पाइथागोरस की वीणा

From Vigyanwiki
पाइथागोरस की वीणा

पाइथागोरस की वीणा एक स्व-समानता है स्व-समान ज्यामिति पेंटाग्राम के अनुक्रम से बनी है।

निर्माण

ल्यूट को पेंटाग्राम के अनुक्रम से खींचा जा सकता है। पेंटाग्राफ के केंद्र एक रेखा पर स्थित होते हैं और (उनमें से पहले और सबसे बड़े को छोड़कर) क्रम में अगले बड़े के साथ प्रत्येक दो शीर्ष (ज्यामिति) को साझा करता है।[1][2]

एक वैकल्पिक निर्माण स्वर्ण त्रिभुज (गणित) पर आधारित है एक समद्विबाहु त्रिभुज जिसका आधार कोण 72° और शीर्ष कोण 36° है। त्रिभुज के आधार को उनकी एक भुजा के रूप में रखते हुए दिए गए त्रिभुज के अंदर एक ही त्रिभुज की दो छोटी प्रतियाँ खींची जा सकती हैं। इन दो छोटे त्रिभुजों के दो नए किनारे मूल स्वर्ण त्रिभुज के आधार के साथ बहुभुज के पाँच किनारों में से तीन बनाते हैं। इन दो नए किनारों के अंत बिंदुओं के बीच एक खंड जोड़ने से एक छोटा सुनहरा त्रिकोण कट जाता है जिसके अंदर निर्माण को दोहराया जा सकता है।[3][4]

कुछ स्रोत एक और पेंटाग्राम जोड़ते हैं, जो आकृति के सबसे बड़े पेंटाग्राम के आंतरिक पंचकोण के अंदर अंकित है। आकृति के अन्य पंचकोणों में अंकित पेंटाग्राम नहीं है।[3][4][5]


गुण

ल्यूट का उत्तल पतवार एक पतंग (ज्यामिति) है जिसमें तीन 108° कोण और एक 36° कोण होता है।[2] अनुक्रम में किसी भी दो लगातार पेंटाग्राम के आकार एक दूसरे के सुनहरे अनुपात में हैं और सुनहरे अनुपात के कई अन्य उदाहरण ल्यूट के अंदर दिखाई देते हैं।[1][2][3][4][5]


इतिहास

ल्यूट का नाम प्राचीन ग्रीक गणितज्ञ पाइथागोरस के नाम पर रखा गया है किंतु इसकी उत्पत्ति स्पष्ट नहीं है।[3] इसका एक प्रारंभिक संदर्भ 1990 में बोल्स और न्यूमैन द्वारा सुनहरे अनुपात पर लिखी गई एक पुस्तक में है।[6]


ल्यूट का नाम प्राचीन ग्रीक गणितज्ञ पाइथागोरस के नाम पर रखा गया है, किंतु इसकी उत्पत्ति स्पष्ट

यह भी देखें

संदर्भ

  1. Jump up to: 1.0 1.1 Gullberg, Jan (1997), Mathematics: From the Birth of Numbers, W. W. Norton & Company, p. 420, ISBN 9780393040029.
  2. Jump up to: 2.0 2.1 2.2 Darling, David (2004), The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes, John Wiley & Sons, p. 260, ISBN 9780471667001.
  3. Jump up to: 3.0 3.1 3.2 3.3 Lamb, Evelyn (May 29, 2013), "Strumming the Lute of Pythagoras", Scientific American.
  4. Jump up to: 4.0 4.1 4.2 Ellison, Elaine Krajenke (2008), "Create a Mathematical Banner Using the Lute, the Sacred Cut, and the Spidron", Bridges Leeuwarden: Mathematics, Music, Art, Architecture, Culture, pp. 467–468, ISBN 9780966520194.
  5. Jump up to: 5.0 5.1 Pickover, Clifford A. (2011), A Passion for Mathematics: Numbers, Puzzles, Madness, Religion, and the Quest for Reality, John Wiley & Sons, pp. 331–332, ISBN 9781118046074.
  6. Boles, Martha; Newman, Rochelle (1990), The Golden Relationship: Universal patterns, Pythagorean Press, pp. 86–87, ISBN 9780961450434.