवित पदार्थों में नाभिकीय अम्ल प्रचुर मात्रा में पाए जाते हैं, जहां वे पृथ्वी पर हर जीवन-रूप के प्रत्येक जीवित कोशिका की जानकारी का निर्माण करते हैं, और फिर संचय करते हैं। इसके स्थान में, वे कोशिका के आंतरिक संचालन के लिए और अंततः प्रत्येक जीवित जीव की अगली पीढ़ी के लिए सेल नाभिक के अंदर और बाहर उस जानकारी को संचारित और व्यक्त करने का कार्य करते हैं। कूटलेखन में जानकारी निहित है और नाभिकीय अम्ल अनुक्रम के माध्यम से व्यक्त की जाती है, जो आरएनए और डीएनए के अणुओं के अन्दर न्यूक्लियोटाइड्स के 'सीढ़ी-चरण' क्रम प्रदान करती है। वे प्रोटीन जैवसंश्लेषण को निर्देशित करने में विशेष रूप से महत्वपूर्ण भूमिका निभाते हैं।

न्यूक्लियोटाइड्स के तार पेचदार मेरुदण्ड बनाने के लिए बंधे होते हैं - सामान्यतः, एक आरएनए के लिए, दो डीएनए के लिए - और पांच न्यूक्लियोबेस से चुने गए बेस-जोड़े की श्रृंखला में एकत्रित होते हैं। प्राथमिक, या विहित, एडीनाइन, साइटोसिन, गुआनिन, थाइमिन, और यूरैसिल। थाइमिन केवल डीएनए में और यूरेसिल केवल आरएनए में होता है। अमीनो अम्ल और प्रोटीन संश्लेषण के रूप में जानी जाने वाली प्रक्रिया का उपयोग करना,[2] इन आधार जोड़ी के डीएनए में विशिष्ट अनुक्रमण | न्यूक्लियोबेस-जोड़े जीन के रूप में कोड # जेनेटिक कोड निर्देशों को संग्रहीत और प्रसारित करने में सक्षम बनाता है। आरएनए में, बेस-जोड़ी अनुक्रमण नए प्रोटीनों के निर्माण के लिए प्रदान करता है जो ढाँचों और भागों के सभी जीवन रूपों की अधिकांश रासायनिक प्रक्रियाओं को निर्धारित करते हैं।

इतिहास

स्विट्ज़रलैंड के वैज्ञानिक फ्रेडरिक मिशर ने 1868 में पहली बार नाभिकीय अम्ल की खोज की, इसे न्यूक्लिन नाम दिया। बाद में, उन्होंने यह विचार उठाया कि यह आनुवंशिकता में सम्मलित हो सकता है।[3]

नाभिकीय अम्ल की खोज सबसे पहले फ्रेडरिक मिशर ने 1869 में जर्मनी के ट्यूबिंगन विश्वविद्यालय में की थी। उन्होंने इसका पहला नाम न्यूक्लिन दिया।[4]

1880 के दशक की शुरुआत में अल्ब्रेक्ट कोसेल ने पदार्थ को और शुद्ध किया और इसके अत्यधिक अम्लीय गुणों की खोज की। बाद में उन्होंने न्यूक्लियोबेस की भी पहचान की। 1889 में रिचर्ड ऑल्टमैन ने नाभिकीय अम्ल शब्द बनाया - उस समय डीएनए और आरएनए में अंतर नहीं किया गया था।[5] 1938 में विलियम एस्टबरी और बेल ने डीएनए का पहला एक्स-रे विवर्तन स्वरूप प्रकाशित किया।[6] 1944 में एवरी-मैकलियोड-मैककार्टी प्रयोग मे दिखाया कि डीएनए आनुवंशिक जानकारी का वाहक है और 1953 में जेम्स वाटसन और फ्रांसिस क्रिक नाभिकीय अम्ल की आणविक संरचना का प्रस्ताव रखा। डीऑक्सीराइबोज नाभिकीय अम्ल के लिए एक संरचना|डीएनए की दोहरी कुंडली संरचना प्रस्तावित की।[7] नाभिकीय अम्ल का प्रायोगिक अध्ययन आधुनिक जैविक अनुसंधान और चिकित्सा अनुसंधान का एक प्रमुख अंश है, और जीनोमिक्स और न्यायिक विज्ञान, और जैव प्रौद्योगिकी और उद्योग के लिए एक आधार तैयार करता है।[8][9][10]


