परिमित रूप से उत्पन्न समूह

From Vigyanwiki
क्रम 8 के द्वितल समूह को दो जनित्र की आवश्यकता होती है, जैसा कि इस चक्र आलेख (बीजगणित) द्वारा दर्शाया गया है।

बीजगणित में, एक अंतिम रूप से उत्पन्न समूह एक समूह (गणित) G होता है जिसमें समूह S का कुछ परिमित सम्मुच्चय उत्पादक सम्मुच्चय होता है ताकि G के प्रत्येक तत्व को S के बहुत से तत्वों और ऐसे तत्वों के व्युत्क्रमों के संयोजन (समूह संचालन के अंतर्गत) के रूप में लिखा जा सके।[1] परिभाषा के अनुसार, प्रत्येक परिमित समूह परिमित रूप से उत्पन्न होता है, क्योंकि S को स्वयं G के रूप में लिया जा सकता है। प्रत्येक अनंत रूप से उत्पन्न समूह को गणनीय सम्मुच्चय होना चाहिए लेकिन गणनीय समूहों को अंतिम रूप से उत्पन्न करने की आवश्यकता नहीं है। परिमेय संख्याओं का योज्य समूह 'Q' एक ऐसे गणनीय समूह का उदाहरण है जो अंतिम रूप से उत्पन्न नहीं होता है।

उदाहरण

  • सूक्ष्म रूप से उत्पन्न समूह G का प्रत्येक भागफल समूह सूक्ष्म रूप से उत्पन्न होता है; गुण के अंतर्गत भागफल समूह G के जनित्र की छवियों द्वारा उत्पन्न होता है।
  • एक निश्चित रूप से उत्पन्न समूह के उपसमूह को अंतिम रूप से उत्पन्न करने की आवश्यकता नहीं है।
  • जो समूह किसी एक तत्व से उत्पन्न होता है उसे चक्रीय समूह कहते हैं। प्रत्येक अनंत चक्रीय समूह पूर्णांक 'Z' के योज्य समूह के लिए समूह समरूपता है।
  • एक परिमित सम्मुच्चय पर मुक्त समूह उस सम्मुच्चय के तत्वों द्वारा परिमित रूप से उत्पन्न होता है (§ उदाहरण)।
  • फोर्टियोरी, प्रत्येक सूक्ष्म रूप से प्रस्तुत समूह (§उदाहरण) सूक्ष्म रूप से उत्पन्न होता है।

पूरी तरह से उत्पन्न एबेलियन समूह

एकता की छह छठी जटिल जड़ें गुणन के अंतर्गत एक चक्रीय समूह बनाती हैं।

प्रत्येक एबेलियन समूह को पूर्णांक Z के वलय (गणित) के ऊपर एक अनुखंड (गणित) के रूप में देखा जा सकता है, और जनित्र x के साथ एक सूक्ष्म रूप से उत्पन्न एबेलियन समूह x1, ..., xn में देखा जा सकता है। प्रत्येक समूह तत्व x को इन जनित्र के रैखिक संयोजन के रूप में लिखा जा सकता है,

x = α1⋅x1 + a2⋅x2 + ... + an⋅xn

पूर्णांक α1, ..., an के साथ है।

एक परिमित रूप से उत्पन्न एबेलियन समूह के उपसमूह स्वयं परिमित रूप से उत्पन्न होते हैं।

अंतिम रूप से उत्पन्न एबेलियन समूहों के मौलिक प्रमेय में कहा गया है कि एक अंतिम रूप से उत्पन्न एबेलियन समूह एक एबेलियन समूह के परिमित श्रेणी के मुक्त एबेलियन समूह और एक परिमित एबेलियन समूह के समूहों का प्रत्यक्ष योग है, जिनमें से प्रत्येक समरूपता के लिए अद्वितीय हैं।

उपसमूह

एक निश्चित रूप से उत्पन्न समूह के उपसमूह को अंतिम रूप से उत्पन्न करने की आवश्यकता नहीं है। मुक्त समूह का दिकपरिवर्तक उपसमूह जनित्र पर एक सूक्ष्म रूप से उत्पन्न समूह के उपसमूह का एक उदाहरण है जो कि अंतिम रूप से उत्पन्न नहीं होता है।

