पानी का इलेक्ट्रोलिसिस

From Vigyanwiki
घर पर पानी के इलेक्ट्रोलिसिस के प्रदर्शन के लिए सरल व्यवस्था
सोडियम क्लोराइड के साथ एक गिलास नल के पानी में एक एए बैटरी नकारात्मक टर्मिनल पर उत्पादित हाइड्रोजन दिखा रहा है

पानी के इलेक्ट्रोलीज़ को इलेक्ट्रोकेमिकल जल विभाजन के रूप में भी जाना जाता है। इलेक्ट्रोलिसिस द्वारा ऑक्सीजन और ऑक्सीहाइड्रोजेन गैस में पानी के विभाजन के लिए बिजली का उपयोग करने की प्रक्रिया है। इस प्रक्रिया से प्राप्त हाइड्रोजन गैस का उपयोग हाइड्रोजन ईंधन के रूप में किया जा सकता है या ऑक्सीजन गैस बनाने के लिए ऑक्सीजन के साथ इसे मिश्रित किया जाता है जिसका उपयोग वेल्डिंग और अन्य अनुप्रयोगों में किया जाता है।

पानी के इलेक्ट्रोलिसिस के लिए 1.23 वोल्ट के न्यूनतम संभावित अंतर की आवश्यकता होती है जबकि उस वोल्टेज में बाहरी गर्मी की भी आवश्यकता होती है। व्यावहारिक परिस्थितियों में लगभग 1.5 वोल्ट की आवश्यकता होती है। इलेक्ट्रोलिसिस का उपयोग औद्योगिक अनुप्रयोगों में कभी-कभी किया जाता है क्योंकि हाइड्रोजन को जीवाश्म ईंधन से कम मूल्य पर उत्पादित किया जा सकता है।[1]


इतिहास

पानी के इलेक्ट्रोलिसिस को विकसित करने के लिए जोहान विल्हेम रिटर द्वारा आविष्कार किया गया उपकरण

सन 1789 में, जन रुडोल्फ डिमान और एड्रियन पेट्स वैन ट्रूस्टविजक ने बिजली बनाने के लिए एक इलेक्ट्रोस्टैटिक यंत्र का उपयोग किया जिसे पानी के साथ लेडेन जार में सोने के इलेक्ट्रोड पर मुक्त किया गया था।[2] सन 1800 में एलेसेंड्रो वोल्टा ने वोल्टायिक पाइल का आविष्कार किया और कुछ सप्ताह बाद विदेशी वैज्ञानिकों विलियम निकोलसन और एंथनी कार्लिसल ने इसका उपयोग पानी को इलेक्ट्रोलाइज़ करने के लिए किया। सन 1806 में हम्फ्री डेवी ने व्यापक आसुत जल इलेक्ट्रोलिसिस प्रयोगों के परिणामों की सूचना दी जिससे यह निष्कर्ष निकाला कि नाइट्रिक एसिड को विघटित वायुमंडलीय नाइट्रोजन गैस से एनोड पर उत्पादित किया गया था। उन्होंने एक उच्च वोल्टेज बैटरी और प्रतिक्रियाशील रहित इलेक्ट्रोड और पात्रों जैसे कि सोने के इलेक्ट्रोड शंकु का उपयोग किया जो कि नम एस्बेस्टोस द्वारा बनाये गए पात्रों के रूप में दोगुना हो गया।[3] जेनोबे ग्राम ने 1869 में 'ग्राम यंत्र' का आविष्कार किया जिससे इलेक्ट्रोलिसिस हाइड्रोजन उत्पादन के लिए अल्पमूल्य साधन बन गया। इलेक्ट्रोलिसिस के माध्यम से हाइड्रोजन और ऑक्सीजन के औद्योगिक संश्लेषण की एक विधि सन 1888 में दिमित्री लाचिनोव द्वारा विकसित की गई थी।[4]


सिद्धांत

एकदिश धारा शक्ति स्रोत दो इलेक्ट्रोड या दो प्लेटों (सामान्य रूप से एक अक्रिय धातु जैसे प्लैटिनम या इरिडियम से बनाई गई) से जुड़ा होता है जो पानी में रखे जाते हैं। जहां हाइड्रोजन कैथोड में दिखाई देता है (इलेक्ट्रॉन पानी में प्रवेश करते हैं) और एनोड पर ऑक्सीजन।[5] आदर्श फैराडिक दक्षता को मानते हुए उत्पन्न हाइड्रोजन के पदार्थ की मात्रा ऑक्सीजन की मात्रा से दोगुनी होती है और दोनों विलयन द्वारा संचालित कुल विद्युत आवेश के लिए समानुपाती (गणित) हैं।[6] जबकि कई कोशिकाओं में पार्श्व प्रतिक्रियायें प्रतिस्पर्धा करती हैं जिसके परिणामस्वरूप अतिरिक्त उत्पाद और आदर्श, फैराडिक दक्षता से कम होते हैं।

शुद्ध पानी के इलेक्ट्रोलिसिस की विभिन्न सक्रियण बाधाओं को दूर करने के लिए अत्यधिक ऊर्जा के रूप में अतिरिक्त ऊर्जा की आवश्यकता होती है।अतिरिक्त ऊर्जा के बिना इलेक्ट्रोलिसिस बहुत धीमी गति से होता है या बिल्कुल नहीं होता। यह पानी के सीमित स्व-आयनीकरण के कारण होता है। शुद्ध जल में समुद्री जल की तुलना में लगभग दस लाखवीं विद्युत चालकता होती है। कई इलेक्ट्रोलाइटिक कोशिकाओं में अपेक्षित विद्युत उत्प्रेरक की कमी होती है। एक इलेक्ट्रोलाइट (जैसे कि नमक , अम्ल या क्षार (रसायन विज्ञान)) और इलेक्ट्रोकैटलिस्ट के अतिरिक्त दक्षता में वृद्धि हुयी है।

समीकरण

समग्र रासायनिक समीकरण दिखाने वाला आरेख।

ऋणावेशित कैथोड पर शुद्ध पानी में अपचयन प्रतिक्रिया होती है जिसमें कैथोड से इलेक्ट्रॉन (e-) हाइड्रोजन उद्धरणों को हाइड्रोजन गैस बनाने के लिए दिए जाते हैं। एसिड के साथ संतुलित आधी प्रतिक्रिया है:

कैथोड में कमी:

2 H+ (जलीय घोल) + 2e- → H2(गैसीय)

सकारात्मक रूप से चार्ज किए गए एनोड में ऑक्सीकरण प्रतिक्रिया होती है जो ऑक्सीजन गैस उत्पन्न करती है और सर्किट को पूरा करने के लिए एनोड को इलेक्ट्रॉन देती है:

एनोड पर ऑक्सीकरण: 2 H2O(तरल) → O2(g) + 4H + (aq) + 4e -

उन आधी-प्रतिक्रियाओं को नीचे सूचीबद्ध आधार के साथ भी संतुलित किया जा सकता है। सभी अर्ध-प्रतिक्रियाओं को अम्ल या क्षार के साथ संतुलित नहीं किया जाना चाहिए। कई ऐसा करते हैं जैसे ऑक्सीकरण या यहाँ सूचीबद्ध पानी की कमी। आधी प्रतिक्रियाओं को जोड़ने के लिए दोनों को अम्ल या क्षार के साथ संतुलित होना चाहिए। अम्ल-संतुलित अभिक्रियाएँ अम्लीय (कम पीएच) विलयनों में प्रबल होती हैं जबकि क्षार-संतुलित अभिक्रियाएँ क्षारकीय (उच्च पीएच) विलयनों में प्रबल होती हैं।

कैथोड (कमी): 2 H2O(l) + 2e H2(g) + 2 OH(aq)
एनोड (ऑक्सीकरण): 2 OH(aq) 1/2 O2(g) + H2O(l) + 2 e