घटना और नामकरण

नाभिकीय अम्ल शब्द डीएनए और आरएनए का समग्र नाम है, जीवबहुलक के एक परिवार के सदस्य,[11] और बहुन्यूक्लियोटाइड का पर्याय है। नाभिकीय अम्ल को कोशिका केंद्रक के अन्दर उनकी प्रारंभिक खोज और भास्वीय लवण समूहों (फॉस्फोरिक अम्ल से संबंधित) की उपस्थिति के लिए नामित किया गया था।[12] चूंकि पहले सुकेन्द्रिक कोशिकाओं के केंद्रक के अन्दर खोजा गया था, अब नाभिकीय अम्ल जीवाणु, प्राच्य, सूत्रकणिका, हरितलवक और विषाणु सहित सभी जीवन रूपों में पाए जाने के लिए जाना जाता है (जीव#विषाणु के रूप में तर्क है। क्या विषाणु जीवित हैं या निर्जीव हैं)। सभी जीवित कोशिकाओं में डीएनए और आरएनए दोनों होते हैं (परिपक्व लाल रक्त कोशिकाओं जैसी कुछ कोशिकाओं को छोड़कर), जबकि विषाणु में या तो डीएनए या आरएनए होते हैं, लेकिन सामान्यतः दोनों नहीं होते हैं। [13] जैविक नाभिकीय अम्ल का मूल घटक न्यूक्लियोटाइड है, जिनमें से प्रत्येक में एक पेन्टोज़ शर्करा (राइबोज़ या डीऑक्सीराइबोज़), एक भास्वीय लवण समूह और एक न्यूक्लियोबेस होता है। [14] किण्वक के उपयोग के माध्यम से नाभिकीय अम्ल भी प्रयोगशाला के अन्दर उत्पन्न होते हैं [15] (डीएनए और आरएनए पोलीमरेज़) और ठोस चरण रासायनिक संश्लेषण के उपयोग के माध्यम से प्रयोगशाला के अंदर नाभिकीय अम्ल भी उत्पन्न होते हैं। रासायनिक विधियाँ परिवर्तित नाभिकीय अम्ल के उत्पादन को भी सक्षम बनाती हैं जो प्रकृति में नहीं पाए जाते हैं, [16] उदाहरण के लिए पेप्टाइड नाभिकीय अम्ल






आणविक संरचना और आकार

नाभिकीय अम्ल सामान्यतः बहुत बड़े अणु होते हैं। वास्तव में, डीएनए अणु संभवतः ज्ञात सबसे बड़े व्यक्तिगत अणु हैं। अच्छी तरह से अध्ययन किए गए जैविक नाभिकीय अम्ल अणुओं का आकार 21 न्यूक्लियोटाइड्स (छोटे हस्तक्षेप करने वाले आरएनए) से लेकर बड़े गुणसूत्रों तक होता है (गुणसूत्र 1 एक एकल अणु है जिसमें 247 मिलियन आधार जोड़े होते हैं)[17]).

प्रायः स्थितियों में, स्वाभाविक रूप से होने वाले डीएनए अणु दोहरी कुंडली | होते हैं और आरएनए अणु ऐकल-असहाय होते हैं।[18] चूंकि, कई अपवाद हैं- कुछ विषाणुओं में दोहरी-असहाय आरएनए से बने जीनोम होते हैं और अन्य विषाणुओं में एम13 बैक्टीरियोफेज| ऐकल-असहाय डीएनए जीनोम होते हैं,[19] और, कुछ परिस्थितियों में, ट्रिपल-असहाय डीएनए या जी-चौगुनी असहाय के साथ नाभिकीय अम्ल संरचनाएं बन सकती हैं।[20] नाभिकीय अम्ल न्यूक्लियोटाइड्स के रैखिक पॉलिमर (चेन) हैं। प्रत्येक न्यूक्लियोटाइड में तीन घटक होते हैं: एक प्यूरीन या पाइरीमिडीन न्यूक्लियोबेस (कभी-कभी नाइट्रोजनस बेस या बस बेस कहा जाता है),एक पेंटोस शर्करा और एक फॉस्फेट समूह जो अणु को अम्लीय बनाता है। एक न्यूक्लियोबेस प्लस शर्करा से युक्त उपसंरचना को न्यूक्लीओसाइड कहा जाता है। नाभिकीय अम्ल प्रकार उनके न्यूक्लियोटाइड्स में शर्करा की संरचना में भिन्न होते हैं-डीएनए में 2'-डीऑक्सीराइबोस होता है जबकि आरएनए में राइबोस होता है (जहां एकमात्र अंतर हाइड्रॉक्सिल समूह की उपस्थिति है)। इसके अतिरिक्त, दो नाभिकीय अम्ल प्रकारों में पाए जाने वाले न्यूक्लियोबेस अलग-अलग होते हैं: एडेनिन, साइटोसिन और गुआनिन आरएनए और डीएनए दोनों में पाए जाते हैं, जबकि थाइमिन डीएनए में होता है और यूरासिल आरएनए में होता है।

