पुनरावृत्त एकीकरण के लिए कॉची सूत्र
पुनरावृत्त एकीकरण के लिए कॉची सूत्र, जिसका नाम ऑगस्टिन-लुई कॉची के नाम पर रखा गया है, किसी फलन के n प्रतिविभेदीकरण को एकल इंटीग्रल में संपीड़ित करने की अनुमति देता है (cf. एंटीडेरिवेटिव एकीकरण की तकनीक या कॉची का सूत्र)।
अदिश स्थिति
मान लीजिए f वास्तविक रेखा पर सतत फलन है। फिर आधार बिंदु a के साथ f का nवाँ दोहराया गया समागणना है,
![{\displaystyle f^{(-n)}(x)=\int _{a}^{x}\int _{a}^{\sigma _{1}}\cdots \int _{a}^{\sigma _{n-1}}f(\sigma _{n})\,\mathrm {d} \sigma _{n}\cdots \,\mathrm {d} \sigma _{2}\,\mathrm {d} \sigma _{1},}](/index.php?title=Special:MathShowImage&hash=7945cb393f6f8ef40ba410c5f6ba4dbf&mode=mathml)
एकल एकीकरण द्वारा दिया गया है
![{\displaystyle f^{(-n)}(x)={\frac {1}{(n-1)!}}\int _{a}^{x}\left(x-t\right)^{n-1}f(t)\,\mathrm {d} t.}](/index.php?title=Special:MathShowImage&hash=e0b819147aee1442c53563a8ffd92d46&mode=mathml)
प्रमाण
गणितीय प्रेरण द्वारा प्रमाण दिया जाता है। n=1 वाला आधार स्थिति सामान्य है, क्योंकि यह इसके समान है:
![{\displaystyle f^{(-1)}(x)={\frac {1}{0!}}\int _{a}^{x}{(x-t)^{0}}f(t)\,\mathrm {d} t=\int _{a}^{x}f(t)\,\mathrm {d} t}](/index.php?title=Special:MathShowImage&hash=55ffc144f1a9a9a8f1d96b622afe4999&mode=mathml)
अब, मान लीजिए कि यह n के लिए सत्य है, और आइए हम इसे n+1 के लिए सिद्ध करें। सबसे पहले
लीबनिज इंटीग्रल नियम नियम का उपयोग करते हुए, ध्यान दें
![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\left[{\frac {1}{n!}}\int _{a}^{x}\left(x-t\right)^{n}f(t)\,\mathrm {d} t\right]={\frac {1}{(n-1)!}}\int _{a}^{x}\left(x-t\right)^{n-1}f(t)\,\mathrm {d} t.}](/index.php?title=Special:MathShowImage&hash=f3be6d45ba47e023b3092b1ef45a9a15&mode=mathml)
फिर, प्रेरण परिकल्पना को प्रयुक्त करते हुए,
![{\displaystyle {\begin{aligned}f^{-(n+1)}(x)&=\int _{a}^{x}\int _{a}^{\sigma _{1}}\cdots \int _{a}^{\sigma _{n}}f(\sigma _{n+1})\,\mathrm {d} \sigma _{n+1}\cdots \,\mathrm {d} \sigma _{2}\,\mathrm {d} \sigma _{1}\\&=\int _{a}^{x}{\frac {1}{(n-1)!}}\int _{a}^{\sigma _{1}}\left(\sigma _{1}-t\right)^{n-1}f(t)\,\mathrm {d} t\,\mathrm {d} \sigma _{1}\\&=\int _{a}^{x}{\frac {\mathrm {d} }{\mathrm {d} \sigma _{1}}}\left[{\frac {1}{n!}}\int _{a}^{\sigma _{1}}\left(\sigma _{1}-t\right)^{n}f(t)\,\mathrm {d} t\right]\,\mathrm {d} \sigma _{1}\\&={\frac {1}{n!}}\int _{a}^{x}\left(x-t\right)^{n}f(t)\,\mathrm {d} t.\end{aligned}}}](/index.php?title=Special:MathShowImage&hash=005673f79f472864ac58f21d0e8acfee&mode=mathml)
इससे प्रमाण पूर्ण हो जाता है।
सामान्यीकरण और अनुप्रयोग
कॉची सूत्र को रीमैन-लिउविल इंटीग्रल द्वारा गैर-पूर्णांक मापदंडों के लिए सामान्यीकृत किया गया है जहां
को
द्वारा प्रतिस्थापित किया गया है और फैक्टोरियल को गामा फलन द्वारा प्रतिस्थापित किया गया है। दो सूत्र तब सहमत होते हैं जब
कॉची सूत्र और रीमैन-लिउविल इंटीग्रल दोनों को रीज़ क्षमता द्वारा अनैतिक आयाम के लिए सामान्यीकृत किया गया है।
भिन्नात्मक गणना में, इन सूत्रों का उपयोग भिन्न-भिन्न के निर्माण के लिए किया जा सकता है, जिससे व्यक्ति को कई बार भिन्नात्मक संख्या में अंतर करने या एकीकृत करने की अनुमति मिलती है। इस प्रकार भिन्नात्मक एकीकरण द्वारा भिन्नात्मक संख्या में कई बार अंतर किया जा सकता है, फिर परिणाम में अंतर किया जा सकता है।
संदर्भ
- Augustin-Louis Cauchy: Trente-Cinquième Leçon. In: Résumé des leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823. Reprint: Œuvres complètes II(4), Gauthier-Villars, Paris, pp. 5–261.
- Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). ISBN 0-13-065265-2
बाहरी संबंध