आधी प्रतिक्रिया जोड़ी के संयोजन से ऑक्सीजन और हाइड्रोजन में पानी के समान समग्र अपघटन होता है:

समग्र प्रतिक्रिया: 2 H2O (l) → 2 H2(g) + O2(g)

उत्पादित हाइड्रोजन अणुओं की संख्या इस प्रकार ऑक्सीजन अणुओं की संख्या से दोगुनी है। दोनों गैसों के लिए समान तापमान और दबाव मानते हुए उत्पादित हाइड्रोजन गैस उत्पादित ऑक्सीजन गैस की मात्रा से दोगुनी होती है। पानी के माध्यम से धकेले गए इलेक्ट्रॉनों की संख्या उत्पन्न हाइड्रोजन अणुओं की संख्या से दोगुनी और उत्पन्न ऑक्सीजन अणुओं की संख्या से चार गुना होती है।

ऊष्मा गतिकी

एसटीपी पर जल, ऑक्सीजन और हाइड्रोजन के लिए संतुलन क्षेत्रों सहित जल के लिए पौरबैक्स आरेख। ऊर्ध्वाधर मापन एक मानक हाइड्रोजन इलेक्ट्रोड इलेक्ट्रोड के सापेक्ष हाइड्रोजन या अ-अंतःक्रियात्मक इलेक्ट्रोड की इलेक्ट्रोड क्षमता है जो क्षैतिज पैमाने इलेक्ट्रोलाइट का पीएच है।अतिविभव की उपेक्षा करते हुए शीर्ष रेखा के ऊपर संतुलन की स्थिति ऑक्सीजन गैस है और संतुलन तक पहुंचने तक ऑक्सीजन इलेक्ट्रोड से बुदबुदाती रहेगी। इसी प्रकार, नीचे की रेखा के नीचे, संतुलन की स्थिति हाइड्रोजन गैस है और संतुलन तक पहुंचने तक हाइड्रोजन इलेक्ट्रोड से बुदबुदाएगा।

मानक तापमान और दबाव पर शुद्ध पानी का हाइड्रोजन और ऑक्सीजन में अपघटन ऊष्मारसायन के संदर्भ में अनुकूल नहीं है।

एनोड (ऑक्सीकरण): 2 H2O(l) O2(g) + 4 H+(aq) + 4e    Eo = +1.23 वोल्ट (अपचयन अर्ध-समीकरण के लिए)
कैथोड (कमी): 2 H+(aq) + 2e H2(g) Eo = 0.00 वोल्ट

इस प्रकार, जल इलेक्ट्रोलिसिस सेल (Eocell = Eocathode − Eoanode) की मानक क्षमता -1.229 V 25 °C at pH 0 ([H+] पर है। pH 7 ([H+] = 1.0×10−7 M) के साथ 25 °C पर, Nernst समीकरण के आधार पर विभव अपरिवर्तित रहता है। थर्मोडायनामिक मानक सेल क्षमता को ΔG° ज्ञात करने के लिए मानक-राज्य मुक्त ऊर्जा गणनाओं से प्राप्त किया जा सकता है और फिर समीकरण का उपयोग करके: ΔG°= -n FE° (जहाँ E° सेल क्षमता है और F फैराडे स्थिरांक है, यानी 96,485.3321233 C/ मोल). दो पानी के अणुओं के लिए विद्युत अपघटन और इसलिए दो हाइड्रोजन अणु बनते हैं, n = 4, और ΔG° = 474.48 kJ/2 mol(water) = 237.24 kJ/mol(water), और ΔS° = 163 J/K mol(water), और ΔH° = 571.66 kJ/2 mol(water) = 285.83 kJ/mol(water), और अंत में 141.86 MJ/kg(H2)। हालांकि, व्यक्तिगत इलेक्ट्रोड संतुलन क्षमता के बारे में गणना के लिए गतिविधि गुणांकों को ध्यान में रखते हुए कुछ सुधारों की आवश्यकता होती है। [7] व्यवहार में जब एक इलेक्ट्रोकेमिकल सेल उचित क्षमता को लागू करके पूर्णता की ओर "संचालित" होता है, तो यह काइनेटिक रूप से नियंत्रित होता है। इसलिए, सक्रियण ऊर्जा, आयन गतिशीलता (प्रसार) और एकाग्रता, तार प्रतिरोध, बुलबुला गठन सहित सतह बाधा (इलेक्ट्रोड क्षेत्र अवरोध का कारण बनता है), और एंट्रॉपी, इन कारकों को दूर करने के लिए अधिक लागू क्षमता की आवश्यकता होती है। आवश्यक क्षमता में वृद्धि की मात्रा को अतिसंभाव्यता कहा जाता है।

इलेक्ट्रोलाइट

हॉफमैन वोल्टमीटर एक प्रत्यक्ष वर्तमान स्विच-मोड बिजली की आपूर्ति से जुड़ा हुआ है

शुद्ध पानी में इलेक्ट्रोलिसिस कैथोड पर H + धनायनों का खर्च कम करता है और एनोड पर हाइड्रॉक्साइड (OH -) आयनों का उपभोग/ ऑक्सीकरण करता है। पानी में पीएच संकेतक जोड़कर सत्यापित किया जा सकता है। कैथोड के पास का पानी क्षारीय है जबकि एनोड के पास का जल अम्लीय है।हाइड्रॉक्साइड ओएच- जो एनोड के पास जाते हैं अधिकतर सकारात्मक हाइड्रोनियम आयनों (H3O+) के साथ मिलकर जल बनाते हैं। सकारात्मक हाइड्रोनियम आयन जो कैथोड तक पहुंचते हैं अधिकतर नकारात्मक हाइड्रॉक्साइड आयनों के साथ मिलकर जल बनाते हैं। अपेक्षाकृत कुछ हाइड्रोनियम/हाइड्रॉक्साइड आयन कैथोड/एनोड तक पहुंचते हैं। यह दोनों इलेक्ट्रोड पर अत्यधिक क्षमता पैदा कर सकता है।

शुद्ध पानी में अर्धचालक [7] के समान एक चार्ज वाहक घनत्व होता है क्योंकि कमरे के तापमान पर इसका स्वआयनीकरण कम होता है, kw = 1.0 × 10−14 और इस प्रकार शुद्ध जल 0.055 µS·cm−1 सेमी व्यर्थ धारा का संचालन करता है।[8] जब तक जल के स्वआयनीकरण को बढ़ाने के लिए एक बड़ी क्षमता प्रयोग नहीं की जाती है तब तक शुद्ध जल का इलेक्ट्रोलिसिस समग्र चालकता द्वारा बहुत धीरे-धीरे सीमित होता है।

पानी में घुलनशील इलेक्ट्रोलाइट इसकी चालकता को बढ़ा सकता है। इलेक्ट्रोलाइट उद्धरणों और आयनों में अलग हो जाता है। आयन एनोड की ओर जाते हैं और सकारात्मक रूप से आवेशित H+ के निर्माण को निष्प्रभावी कर देते हैं। इसी तरह धनायन कैथोड की ओर भागते हैं और वहां नकारात्मक रूप से आवेशित ओ H- के निर्माण को निष्प्रभावी कर देते हैं। यह बिजली के निरंतर प्रवाह को होने देता है।[9]

इलेक्ट्रोलाइट से आयन एक इलेक्ट्रॉन देने के लिए हाइड्रॉक्साइड आयनों के साथ प्रतिस्पर्धा करते हैं। हाइड्रॉक्साइड की तुलना में कम मानक इलेक्ट्रोड क्षमता वाले इलेक्ट्रोलाइट आयन को हाइड्रॉक्साइड की जगह ऑक्सीकरण किया जाएगा जिससे ऑक्सीजन गैस का उत्पादन नहीं होगा। इसी तरह हाइड्रोजन आयन की तुलना में अधिक मानक इलेक्ट्रोड क्षमता वाला एक धनायन हाइड्रोजन की जगह कम हो जाएगा।