नाभिकीय अम्ल में शर्करा और भास्वीय लवण फॉस्फोडिएस्टर संयोजन के माध्यम से एक वैकल्पिक श्रृंखला (शर्करा-भास्वीय लवण मेरुदण्ड) में एक दूसरे से जुड़े होते हैं।[21] नाभिकीय अम्ल नामकरण में, जिन कार्बन से भास्वीय लवण समूह जुड़ते हैं, वे शर्करा के 3'-अंत और 5'-अंत वाले कार्बन होते हैं। यह नाभिकीय अम्ल की दिशात्मकता (आणविक जीव विज्ञान) देता है, और नाभिकीय अम्ल अणुओं के सिरों को 5'-अंत और 3'-अंत कहा जाता है। न्यूक्लियोबेस एक एन-ग्लाइकोसिडिक सहलग्नता के माध्यम से शर्करा में सम्मिलत हो जाते हैं जिसमें न्यूक्लियोबेस एक नाइट्रोजन (पाइरीमिडीन के लिए एन-1 और प्यूरीन के लिए एन-9) और पेंटोस शर्करा का 1' कार्बन सम्मलित होता है।

गैर-मानक न्यूक्लियोसाइड भी आरएनए और डीएनए दोनों में पाए जाते हैं और सामान्यतः डीएनए अणु या प्राथमिक (प्रारंभिक) आरएनए प्रतिलेख के अन्दर मानक न्यूक्लियोसाइड के संशोधन से उत्पन्न होते हैं। स्थानांतरण आरएनए (टीआरएनए) अणुओं में विशेष रूप से बड़ी संख्या में संशोधित न्यूक्लियोसाइड होते हैं।[22]


संस्थितिविज्ञान

दोहरी-असहाय नाभिकीय अम्ल पूरक अनुक्रमों से बने होते हैं, जिसमें व्यापक वाटसन-क्रिक बेस युग्मन के परिणामस्वरूप अत्यधिक दोहराया और पर्याप्त समान नाभिकीय अम्ल दोहरी कुंडली | त्रि-आयामी संरचना में होता है।[23] इसके विपरीत, एकल-असहाय हुए आरएनए और डीएनए अणु एक नियमित दोहरी कुंडली तक सीमित नहीं हैं, और नाभिकीय अम्ल तृतीयक संरचना को अपना सकते हैं | अत्यधिक जटिल त्रि-आयामी संरचनाओं को अपना सकते हैं जो वाटसन-क्रिक और गैर-वैज्ञानिक आधार जोड़े सहित अंतःअणुक बल बेस-युग्मित अनुक्रमों के छोटे हिस्सों पर आधारित हैं और जटिल तृतीयक अंतः क्रियाओं की एक विस्तृत श्रृंखला।[24] नाभिकीय अम्ल के अणु सामान्यतः अशाखित होते हैं और रैखिक और गोलाकार अणुओं के रूप में हो सकते हैं। उदाहरण के लिए, बैक्टीरियल गुणसूत्र, प्लाज्मिड, सूत्रकणिका डीएनए और हरितलवक डीएनए सामान्यतः गोलाकार दोहरी कुंडली डीएनए अणु होते हैं, जबकि सुकेन्द्रिक नाभिक के गुणसूत्र सामान्यतः रैखिक दोहरी कुंडली डीएनए अणु होते हैं। <रेफरी नाम = ब्रॉक, थॉमस डी।; मैडिगन, माइकल टी. 2009 /> अधिकांश आरएनए अणु रैखिक, एकल-असहाय अणु होते हैं, लेकिन दोनों गोलाकार और शाखित अणु आरएनए वर्तनी प्रतिक्रियाओं का परिणाम हो सकते हैं।[25] दोहरी कुंडली डीएनए अणु में पिरिमिडीन की कुल मात्रा प्यूरीन की कुल मात्रा के बराबर होती है। कुंडलित वक्रता का व्यास लगभग 20 आंग्स्ट्रॉम|Å है।