दूसरी ओर, सूक्ष्म रूप से उत्पन्न एबेलियन समूह के सभी उपसमूह सूक्ष्म रूप से उत्पन्न होते हैं।

एक परिमित रूप से उत्पन्न समूह में एक उपसमूह के परिमित सूचकांक का एक उपसमूह हमेशा परिमित रूप से उत्पन्न होता है, और श्रेयर सूचकांक सूत्र आवश्यक जनित्र की संख्या पर एक सीमा देता है। [2]

1954 में, अल्बर्ट जी हॉसन ने दिखाया कि एक मुक्त समूह के दो सूक्ष्म रूप से उत्पन्न उपसमूहों का प्रतिच्छेदन फिर से सूक्ष्म रूप से उत्पन्न होता है। इसके अतिरिक्त, यदि और दो सूक्ष्म रूप से उत्पन्न उपसमूहों के जनित्र की संख्या है तो उनका प्रतिच्छेदन अधिकतम जनित्र द्वारा उत्पन्न होता है। [3] इस ऊपरी सीमा को हैना न्यूमैन से द्वारा काफी सुधार किया गया था, हैना न्यूमैन अनुमान देखें।

एक समूह के उपसमूहों की जाली आरोही श्रृंखला की स्थिति को संतुष्ट करती है यदि और केवल यदि समूह के सभी उपसमूहों को सूक्ष्म रूप से उत्पन्न किया जाता है। ऐसा समूह जिसके सभी उपसमूह सूक्ष्म रूप से उत्पन्न होते हैं, नोएथेरियन समूह कहलाता है।

ऐसा समूह जिसमें प्रत्येक परिमित रूप से उत्पन्न उपसमूह परिमित हो, स्थानीय रूप से परिमित समूह कहलाता है। प्रत्येक स्थानीय परिमित समूह आवर्ती समूह होता है, अर्थात प्रत्येक तत्व का परिमित क्रम (समूह सिद्धांत) होता है। इसके विपरीत, प्रत्येक आवधिक एबेलियन समूह स्थानीय रूप से परिमित है। [4]

अनुप्रयोग

ज्यामितीय समूह सिद्धांत सूक्ष्म रूप से उत्पन्न समूहों के बीजगणितीय गुणों और अंतरिक्ष (गणित) के सांस्थिति और ज्यामिति गुणों के बीच संबंधों का अध्ययन करता है, जिस पर ये समूह समूह क्रिया (गणित) करते हैं।

संबंधित धारणाएं

एक निश्चित रूप से उत्पन्न समूह के लिए समूहों के लिए शब्द समस्या निर्णय समस्या है कि क्या समूह के जनित्र में दो शब्द (समूह सिद्धांत) एक ही तत्व का प्रतिनिधित्व करते हैं। दिए गए अंतिम रूप से उत्पन्न समूह के लिए शब्द समस्या हल करने योग्य है यदि और केवल यदि समूह को बीजगणितीय रूप से बंद समूह में अंतः स्थापित किया जा सकता है।

एक समूह की रैंक को प्रायः समूह के लिए उत्पन्न सम्मुच्चय की सबसे छोटी प्रमुखता के रूप में परिभाषित किया जाता है। परिभाषा के अनुसार, एक अंतिम रूप से उत्पन्न समूह का पद परिमित होता है।

यह भी देखें

टिप्पणियाँ

  1. Gregorac, Robert J. (1967). "अंतिम रूप से उत्पन्न समूहों पर एक नोट". Proceedings of the American Mathematical Society. 18 (4): 756. doi:10.1090/S0002-9939-1967-0215904-3.
  2. Rose (2012), p. 55.
  3. Howson, Albert G. (1954). "निश्चित रूप से उत्पन्न मुक्त समूहों के चौराहे पर". Journal of the London Mathematical Society. 29 (4): 428–434. doi:10.1112/jlms/s1-29.4.428. MR 0065557.
  4. Rose (2012), p. 75.


संदर्भ

  • Rose, जॉन एस. (2012) [1978 में कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज, इंग्लैंड द्वारा पहली बार प्रकाशित एक काम का व्यापक और अपरिवर्तित प्रकाशन]. समूह सिद्धांत पर एक पाठ्यक्रम. डोवर प्रकाशन. ISBN 978-0-486-68194-8.