विभिन्न उद्धरणों में एच की तुलना में कम मानक इलेक्ट्रोड क्षमता होती है+ और इसलिए इलेक्ट्रोलाइट उद्धरणों के रूप में उपयोग के लिए उपयुक्त हैं: Li+, Rb+, K+, Cs+, Ba2+, Sr2+, Ca2+, Na+, and Mg2+. सोडियम और लिथियम सामान्य विकल्प हैं, क्योंकि वे सस्ते, घुलनशील लवण बनाते हैं।

यदि एक एसिड को इलेक्ट्रोलाइट के रूप में उपयोग किया जाता है तो धनायन H+ होता है और H+ के लिए कोई प्रतियोगी पानी को अलग करके नहीं बनाया जाता है। सबसे अधिक उपयोग किया जाने वाला आयन सल्फेट (SO42-) है क्योंकि ऑक्सीकरण करना कठिन है। इस आयन के पेरोक्सीडिसल्फेट आयन में ऑक्सीकरण की मानक क्षमता +2.010 वोल्ट है।[10]

सल्फ्यूरिक एसिड (H2SO4) जैसे मजबूत एसिड, पोटेशियम हाइड्रोक्साइड (KOH), और सोडियम हाइड्रॉक्साइड (NaOH) जैसे शक्तिशाली क्षार इलेक्ट्रोलाइट्स के रूप में उनकी शक्तिशाली संचालन क्षमता के कारण सामान्य विकल्प हैं।

ठोस बहुलक इलेक्ट्रोलाइट का उपयोग किया जा सकता है जैसे नेफियन और जब झिल्ली के प्रत्येक के लिए एक विशेष उत्प्रेरक के साथ प्रयुक्त किया जाता है तो पानी के अणु को 1.5 वोल्ट के साथ कुशलतापूर्वक विभाजित कर सकता है। कई वाणिज्यिक इलेक्ट्रोलिसिस सिस्टम ठोस इलेक्ट्रोलाइट्स का उपयोग करते हैं।[11]


शुद्ध पानी इलेक्ट्रोलिसिस

इलेक्ट्रोलाइट-मुक्त शुद्ध जल इलेक्ट्रोलिसिस को डीप-सब-डेबाई-लेंथ नैनोगैप इलेक्ट्रोरासायनिक सेल के माध्यम से प्राप्त किया जाता है। जब कैथोड और एनोड के मध्य का अंतर डिबाई-लंबाई (शुद्ध पानी में 1 माइक्रोन, आसुत जल में लगभग 220 एनएम) से छोटा होता है तो दो इलेक्ट्रोड से दोहरी परत वाले क्षेत्र अतिव्यापी हो सकते हैं जिससे पूरे अंतराल में समान रूप से उच्च विद्युत क्षेत्र वितरित हो जाता है।  इस तरह का  उच्च विद्युत क्षेत्र आयन परिवहन (मुख्य रूप से प्रवासन के कारण) को बढ़ा सकता है तथा स्व-आयनीकरण को और बढ़ा सकता है। यह प्रतिक्रिया जारी रख सकता है और दो इलेक्ट्रोड के मध्य कम प्रतिरोध दिखा सकता है। इस प्रकरण में दो अर्ध-प्रतिक्रियाएं इलेक्ट्रॉन-स्थानांतरण चरणों द्वारा युग्मित और सीमित होती हैं (इलेक्ट्रोलिसिस विद्युत कम इलेक्ट्रोड दूरी पर संतृप्त होती है)।[12]

तकनीक

सन 2022 तक वाणिज्यिक इलेक्ट्रोलिसिस को एक किलो हाइड्रोजन का उत्पादन करने के लिए लगभग 53 किलो वाट बिजली की आवश्यकता होती है, जिसमें 33.6 किलो वाट ऊर्जा होती है।[13]

मौलिक प्रदर्शन

इलेक्ट्रोलाइट की मात्रा के साथ पानी के एक कप में रखे बैटरी के टर्मिनलों से चलने वाले दो तार चालकता स्थापित करते हैं। इलेक्ट्रोलाइट समाधान में NaCl (नमक) का उपयोग प्रतिस्पर्धात्मक अर्ध-प्रतिक्रिया के कारण ऑक्सीजन की जगह क्लोरीन गैस उत्पन्न करता है। सोडियम बाइकार्बोनेट (बेकिंग सोडा) की जगह हाइड्रोजन और कार्बन डाइऑक्साइड का उत्पादन करता है जब तक बाइकार्बोनेट आयन घोल में रहता है।

मैच परीक्षण हाइड्रोजन गैस की उपस्थिति का पता लगाने के लिए उपयोग किया जाता है

हॉफमैन वोल्टमीटर

हॉफमैन वोल्टमीटर एक छोटे पैमाने का इलेक्ट्रोलाइटिक सेल है। इसमें तीन जुड़े हुए सीधे सिलेंडर होते हैं। पानी और इलेक्ट्रोलाइट को जोड़ने की अनुमति देने के लिए आंतरिक सिलेंडर शीर्ष पर खुला होता है। प्लेटिनम इलेक्ट्रोड (प्लेट या हनीकोम्ब) को बिजली के स्रोत के टर्मिनलों से जुड़े दो किनारों के सिलेंडरों में से प्रत्येक के नीचे रखा जाता है। उत्पन्न गैसें पानी को विस्थापित करती हैं और दो बाहरी ट्यूबों के शीर्ष पर एकत्रित होती हैं जहां इसे स्टॉपकॉक के साथ निकाला जा सकता है।

उच्च दबाव

उच्च दबाव वाले इलेक्ट्रोलिसिस में 12-20 MPa (120-200 bar (इकाई), 1740–2900 पाउंड प्रति वर्ग इंच) के आसपास संपीड़ित हाइड्रोजन आउटपुट सम्मिलित होता है।[14] इलेक्ट्रोलाइजर में हाइड्रोजन का दबाव बनाकर बाहरी हाइड्रोजन कंप्रेसर की आवश्यकता को समाप्त कर दिया जाता है। जहां औसत ऊर्जा की खपत लगभग 3% है।[15]

उच्च तापमान

उच्च तापमान इलेक्ट्रोलिसिस (HTE या भाप इलेक्ट्रोलिसिस) उच्च तापमान पर अधिक कुशल है। ऊष्मा इंजन कुछ ऊर्जा की आपूर्ति करता है जो सामान्य रूप बिजली से अल्पमूल्य होती है। [16][17]


बहुकोशकीय इलेक्ट्रोलाइट झिल्ली

बहुलक इलेक्ट्रोलाइट झिल्ली इलेक्ट्रोलिस प्रोटॉन-एक्सचेंज मेम्ब्रेन इलेक्ट्रोलाइज़र अभिकारकों को अलग करता है और झिल्ली के माध्यम से एक प्रत्यक्ष इलेक्ट्रॉनिक मार्ग को अवरुद्ध करते हुए प्रोटॉन को पहुंचाता है। पीईएम ईंधन सेल एक ठोस बहुकोशकीय झिल्ली (एक पतली प्लास्टिक की फिल्म) का उपयोग करते हैं जो पानी से संतृप्त होने पर प्रोटॉन के लिए पारगम्य होती है परंतु यह इलेक्ट्रॉनों का संचालन नहीं करती है।