अनुक्रम

एक डीएनए या आरएनए अणु मुख्य रूप से नाभिकीय अम्ल अनुक्रम में दूसरे से भिन्न होता है। जीव विज्ञान में न्यूक्लियोटाइड अनुक्रमों का बहुत महत्व है क्योंकि वे अंतिम निर्देश देते हैं जो सभी जैविक अणुओं, आणविक विधानसभाओं, उपकोशिकीय और सेलुलर संरचनाओं, अंगों और जीवों को कूटबद्ध करते हैं, और सीधे अनुभूति, स्मृति और व्यवहार को सक्षम करते हैं। जैविक डीएनए और आरएनए अणुओं के न्यूक्लियोटाइड अनुक्रम को निर्धारित करने के लिए प्रायोगिक तरीकों के विकास में भारी प्रयास किए गए हैं,[26][27] और आज दुनिया भर में जीनोम केंद्रों और छोटी प्रयोगशालाओं में सैकड़ों लाखों न्यूक्लियोटाइड डीएनए का अनुक्रम किया जाता है। जेनबैंक नाभिकीय अम्ल अनुक्रम डेटाबेस को बनाए रखने के अतिरिक्त, बायोटेक्नोलॉजी सूचना के लिए राष्ट्रीय केंद्र (एन सी बी आई, https://www.ncbi.nlm.nih.gov) जेनबैंक और उपलब्ध कराए गए अन्य जैविक डेटा के लिए विश्लेषण और पुनर्प्राप्ति संसाधन प्रदान करता है। एनसीबीआई वेब साइट के माध्यम से।[28]


प्रकार

डीऑक्सीराइबोन्यूक्लिक अम्ल

डीऑक्सीराइबोन्यूक्लिक अम्ल (डीएनए) एक नाभिकीय अम्ल है जिसमें सभी ज्ञात जीवित जीवों के विकास और कार्यप्रणाली में उपयोग किए जाने वाले अनुवांशिक निर्देश होते हैं। रासायनिक डीएनए को पहली बार 1869 में खोजा गया था, परंतु इसकी आनुवंशिक विरासत को 1943 तक प्रदर्शित नहीं किया गया था। इस आनुवंशिक जानकारी वाले डीएनए खंड को जीन कहा जाता है। इसी तरह, अन्य डीएनए अनुक्रमों के संरचनात्मक उद्देश्य हैं या इस आनुवंशिक जानकारी के उपयोग को विनियमित करने में सम्मलित हैं। आरएनए और प्रोटीन के साथ, डीएनए उन तीन प्रमुख वृहदणु में से एक है जो जीवन के सभी ज्ञात रूपों के लिए आवश्यक हैं। डीएनए में न्यूक्लियोटाइड्स नामक सरल इकाइयों के दो लंबे बहुलक होते हैं, जिसमें शर्करा और भास्वीय लवण समूह यौगिक ईथर संबंध से जुड़े होते हैं। ये दो तार एक दूसरे के विपरीत दिशाओं में चलते हैं और इसलिए, समानांतर-विरोधी हैं। प्रत्येक शर्करा से जुड़े चार प्रकार के अणुओं में से एक है जिसे न्यूक्लियोबेस (अनौपचारिक रूप से, आधार) कहा जाता है। यह मेरुदंड के साथ इन चार न्यूक्लियोबेस का क्रम है जो सूचनाओं को कूटबद्ध करता है। यह जानकारी अनुवांशिक कूट का उपयोग करके अध्ययन किया जाता है, जो प्रोटीन के अंदर अमीनो अम्ल के अनुक्रम को निर्दिष्ट करती है। कूट को प्रतिलेखन नामक प्रक्रिया में संबंधित नाभिकीय अम्ल आरएनए में डीएनए के गुणों को प्रतिलिपि में पढ़ा जाता है। कोशिकाओं के अंदर, डीएनए को गुणसूत्र नामक लंबी संरचनाओं में व्यवस्थित किया जाता है। कोशिका विभाजन के दौरान इन गुणसूत्रों को डीएनए प्रतिकृति की प्रक्रिया में दोहराया जाता है, प्रत्येक कोशिका को गुणसूत्रों का अपना पूरा स्वाभाविक स्थिति प्रदान करता है। सुकेन्द्रिक जीव (जानवरों, पौधों, कवक और प्रजीव) अपने अधिकांश डीएनए को कोशिका नाभिकीय के अंदर और अपने कुछ डीएनए को सूत्रकणिका या हरितलवक जैसे कोशिकांग में संचित करते हैं। इसके विपरीत, प्रोकैरियोटिक कोशिका (बैक्टीरिया और प्राच्य) अपने डीएनए को केवल कोशिकाद्रव्य में संचित करते हैं। गुणसूत्र के अंदर, रंगसूत्रद्रव्य प्रोटीन जैसे हिस्टोन कॉम्पैक्ट और डीएनए को व्यवस्थित करते हैं। ये कॉम्पैक्ट संरचनाएं डीएनए और अन्य प्रोटीन के बीच संवाद को निर्देशित करती हैं, जिससे यह नियंत्रित करने में मदद मिलती है कि डीएनए के कौन से गुण लिखित हैं।