यह एक प्रोटॉन-एक्सचेंज झिल्ली, या बहुकोशकीय-इलेक्ट्रोलाइट झिल्ली (पीईएम) का उपयोग करता है जो एक आयन-एक्सचेंज झिल्ली है जो सामान्य रूप से आयनोमर्स से बनी एक अर्ध- पारगम्य झिल्ली होती है और इलेक्ट्रॉनिक इंसुलेटर और रिएक्टेंट अवरोधी के रूप में कार्य करते हुए प्रोटॉन का संचालन करने के लिए डिज़ाइन की जाती है जैसे ऑक्सीजन और हाइड्रोजन गैस।[18] PEM ईंधन कोशिकाएं एक ठोस बहुलक झिल्ली (एक पतली प्लास्टिक फिल्म) का उपयोग करती हैं जो पानी से संतृप्त होने पर प्रोटॉन के लिए पारगम्य होती है परंतु इलेक्ट्रॉनों का संचालन नहीं करती है। प्रोटॉन-विनिमय झिल्ली मुख्य रूप से प्रोटॉन चालकता (इलेक्ट्रोलाइटिक) (σ), मेथनॉल पारगम्यता (P), और थर्मल स्थिरता की विशेषता है।[19]

पीईएम को शुद्ध बहुलक या समग्र सामग्री झिल्ली से बनाया जा सकता है जहां अन्य सामग्री एक बहुलक मैट्रिक्स में सन्निहित होती है। सबसे सामान्य व्यावसायिक रूप से उपलब्ध सामग्रियों में से एक फ्लोरोपोलिमर (PFSA) है।[20] नफियन[21] एक आयनोमर है जिसमें टेफ्लान की तरह एक परफ्लोरिनेटेड बैकबोन है।[22] प्रोटॉन-विनिमय झिल्लियों के लिए आयनोमर्स बनाने के लिए कई अन्य संरचनात्मक रूपांकनों का उपयोग किया जाता है। कई पॉलीएरोमैटिक पॉलिमर का उपयोग करते हैं जबकि अन्य आंशिक रूप से फ्लोरिनेटेड पॉलिमर का उपयोग करते हैं।

अतिक्रांतिक जल

सुपरक्रिटिकल वाटर (अतिक्रांतिक जल) इलेक्ट्रोलिसिस (एस डब्लू ई) अतिक्रांतिक अवस्था में पानी का उपयोग करता है। अतिक्रांतिक जल में कम ऊर्जा की आवश्यकता होती है इसलिए लागत कम होती है। यह >375 डिग्री सेल्सियस पर संचालित होता है जो उष्मागतिक बाधाओं को कम करता है और गतिकी को बढ़ाता है। तरल या गैसीय जल पर आयनिक चालकता में सुधार करता है जो ओमीपात नुकसान को कम करता है। लाभों में अच्छे विद्युत दक्षता उत्पाद गैसों की >221 बार (bar) दाबित वितरण, उच्च विद्युत घनत्व पर संचालन करने की क्षमता और कीमती धातु उत्प्रेरकों पर कम निर्भरता सम्मिलित हैं। सन 2021 तक व्यावसायिक SWE उपकरण उपलब्ध नहीं हुए है।[23]

निकेल/आयरन

सन 2014 में शोधकर्ताओं ने मूल्यवान धातुओं की जगह निकल और लौह उत्प्रेरक का उपयोग करके इलेक्ट्रोलिसिस की घोषणा की। निकेल-धातु/ निकल-ऑक्साइड संरचना अकेले निकल धातु या निकल ऑक्साइड की तुलना में अधिक सक्रिय है। उत्प्रेरक आवश्यक वोल्टेज बहुत कम कर देता है।[24][25] संयुक्त बैटरी और इलेक्ट्रोलाइजर के रूप में उपयोग के लिए निकल-लौह बैटरी की जांच की जा रही है। उन "बैटोलिसर्स" को पारंपरिक बैटरी की तरह चार्ज और डिस्चार्ज किया जा सकता है और पूर्ण रूप से चार्ज होने पर हाइड्रोजन का उत्पादन होगा।[26]

नैनोगैप विद्युत रासायनिक कोशिकाएं

सन 2017 में शोधकर्ताओं ने नैनोगैप विद्युत रासायनिक कोशिकाओं की सूचना दी जिन्होंने परिवेश के तापमान पर उच्च दक्षता वाले इलेक्ट्रोलाइट-मुक्त शुद्ध जल इलेक्ट्रोलिसिस प्राप्त किया। इन कोशिकाओं में दो इलेक्ट्रोड एक-दूसरे के इतने पास होते हैं ( डेबाई-लंबाई से छोटा) कि बड़े पैमाने पर परिवहन दर इलेक्ट्रॉन-हस्तांतरण दर से अधिक हो सकती है जिससे दो अर्ध-प्रतिक्रियाएं एक साथ जुड़ जाती हैं और इलेक्ट्रॉन-हस्तांतरण क्रिया द्वारा सीमित हो जाती हैं। प्रयोगों से पता चलता है कि विद्युत धारा घनत्व 1 मोल/लीटर सोडियम हाइड्रॉक्साइड विलयन से अधिक हो सकता है। इसका "आभासी यांत्रिक विश्लेषण", इस तरह के नैनोगैप आकार के प्रभावों के कारण पारंपरिक विद्युत रासायनिक सिद्धांत से बिल्कुल अलग है।[12]

केशिका फेड

केशिका-फेड इलेक्ट्रोलाइज़र (केशिका-फेड विद्युत अपघटन) सेल को 1 किलो हाइड्रोजन का उत्पादन करने के लिए मात्र 41.5 किलो वाट की आवश्यकता होती है। जल के इलेक्ट्रोलाइट को झरझरा, हाइड्रोफिलिक विभाजक द्वारा इलेक्ट्रोड से अलग किया जाता है। केशिका क्रिया द्वारा जल को इलेक्ट्रोलाइज़र में खींचा जाता है जबकि इलेक्ट्रोलाइज़्ड गैसें दोनों तरफ से बाहर निकल जाती हैं। यह इलेक्ट्रोड और इलेक्ट्रोलाइट के बीच संपर्क को कम करने वाले बुलबुले को हटाकर बहुकोशकीय इलेक्ट्रोलाइट झिल्ली प्रौद्योगिकी का विस्तार करता है जिससे दक्षता कम हो जाती है। प्रारूप को 98% ऊर्जा दक्षता पर संचालित करने हेतु अधियाचित किया गया है। जल परिसंचरण प्रारुप, विभाजक टैंक और अन्य तंत्र को छोड़ देता है और इसे हवा या विकिरण से ठंडा किया जा सकता है।[13]

अनुप्रयोग

विश्व में उत्पादित लगभग पाँच प्रतिशत हाइड्रोजन गैस इलेक्ट्रोलिसिस द्वारा बनाई जाती है। वर्तमान में अधिकांश औद्योगिक विधियाँ भाप सुधार की जगह प्राकृतिक गैस से हाइड्रोजन का उत्पादन करती हैं। इलेक्ट्रोलिसिस के माध्यम से उत्पादित अधिकांश हाइड्रोजन क्लोरीन और कास्टिक सोडा के उत्पादन में एक अतिरिक्त उत्पाद है । यह पक्ष प्रतिक्रिया के लिए प्रतिस्पर्धा का एक प्रमुख उदाहरण है ।

2NaCl + 2H2O → Cl2 + H2 + 2NOH

क्लोराल्कली प्रक्रिया (खारे पानी का इलेक्ट्रोलिसिस) में पानी/ सोडियम क्लोराइड मिश्रण जल का मात्र आधा इलेक्ट्रोलिसिस होता है क्योंकि क्लोराइड आयनों को क्लोरीन में ऑक्सीकृत किया जाता है न कि पानी को ऑक्सीजन में ऑक्सीकृत किया जाता है। थर्मोडायनामिक रूप से इसकी अपेक्षा नहीं की जा सकती है क्योंकि क्लोराइड आयन की ऑक्सीकरण क्षमता पानी की तुलना में कम है लेकिन क्लोराइड प्रतिक्रिया की दर पानी की तुलना में बहुत अधिक है जिससे यह प्रबल होता है। इस प्रक्रिया से उत्पादित हाइड्रोजन को या तो जला दिया जाता है (इसे वापस पानी में परिवर्तित कर दिया जाता है) या विशेष रसायनों के उत्पादन के लिए उपयोग किया जाता है या अन्य छोटे मापन के अनुप्रयोगों के लिए उपयोग किया जाता है।

अंतर्राष्ट्रीय अंतरिक्ष स्टेशन के लिए ऑक्सीजन उत्पन्न करने के लिए जल इलेक्ट्रोलिसिस का भी उपयोग किया जाता है ।[27][28]

इसके अतिरिक्त कई कार कंपनियों ने हाल ही में ईंधन के स्रोत के रूप में जल का उपयोग करके पानी के इलेक्ट्रोलिसिस के माध्यम से हाइड्रोजन और ऑक्सीजन में परिवर्तित करने और हाइड्रोजन वाहन में ईंधन के रूप में हाइड्रोजन का उपयोग करने के लिए शोध करना प्रारंभ कर दिया है, हालांकि अस्थिर विशेषताओं के कारण ईंधन के स्रोत के रूप में हाइड्रोजन को अधिक सफलता प्राप्त नहीं हुई है।

कई औद्योगिक इलेक्ट्रोलिसिस कोशिकाएं हॉफमैन वोल्टमीटर के समान होती हैं जिनमें प्लेटिनम प्लेट्स या हनीकोम्ब इलेक्ट्रोड के रूप में होते हैं। सामान्य रूप से हाइड्रोजन का उपयोग ऑक्सीहाइड्रोजन टॉर्च जैसे उपयोग के बिंदु के लिए किया जाता है या जब उच्च हाइड्रोजन शुद्धता या ऑक्सीजन वांछित होती है। हाइड्रोजन का विशाल समूह हाइड्रोकार्बन से उत्पन्न होता है और इसके परिणामस्वरूप अन्य अशुद्धियों के बीच कार्बन मोनोआक्साइड की ट्रेस मात्रा होती है। कार्बन मोनोऑक्साइड अशुद्धता कई ईंधन कोशिकाओं सहित विभिन्न प्रणालियों के लिए हानिकारक हो सकती है ।

दक्षता

औद्योगिक आउटपुट

हाइड्रोजन के उत्पादन के लिए पानी के सरल इलेक्ट्रोलिसिस के इनपुट और आउटपुट का चित्रण।

आधुनिक हाइड्रोजन जनरेटर की क्षमता को मानक तापमान और एच 2 के दबाव को मानते हुए हाइड्रोजन (एमजे/एम 3) की प्रति मानक मात्रा में खर्च को ऊर्जा द्वारा मापा जाता है। जनरेटर द्वारा उपयोग की जाने वाली ऊर्जा जितनी कम होगी उसकी दक्षता उतनी ही अधिक होगी। 100%-कुशल इलेक्ट्रोलाइज़र 39.4 किलोवाट-घंटे प्रति किलोग्राम (142 MJ/kg) (उच्च तापमान) हाइड्रोजन का (उच्च ताप मूल्य),[29] 12,749 जूल प्रति लीटर (12.75 MJ/m3) को खर्च करेगा। व्यावहारिक इलेक्ट्रोलिसिस (15 बार दबाव पर एक घूर्णन इलेक्ट्रोलाइज़र का उपयोग करके ) 50 किलोवाट.घंटा/किलोग्राम (180 MJ/किलोग्राम), और एक और 15 किलोवाट.घंटा (54 MJ) की खपत कर सकता है यदि हाइड्रोजन को हाइड्रोजन कारों में उपयोग के लिए संपीड़ित किया जाता है।[30] 150 डिग्री सेल्सियस (302 डिग्री फारेनहाइट) पर बाहरी गर्मी जोड़ने से बिजली का खर्च कम हो सकता है। [31]

इलेक्ट्रोलाइज़र विक्रेता एन्थैल्पी के आधार पर दक्षता प्रदान करते हैं। एक इलेक्ट्रोलाइज़र की  सुनिश्चित की गई दक्षता का आकलन करने के लिए यह स्थापित करना महत्वपूर्ण है कि विक्रेता द्वारा इसे कैसे परिभाषित किया गया था (अर्थात एन्थैल्पी मूल्य, वर्तमान घनत्व क्या है, आदि)।

इस क्षेत्र में तीन मुख्य प्रौद्योगिकियां उपलब्ध हैं: क्षारीय, ठोस ऑक्साइड और प्रोटॉन एक्सचेंज मेम्ब्रेन PEM (पीईएम) इलेक्ट्रोलाइज़र। क्षारीय इलेक्ट्रोलाइज़र निवेश के मामले में अल्पमूल्य होते हैं (वे सामान्य रूप से निकल उत्प्रेरक का उपयोग करते हैं) लेकिन कम कुशल होते हैं। पीईएम इलेक्ट्रोलाइज़र अधिक महंगे होते हैं (वे सामान्य रूप से मूल्यवान प्लैटिनम-समूह धातु उत्प्रेरक का उपयोग करते हैं) लेकिन अधिक कुशल होते हैं और उच्च वर्तमान घनत्व पर काम कर सकते हैं और इसलिए संभवतः यह अल्पमूल्य हो सकता है यदि हाइड्रोजन का उत्पादन अधिक हो। ठोस ऑक्साइड इलेक्ट्रोलाइज़र सेल SOEC (एसओईसी) तीसरा सबसे सामान्य प्रकार का इलेक्ट्रोलिसिस है और दक्षता बढ़ाने के लिए उच्च परिचालन तापमान का उपयोग करता है। एसओईसी की सैद्धांतिक विद्युत दक्षता 90% हाइड्रोजन उत्पादन पर 100% के समीप है।[32] समय के साथ प्रणाली का ह्रास प्रारंभ में पीईएम और क्षारीय इलेक्ट्रोलाइज़र के विपरीत एसओईसी इलेक्ट्रोलाइज़र की दक्षता को प्रभावित नहीं करता है। जैसे ही एसओईसी प्रणाली का क्षरण होता है सेल वोल्टेज बढ़ता है और यह स्वाभाविक रूप से सिस्टम में अधिक गर्मी उत्पन्न करता है। इसके कारण सिस्टम को गर्म रखने के लिए कम ऊर्जा की आवश्यकता होती है जो प्रारंभ में नाटकीय गिरावट से होने वाली ऊर्जा हानि के लिए तत्पर होगी।[33]

पारंपरिक क्षारीय इलेक्ट्रोलिसिस में लगभग 70% की दक्षता होती है।[34] उच्च ताप मूल्य के स्वीकृत उपयोग के लिए लेखांकन (क्योंकि उत्प्रेरक द्वारा आवश्यक भाप बनाने के लिए गर्मी के माध्यम से अक्षमता को सिस्टम में वापस पुनर्निर्देशित किया जा सकता है), पीईएम इलेक्ट्रोलिसिस के लिए औसत कार्य क्षमता लगभग 80%है।[35][36] सन 2030 से पहले इसके 82-86% के बीच बढ़ने की आशा है[37] और पीईएम इलेक्ट्रोलाइज़र के लिए सैद्धांतिक दक्षता 94% तक अनुमानित है। [38]

एच2 प्राकृतिक गैस की कीमतों में उत्पादन लागत ($ -जीजीइ टैक्सरहित)