राइबोन्यूक्लिक अम्ल

रिबोन्यूक्लिक अम्ल (आरएनए) आनुवंशिक जानकारी को जीन से प्रोटीन के अमीनो अम्ल अनुक्रम में परिवर्तित करने में कार्य करता है। आरएनए के तीन सार्वभौमिक प्रकारों में स्थानांतरण आरएनए (टीआरएनए), मैसेंजर आरएनए (एमआरएनए), और राइबोसोमल आरएनए (आरआरएनए) सम्मलित हैं। मेसेंजर आरएनए डीएनए और राइबोसोम के बीच आनुवंशिक अनुक्रम की जानकारी ले जाने का काम करता है, प्रोटीन संश्लेषण को निर्देशित करता है और नाभिक में डीएनए से राइबोसोम तक निर्देश पहुंचाता है। राइबोसोमल आरएनए डीएनए अनुक्रम को पढ़ता है, और पेप्टाइड बंध गठन को उत्प्रेरित करता है। स्थानांतरण आरएनए प्रोटीन संश्लेषण में उपयोग किए जाने वाले अमीनो अम्ल के लिए वाहक अणु के रूप में कार्य करता है, और एमआरएनए को व्याख्या करने के लिए उत्तरदायी है। इसके अतिरिक्त, कई अन्य गैर-व्याख्या आरएनए अब ज्ञात हैं।

कृत्रिम नाभिकीय अम्ल

कृत्रिम नाभिकीय अम्ल अनुरूप को रसायनज्ञों द्वारा डिजाइन और संश्लेषित किया गया है, और इसमें पेप्टाइड नाभिकीय अम्ल, मोर्फोलिनो और बंद नाभिकीय अम्ल, ग्लाइकोल नाभिकीय अम्ल और थ्रेओस नाभिकीय अम्ल सम्मलित हैं। इनमें से प्रत्येक अणुओं की मेरुदण्ड में परिवर्तन द्वारा स्वाभाविक रूप से होने वाले डीएनए या आरएनए से अलग है।