हाइड्रोजन के औद्योगिक उत्पादन को ध्यान में रखते हुए और जल के इलेक्ट्रोलिसिस (पीईएम या क्षारीय इलेक्ट्रोलिसिस) के लिए वर्तमान सर्वोत्तम प्रक्रियाओं का उपयोग करते हुए जिसकी प्रभावी विद्युत दक्षता 70-80% है। [38][39][40] 1 किलो हाइड्रोजन का उत्पादन (जिसमें 143 MJ/ किलोग्राम की एक विशिष्ट ऊर्जा है) की आवश्यकता है। $0.06/किलोवाट.घंटा की बिजली लागत पर, जैसा कि अमेरिकी ऊर्जा विभाग ने 2015 के लिए हाइड्रोजन उत्पादन लक्ष्य निर्धारित किया है,[41] हाइड्रोजन लागत $3/ किलोग्राम है। उपकरण की लागत बड़े पैमाने पर उत्पादन पर निर्भर करती है। 2022 तक विभिन्न विश्लेषक 2030 तक उपकरणों के वार्षिक निर्माण की भविष्यवाणी क्रमशः 47 GW, 104 GW और 180 GW के रूप में करते हैं।[42]

2016 से प्राकृतिक गैस के मूल्यों की सीमा के साथ जैसा कि ग्राफ में दिखाया गया है (हाइड्रोजनप्रोडक्शन टेक टीम रोडमैप, नवंबर 2017) भाप-मीथेन-सुधारित (SMR) हाइड्रोजन की लागत $1.20 और $1.50 के मध्य इलेक्ट्रोलिसिस के माध्यम से हाइड्रोजन की लागत मूल्य प्राप्त करती है। अभी भी दोगुने 2015 DOE लक्ष्य मूल्यों से अधिक है। 2020 में हाइड्रोजन के लिए यूनाइटेड स्टेट DOE लक्ष्य मूल्य $2.30/किग्रा है जिसके लिए $0.037/किलोवाट.घंटा की बिजली लागत की आवश्यकता होती है जो कई क्षेत्रों में पवन और सौर के लिए 2018 PPA निविदाओं[43] को प्राप्त करने योग्य है। यह $4/गैसोलीन गैलन समतुल्य (gge) H2 उद्देश्य को अच्छी तरह से पहुंच के भीतर रखता है और SMR (एसएमआर) के लिए अतिरिक्त प्राकृतिक गैस उत्पादन लागत के समीप है।

दुनिया के अन्य भागों में, एसएमआर हाइड्रोजन का मूल्य औसतन $1–3/किलोग्राम है। यह प्रारंभ से ही कई क्षेत्रों में इलेक्ट्रोलिसिस लागत प्रतिस्पर्धी के माध्यम से हाइड्रोजन का उत्पादन करता है जैसा कि नेल हाइड्रोजन[44] और अन्य द्वारा रेखांकित किया गया है जिसमें IEA (आईईए)[45] का एक लेख सम्मिलित है जो उन स्थितियों की जांच करता है जो इलेक्ट्रोलिसिस के लिए प्रतिस्पर्धात्मक लाभ का कारण बन सकती हैं। 2021-2022 वैश्विक ऊर्जा संकट के दौरान गैस के मूल्यों में वृद्धि ने विश्व के कुछ भागों नें हाइड्रोजन इलेक्ट्रोलिसिस को आर्थिक रूप दे दिया।[46]

कुछ बड़े औद्योगिक इलेक्ट्रोलाइज़र कई मेगावाट पर काम कर रहे हैं। 2022 तक सबसे बड़ी क्षारीय 150 मेगावाट की सुविधा जो निंग्ज़िया, चीन में है जिसकी क्षमता प्रति वर्ष 23,000 टन तक है। [47] जबकि उच्च दक्षता वाले पश्चिमी इलेक्ट्रोलिसिस उपकरण का मूल्य $1,200/ किलोवाट हो सकता है जहाँ कम दक्षता वाले चीनी उपकरण का मूल्य 300 डॉलर/ किलोवाट हो सकता है परंतु 60,000 घंटे कम जीवनकाल के साथ।[48]


ओवरपोटेंशियल (अतिक्षमता)

वास्तविक जल इलेक्ट्रोलाइज़र को आगे बढ़ने  हेतु प्रतिक्रिया के लिए उच्च वोल्टेज की आवश्यकता होती है। जो भाग 1.23 वोल्ट[49] से अधिक है उसे ओवरपोटेंशियल या ओवरवोल्टेज कहा जाता है और यह विद्युत रासायनिक प्रक्रिया में किसी भी प्रकार की हानि और आदर्शहीनता का प्रतिनिधित्व करता है।

अच्छी तरह से डिज़ाइन किए गए सेल के लिए एनोड पर ऑक्सीजन के लिए पानी के चार-इलेक्ट्रॉन ऑक्सीकरण के लिए सबसे बड़ी अतिसंवेदनशीलता प्रतिक्रिया है। इलेक्ट्रोकैटेलिस्ट इस प्रतिक्रिया को सुविधाजनक बना सकते हैं और इस ऑक्सीकरण के लिए प्लैटिनम मिश्र धातु कला की स्थिति है। इस प्रतिक्रिया के लिए एक अल्पमूल्य, प्रभावी इलेक्ट्रोकैटलिस्ट विकसित करना एक बड़ी उपलब्धि होगी, और यह वर्तमान शोध का विषय है। कई दृष्टिकोण हैं उनमें से मोलिब्डेनम सल्फाइड के लिए 30 साल पुरानी विधि[50] ग्राफीन क्वांटम डॉट्स के संभावित अनुप्रयोग,[51] कार्बन नैनोट्यूब,[25] पेरोव्साइट (संरचना),[52] और निकल/ निकल-ऑक्साइड है।[53][54] त्रि-मोलिब्डेनम फॉस्फाइड (MO3P) को हाल ही में उत्कृष्ट उत्प्रेरक गुणों के साथ एक आशाजनक अमूल्यवान धातु और पृथ्वी-प्रचुर मात्रा में उम्मीदवार के रूप में पाया गया है जिसका उपयोग इलेक्ट्रोकैटलिटिक प्रक्रियाओं के लिए किया जा सकता है। एमओ3पी नैनोकणों के उत्प्रेरक प्रदर्शन का परीक्षण हाइड्रोजन विकास प्रतिक्रिया (एचईआर) में किया जाता है जो 21 MV, H2 गठन दर के रूप में कम आरंभिक क्षमता का संकेत देता है और 214.7 µ mol s−1 g−1 cat (कैट) (केवल 100 MV पर अतिविभव) के वर्तमान घनत्व का आदान-प्रदान करता है और 279.07 µA cm−2, क्रमशः, जो प्लैटिनम के अभी तक देखे गए निकटतम मानों में से हैं।[55][56] कैथोड पर हाइड्रोजन का उत्पादन करने के लिए सरल दो-इलेक्ट्रॉन प्रतिक्रिया को इलेक्ट्रोकैटलाइज़ किया जा सकता है जिसमें प्लैटिनम या सैद्धांतिक रूप से हाइड्रोजनेज़ एंजाइम द्वारा लगभग कोई अतिविभव नहीं है। यदि अन्य, कम प्रभावी सामग्री का उपयोग कैथोड (जैसे सीसा) के लिए किया जाता है तो अतिक्षमता प्रदर्शित होगी।

थर्मोडायनामिक्स (ऊष्मागतिकी)

मानक स्थितियों में पानी के इलेक्ट्रोलिसिस के लिए पानी के प्रत्येक मोल को अलग करने के लिए सैद्धांतिक न्यूनतम 237 किलो जूल विद्युत ऊर्जा इनपुट की आवश्यकता होती है जो कि जल के गठन की मानक गिब्स मुक्त ऊर्जा है। प्रतिक्रिया की एन्ट्रापी में परिवर्तन को दूर करने के लिए भी ऊर्जा की आवश्यकता होती है इसलिए यदि कोई बाहरी ताप/ऊर्जा नहीं जोड़ा जाता है तो प्रक्रिया 286 किलो जूल प्रति मोल से नीचे नहीं जा सकती है।

चूँकि पानी के प्रत्येक मोल के लिए दो मोल इलेक्ट्रॉनों की आवश्यकता होती है और यह देखते हुए कि फैराडे स्थिरांक 'F' एक मोल इलेक्ट्रॉनों (96485 c/mol) के आवेश का प्रतिनिधित्व करता है यह इस प्रकार है कि इलेक्ट्रोलिसिस के लिए आवश्यक न्यूनतम वोल्टेज लगभग 1.23 वोल्ट है।[57] यदि इलेक्ट्रोलिसिस उच्च तापमान पर किया जाता है तो वोल्टेज कम हो जाता है। यह प्रभावी रूप से इलेक्ट्रोलाइज़र को 100% से अधिक विद्युत दक्षता पर संचालित करने की अनुमति देता है। विद्युत रासायनिक प्रक्रिया में इसका तात्पर्य है कि प्रतिक्रिया को बनाए रखने के लिए रिएक्टर को गर्मी की आपूर्ति की जानी चाहिए। इस तरह इलेक्ट्रोलिसिस ऊर्जा की आवश्यकता के भाग के लिए तापीय ऊर्जा का उपयोग किया जा सकता है।[58] इसी तरह से आवश्यक वोल्टेज को कम किया जा सकता है (1 वोल्ट से नीचे) यदि ईंधन (जैसे कार्बन, अल्कोहल, बायोमास) को जल (कम तापमान में (पीइएम) पेम आधारित इलेक्ट्रोलाइज़र) या ऑक्सीजन आयनों (उच्च तापमान में ठोस ऑक्साइड इलेक्ट्रोलाइट आधारित इलेक्ट्रोलाइज़र) के साथ प्रतिक्रिया की जाती है। इसके परिणामस्वरूप ईंधन की कुछ ऊर्जा का उपयोग इलेक्ट्रोलिसिस प्रक्रिया को सहायता करने के लिए किया जाता है और उत्पादित हाइड्रोजन की कुल लागत को कम कर सकता है।[59]

जबकि एंट्रॉपी घटक (और अन्य हानि) को देखते हुए व्यावहारिक वर्तमान घनत्व (थर्मोन्यूट्रल वोल्टेज) पर आगे बढ़ने हेतु प्रतिक्रिया के लिए 1.48 वोल्ट से अधिक वोल्टेज की आवश्यकता होती है।

पानी के इलेक्ट्रोलिसिस के संबंध में गिब्स मुक्त ऊर्जा प्रतिक्रिया के आगे बढ़ने के लिए आवश्यक न्यूनतम कार्य का प्रतिनिधित्व करती है और प्रतिक्रिया एन्थैल्पी ऊर्जा की मात्रा (कार्य व ऊष्मा दोनों) है जिसे प्रदान किया जाना है ताकि प्रतिक्रिया उत्पाद एक ही तापमान पर अभिकारक के रूप में (यानी ऊपर दिए गए मानों के लिए मानक तापमान) हों। संभावित रूप से 1.48 वोल्ट पर चलने वाला एक इलेक्ट्रोलाइज़र 25 डिग्री सेंटीग्रेट के तापमान पर समतापीय रूप से काम करेगा क्योंकि आपूर्ति की गई विद्युत ऊर्जा पानी के अपघटन की तापीय धारिता (गर्मी) के बराबर होगी और इसके लिए न्यूनतम से 20% अधिक विद्युत ऊर्जा की आवश्यकता होगी।