यह भी देखें


टिप्पणियाँ


संदर्भ

  1. "न्यूक्लिक अम्ल". Genome.gov (in English). Retrieved 1 January 2022.
  2. "डीएनए क्या है". डीएनए क्या है. Linda Clarks. Retrieved 6 August 2016.
  3. Bill Bryson, A Short History of Nearly Everything, Broadway Books, 2015.p. 500.
  4. Dahm R (January 2008). "डीएनए की खोज: फ्रेडरिक मिशर और न्यूक्लिक एसिड अनुसंधान के प्रारंभिक वर्ष". Human Genetics. 122 (6): 565–81. doi:10.1007/s00439-007-0433-0. PMID 17901982. S2CID 915930.
  5. "BiodotEDU". www.brooklyn.cuny.edu. Retrieved 1 January 2022.
  6. Cox M, Nelson D (2008). जैव रसायन के सिद्धांत. Susan Winslow. p. 288. ISBN 9781464163074.
  7. "डीएनए संरचना". What is DNA. Linda Clarks. Retrieved 6 August 2016.
  8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. (February 2001). "प्रारंभिक अनुक्रमण और मानव जीनोम का विश्लेषण" (PDF). Nature. 409 (6822): 860–921. Bibcode:2001Natur.409..860L. doi:10.1038/35057062. PMID 11237011.
  9. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "यह मानव जीनोम का क्रमिकविन्यास है". Science. 291 (5507): 1304–51. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995.
  10. Budowle B, van Daal A (April 2009). "फोरेंसिक डीएनए विश्लेषण से साक्ष्य निकालना: भविष्य के आणविक जीव विज्ञान निर्देश". BioTechniques. 46 (5): 339–40, 342–50. doi:10.2144/000113136. PMID 19480629.
  11. Elson D (1965). "न्यूक्लिक एसिड का चयापचय (मैक्रोमोलेक्युलर डीएनए और आरएनए)". Annual Review of Biochemistry. 34: 449–86. doi:10.1146/annurev.bi.34.070165.002313. PMID 14321176.
  12. Dahm R (January 2008). "डीएनए की खोज: फ्रेडरिक मिशर और न्यूक्लिक एसिड अनुसंधान के प्रारंभिक वर्ष". Human Genetics. nih.gov. 122 (6): 565–81. doi:10.1007/s00439-007-0433-0. PMID 17901982. S2CID 915930.
  13. ब्रॉक टीडी, मैडिगन एमटी (2009). सूक्ष्मजीवों की ब्रॉक बायोलॉजी. पियर्सन / बेंजामिन कमिंग्स. ISBN 978-0-321-53615-0. {{cite book}}: Vancouver style error: name in name 1 (help)
  14. हार्डिंगर, स्टीवन; कैलिफोर्निया विश्वविद्यालय, लॉस एंजिल्स (2011). "न्यूक्लिक एसिड को जानना" (PDF). यूसीएलए.एडयू.
  15. मुलिस, कैरी बी। पोलीमरेज़ चेन प्रतिक्रिया (नोबेल लेक्चर)। 1993. (1 दिसंबर, 2010 को पुनः प्राप्त) http://nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html
  16. वर्मा एस, एकस्टीन एफ (1998). "संशोधित ऑलिगोन्यूक्लियोटाइड्स: उपयोगकर्ताओं के लिए संश्लेषण और रणनीति". जैव रसायन की वार्षिक समीक्षा. 67: 99–134. doi:10.1146/अनुरेव.बायोकेम.67.1.99. PMID 9759484. {{cite journal}}: Invalid |doi-access=फ़्री (help); Vancouver style error: name in name 1 (help)
  17. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al. (May 2006). "मानव गुणसूत्र 1 का डीएनए अनुक्रम और जैविक एनोटेशन". Nature. 441 (7091): 315–21. Bibcode:2006Natur.441..315G. doi:10.1038/nature04727. PMID 16710414.
  18. Todorov TI, Morris MD (April 2002). National Institutes of Health. "अर्धविक्षिप्त बहुलक समाधानों में केशिका वैद्युतकणसंचलन के दौरान आरएनए, एकल-फंसे डीएनए और दोहरे-फंसे डीएनए व्यवहार की तुलना". Electrophoresis. nih.gov. 23 (7–8): 1033–44. doi:10.1002/1522-2683(200204)23:7/8<1033::AID-ELPS1033>3.0.CO;2-7. PMID 11981850. S2CID 33167686.
  19. Margaret Hunt; University of South Carolina (2010). "आरएन वायरस प्रतिकृति रणनीतियाँ". sc.edu.
  20. McGlynn P, Lloyd RG (August 1999). "तीन और चार-स्ट्रैंड डीएनए संरचनाओं पर RecG हेलिकेज़ गतिविधि". Nucleic Acids Research. 27 (15): 3049–56. doi:10.1093/nar/27.15.3049. PMC 148529. PMID 10454599.
  21. Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2007). जीव रसायन. San Francisco: W.H. Freeman. ISBN 978-0-7167-6766-4.
  22. Rich A, RajBhandary UL (1976). "स्थानांतरण आरएनए: आणविक संरचना, अनुक्रम और गुण". Annual Review of Biochemistry. 45: 805–60. doi:10.1146/annurev.bi.45.070176.004105. PMID 60910.
  23. Watson JD, Crick FH (April 1953). "न्यूक्लिक एसिड की आणविक संरचना; डीऑक्सीराइबोज न्यूक्लिक एसिड के लिए एक संरचना". Nature. 171 (4356): 737–8. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID 13054692. S2CID 4253007.
  24. Ferré-D'Amaré AR, Doudna JA (1999). "आरएनए तह: हाल के क्रिस्टल संरचनाओं से अंतर्दृष्टि". Annual Review of Biophysics and Biomolecular Structure. 28: 57–73. doi:10.1146/annurev.biophys.28.1.57. PMID 10410795.
  25. Alberts, Bruce (2008). कोशिका का आणविक जीवविज्ञान. New York: Garland Science. ISBN 978-0-8153-4105-5.
  26. Gilbert, Walter G. 1980. DNA Sequencing and Gene Structure (Nobel Lecture) http://nobelprize.org/nobel_prizes/chemistry/laureates/1980/gilbert-lecture.html
  27. Sanger, Frederick. 1980. Determination of Nucleotide Sequences in DNA (Nobel Lecture) http://nobelprize.org/nobel_prizes/chemistry/laureates/1980/sanger-lecture.html
  28. NCBI Resource Coordinators (January 2014). "राष्ट्रीय जैव प्रौद्योगिकी सूचना केंद्र के डेटाबेस संसाधन". Nucleic Acids Research. 42 (Database issue): D7-17. doi:10.1093/nar/gkt1146. PMC 3965057. PMID 24259429.