यह भी देखें


संदर्भ

  1. "Hydrogen Basics — Production". Florida Solar Energy Center. 2007. Archived from the original on 18 February 2008. Retrieved 5 February 2008.
  2. Levie, R. de (October 1999). "The electrolysis of water". Journal of Electroanalytical Chemistry. 476 (1): 92–93. doi:10.1016/S0022-0728(99)00365-4.[dead link]
  3. Davy, John, ed. (1839). "On Some Chemical Agencies of Electricity". The Collected Works of Sir Humphry Davy. Vol. 5. pp. 1–12.
  4. Lachinov Dmitry Aleksandrovich. Archived from the original on 26 July 2011. {{cite encyclopedia}}: |work= ignored (help)
  5. Zumdahl, Steven S.; Zumdahl, Susan A. (1 January 2013). रसायन विज्ञान (9th ed.). Cengage Learning. p. 30. ISBN 978-1-13-361109-7.
  6. Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis". Journal of Hydrogen Energy. 38 (12): 4901–4934. doi:10.1016/j.ijhydene.2013.01.151.
  7. C. S. Fuller "Defect Interactions in Semiconductors" Chapter 5 pp. 192-221 in "Semiconductors" N. B. Hannay Ed. Reinhold, New York 1959
  8. Light, Truman S.; Licht, Stuart; Bevilacqua, Anthony C.; Morash, Kenneth R. (1 January 2005). "The Fundamental Conductivity and Resistivity of Water". Electrochemical and Solid-State Letters. 8 (1): E16–E19. doi:10.1149/1.1836121. ISSN 1099-0062. S2CID 54511887.
  9. PAULING, LINUS (1953). "Section 15-2". General Chemistry (2nd ed.).
  10. Haynes, William M. (2012). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (93rd, 2012-2013 ed.). Boca Raton, Fla.: CRC. ISBN 9781439880494. OCLC 793213751.
  11. Badwal, SPS; Giddey S; Munnings C (2012). "Hydrogen production via solid electrolytic routes". WIREs Energy and Environment. 2 (5): 473–487. doi:10.1002/wene.50. S2CID 135539661. Archived from the original on 2 June 2013. Retrieved 23 January 2013.
  12. Jump up to: 12.0 12.1 Wang, Yifei; Narayanan, S. R.; Wu, Wei (11 July 2017). "Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells". ACS Nano. 11 (8): 8421–8428. doi:10.1021/acsnano.7b04038. ISSN 1936-0851. PMID 28686412.
  13. Jump up to: 13.0 13.1 Blain, Loz (16 March 2022). "Record-breaking hydrogen electrolyzer claims 95% efficiency". New Atlas (in English). Retrieved 25 December 2022.
  14. "2001-High pressure electrolysis – The key technology for efficient H.2" (PDF).
  15. Ghosh, P.C; Emonts, B; Janßen, H; Mergel, J; Stolten, D (2003). "Ten years of operational experience with a hydrogen-based renewable energy supply system" (PDF). Solar Energy. 75 (6): 469–478. Bibcode:2003SoEn...75..469G. doi:10.1016/j.solener.2003.09.006. Archived from the original (PDF) on 27 March 2009.
  16. "High temperature electrolysis using SOEC". Hi2h2. Archived from the original on 3 March 2016. Retrieved 5 May 2016.
  17. "WELTEMPWater electrolysis at elevated temperatures". Weltemp.eu. 31 December 2010. Archived from the original on 3 March 2016. Retrieved 5 May 2016.
  18. Alternative electrochemical systems for ozonation of water. NASA Tech Briefs (Technical report). NASA. 20 March 2007. MSC-23045. Retrieved 17 January 2015.
  19. Nakhiah Goulbourne. "Research Topics for Materials and Processes for PEM Fuel Cells REU for 2008". Virginia Tech. Archived from the original on 27 February 2009. Retrieved 18 July 2008.
  20. Zhiwei Yang; et al. (2004). "Novel inorganic/organic hybrid electrolyte membranes" (PDF). Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49 (2): 599. Archived from the original (PDF) on 28 April 2017. Retrieved 19 October 2021.
  21. US patent 5266421, Townsend, Carl W. & Naselow, Arthur B., "Enhanced membrane-electrode interface", issued 2008-11-30, assigned to Hughes Aircraft 
  22. Gabriel Gache (17 December 2007). "New Proton Exchange Membrane Developed – Nafion promises inexpensive fuel-cells". Softpedia. Retrieved 18 July 2008.
  23. "Supercritical | Developing the world's most efficient electrolyser | England". Supercritical (in English). Retrieved 6 November 2021.
  24. "A low-cost water splitter that runs on an ordinary AAA battery". KurzweilAI. 22 August 2014. Archived from the original on 16 April 2015. Retrieved 11 April 2015.
  25. Jump up to: 25.0 25.1 Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie (2014). "Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis". Nature Communications. 5: 4695. Bibcode:2014NatCo...5.4695G. doi:10.1038/ncomms5695. PMID 25146255.
  26. Mulder, F. M.; et al. (2017). "Efficient electricity storage with the battolyser, an integrated Ni-Fe-battery and electrolyser". Energy and Environmental Science. 10 (3): 756–764. doi:10.1039/C6EE02923J.
  27. "Making Space Safer with Electrolysis". ASME. Archived from the original on 15 May 2012. Retrieved 26 May 2012.
  28. "Breathing Easy on the Space Station". NASA Science. Archived from the original on 19 May 2012. Retrieved 26 May 2012.
  29. Luca Bertuccioli; et al. (7 February 2014). "Development of water electrolysis in the European Union" (PDF). Client Fuel Cells and Hydrogen Joint Undertaking. (page 10) Archived 10 March 2016 at the Wayback Machine.
  30. Stensvold, Tore (26 January 2016). «Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyr Archived 5 March 2016 at the Wayback Machine. Teknisk Ukeblad, .
  31. Collins, Leigh (28 April 2022). "'Cheaper green hydrogen' | US start-up's novel low-cost electrolyser promises 30% more bang per buck | Recharge". Recharge | Latest renewable energy news (in English).
  32. "Helmeth". High Temperature Electrolysis Cell.
  33. "Lessons learned from SOFC/SOEC Development" (PDF). DOE.
  34. Stolten, Detlef (4 January 2016). Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons. p. 898. ISBN 9783527674299. Archived from the original on 22 April 2018. Retrieved 22 April 2018.
  35. Bernholz, Jan (13 September 2018). "RWE's former, current and possible future energy storage applications" (PDF). RWE. p. 10. Total Efficiency: 70%, or 86% (usage of waste heat)
  36. "ITM – Hydrogen Refuelling Infrastructure – February 2017" (PDF). level-network.com. p. 12. Archived (PDF) from the original on 17 April 2018. Retrieved 17 April 2018.
  37. "Cost reduction and performance increase of PEM electrolysers" (PDF). Europa (web portal). p. 9. Archived (PDF) from the original on 17 April 2018. Retrieved 17 April 2018.
  38. Jump up to: 38.0 38.1 Bjørnar Kruse; Sondre Grinna; Cato Buch (13 February 2002). "हाइड्रोजन -स्टेटस और संभावनाएं" (PDF). The Bellona Foundation. p. 20. Archived from the original (PDF) on 16 September 2013. 94% तक PEM इलेक्ट्रोलाइज़र के लिए दक्षता कारकों की भविष्यवाणी की जाती है, लेकिन यह इस समय केवल सैद्धांतिक है।
  39. Werner Zittel; Reinhold Wurster (8 July 1996). "Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis". HyWeb: Knowledge – Hydrogen in the Energy Sector. Ludwig-Bölkow-Systemtechnik GmbH. Archived from the original on 7 February 2007. Retrieved 14 January 2006.
  40. "high-rate and high efficiency 3D water electrolysis". Grid-shift.com. Archived from the original on 22 March 2012. Retrieved 13 December 2011.
  41. "DOE Technical Targets for Hydrogen Production from Electrolysis". energy.gov. US Department of Energy. Archived from the original on 23 April 2018. Retrieved 22 April 2018.
  42. Collins, Leigh (12 April 2022). "8,000% growth | 'More than 100GW of hydrogen electrolysers to be produced annually by 2031' | Recharge". Recharge | Latest renewable energy news (in English). Archived from the original on 12 April 2022.
  43. Deign, Jason. "Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage". greentechmedia.com. Wood MacKenzie. Archived from the original on 4 February 2018. Retrieved 22 April 2018.
  44. "Wide Spread Adaption of Competitive Hydrogen Solution" (PDF). nelhydrogen.com. Nel ASA. Archived (PDF) from the original on 22 April 2018. Retrieved 22 April 2018.
  45. Philibert, Cédric. "Commentary: Producing industrial hydrogen from renewable energy". iea.org. International Energy Agency. Archived from the original on 22 April 2018. Retrieved 22 April 2018.
  46. Collins, Leigh (7 March 2022). "Ukraine war | Green hydrogen 'now cheaper than grey in Europe, Middle East and China': BNEF | Recharge". Recharge | Latest renewable energy news (in English). Archived from the original on 5 April 2022.
  47. Collins, Leigh (1 February 2022). "Record breaker | World's largest green hydrogen project, with 150MW electrolyser, brought on line in China | Recharge". Recharge | Latest renewable energy news (in English).
  48. Heyward, Hack (19 April 2022). "EXCLUSIVE | Beijing hydrogen body admits that Chinese electrolysers cannot compete with Western machines — yet | Recharge". Recharge | Latest renewable energy news (in English). Archived from the original on 20 April 2022.
  49. 1.23 V is the standard potential; in non-standard conditions it may be different, in particular, it decreases with temperature.
  50. Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming (2014). "Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters". Nature Chemistry. 6 (3): 248–253. Bibcode:2014NatCh...6..248K. doi:10.1038/nchem.1853. PMID 24557141.
  51. Fei, Huilong; Ye, Ruquan; Ye, Gonglan; Gong, Yongji; Peng, Zhiwei; Fan, Xiujun; Samuel, Errol L. G.; Ajayan, Pulickel M.; Tour, James M. (2014). "Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction". ACS Nano. 8 (10): 10837–43. doi:10.1021/nn504637y. PMID 25251218.
  52. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Gratzel, M. (2014). "Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts". Science. 345 (6204): 1593–1596. Bibcode:2014Sci...345.1593L. doi:10.1126/science.1258307. PMID 25258076. S2CID 24613846.
  53. Shwartz, Mark (22 August 2014). "Stanford scientists develop water splitter that runs on ordinary AAA battery". News.stanford.edu. Archived from the original on 16 April 2016. Retrieved 5 May 2016.
  54. "Scientists develop a water splitter that runs on an ordinary AAA battery". Technology.org. 25 August 2014. Retrieved 5 May 2016.
  55. Kondori, Alireza (2 May 2019). "Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo3P) for Electrochemical Hydrogen Evolution". Advanced Energy Materials. AdvancedEnergyMaterials. 9 (22): 1900516. doi:10.1002/aenm.201900516.
  56. Shi, Yanmei (25 January 2016). "Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction". Chemical Society Reviews. ChemicalSocietyReviews. 45 (6): 1529–1541. doi:10.1039/C5CS00434A. PMID 26806563.
  57. Hyman D. Gesser (2002). Applied Chemistry. Springer. pp. 16–. ISBN 978-0-306-46700-4. Retrieved 18 December 2011.
  58. Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (September 2013). "Hydrogen production via solid electrolytic routes". Wiley Interdisciplinary Reviews: Energy and Environment. 2 (5): 473–487. doi:10.1002/wene.50. S2CID 135539661.
  59. Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014). "Emerging electrochemical energy conversion and storage technologies (open access)". Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh....2...79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.


बाहरी कड़ियाँ