ग्रन्थसूची

  • वोल्फ्राम सेंगर,नाभिकीय अम्ल संरचना के सिद्धांत, 1984, स्प्रिंगर-वर्लाग न्यूयॉर्क इंक।
  • ब्रूस अल्बर्ट्स, अलेक्जेंडर जॉनसन, जूलियन लुईस, मार्टिन रैफ, कीथ रॉबर्ट्स, और सेल के पीटर वाल्टर आणविक जीवविज्ञान, 2007,  आईएसबीएन 978-0-8153-4105-5। चौथा संस्करण एनसीबीआई बुकशेल्फ़ के माध्यम से ऑनलाइन उपलब्ध है: link
  • जेरेमी एम बर्ग, जॉन एल टिमोक्ज़को, और लुबर्ट स्ट्रायर, बायोकैमिस्ट्री 5वां संस्करण, 2002, डब्ल्यू एच फ्रीमैन। एनसीबीआई बुकशेल्फ़ के माध्यम से ऑनलाइन उपलब्ध: link
  • एस्ट्रिड सिगेल; हेल्मुट सिगेल; रोलैंड के ओ सिगेल, eds. (2012). धातु आयनों और न्यूक्लिक एसिड के बीच परस्पर क्रिया. जीवन विज्ञान में धातु आयन. Vol. 10. कोंपल. doi:10.1007/978-94-007-2172-2. ISBN 978-94-007-2171-5. S2CID 92951134.


अग्रिम पठन

  • पलौ-मीर, जोआना; बार्सिलोना-ओलिवर, मिकेल; सिगेल, रोलैंड के.ओ. (2017). "अध्याय 12. न्यूक्लिक एसिड में लेड (II) की भूमिका". In एस्ट्रिड, एस।; हेल्मुट, एस।; सिगेल, आर के ओ. (eds.). सीसा: पर्यावरण और स्वास्थ्य पर इसके प्रभाव. जीवन विज्ञान में धातु आयन. Vol. 17. डी ग्रुइटर. pp. 403–434. doi:10.1515/9783110434330-012. PMID 28731305. {{cite book}}: Invalid |name-list-style=वान्क (help)


बाहरी संबंध