प्रकाश की परिवर्तनशील गति

From Vigyanwiki

प्रकाश की परिवर्तनशील गति (वीएसएल) परिकल्पना के वर्ग की विशेषता मानी जाती है जिसमें यह कहा गया है कि प्रकाश की गति किसी प्रकार से भौतिक स्थिर नहीं हो सकती है, इस प्रकार से उदाहरण के लिए, यह अंतरिक्ष या समय में भिन्न होती है, या आवृत्ति पर निर्भर करती है। स्वीकृत मौलिक भौतिकी, और विशेष रूप से सामान्य सापेक्षता में, स्थानीयता के संदर्भ के किसी भी सिद्धांत में प्रकाश की निरंतर गति की भविष्यवाणी करते हैं और कुछ स्थितियों में ये संदर्भ के फ्रेम के आधार पर प्रकाश की गति की स्पष्ट भिन्नता की भविष्यवाणी करते हैं, किन्तु यह लेख संदर्भित नहीं करता है यह प्रकाश की परिवर्तनशील गति के रूप में मने जाते है। गुरुत्वाकर्षण और ब्रह्माण्ड विज्ञान के विभिन्न वैकल्पिक सिद्धांत, उनमें से दुसरे-मुख्यधारा, प्रकाश की स्थानीय गति में विविधताओं को सम्मिलित किये जाते हैं।

इस प्रकार से 1957 में रॉबर्ट डिके द्वारा और 1980 के दशक के अंत से प्रारंभ होने वाले कई शोधकर्ताओं द्वारा भौतिकी में प्रकाश की परिवर्तनशील गति गति को सम्मिलित करने का प्रयास किया गया था।

वीएसएल को प्रकाश से भी तेज सिद्धांतों, माध्यम के अपवर्तनांक पर इसकी निर्भरता या गुरुत्वाकर्षण क्षमता में दूरस्थ पर्यवेक्षक के संदर्भ फ्रेम में इसके माप के साथ भ्रमित नहीं होना चाहिए।, और संघनित पदार्थ भौतिकी के अपवर्तक सूचकांक पर इसकी निर्भरता या गुरुत्वाकर्षण क्षमता में दूरस्थ पर्यवेक्षक के संदर्भ के फ्रेम में इसकी माप की जाती है । और इस संदर्भ में, प्रकाश की गति फोटॉन के प्रसार के वेग के अतिरिक्त सिद्धांत की सीमित गति c को संदर्भित करती है।

ऐतिहासिक प्रस्ताव

पृष्ठभूमि

आइंस्टीन का तुल्यता सिद्धांत, जिस पर सामान्य सापेक्षता आधारित होते है, के लिए आवश्यकता है कि किसी भी स्थानीय, स्वतंत्र रूप से गिरने वाले संदर्भ फ्रेम में, प्रकाश की गति सदैव समान होती है।[1][2] यह संभावना को इस प्रकार से खोलता है, चूंकि दूर के क्षेत्र में प्रकाश की स्पष्ट गति का अनुमान लगाने वाले जड़त्वीय पर्यवेक्षक अलग मूल्य की गणना कर सकता है। और दूर के पर्यवेक्षक के समय के संदर्भ में मापी गई गुरुत्वाकर्षण क्षमता में प्रकाश की गति का स्थानिक परिवर्तन सामान्य सापेक्षता में निहित रूप से सम्मिलित होते है।[3] इस प्रकार से गुरुत्वाकर्षण क्षेत्र में प्रकाश की स्पष्ट गति बदल जाएगी और, विशेष रूप से, दूर के पर्यवेक्षक द्वारा देखे गए घटना क्षितिज पर शून्य हो जाएगी।[4] गोलाकार-सममित विशाल पिंड के कारण गुरुत्वाकर्षण रेडशिफ्ट प्राप्त करने में प्रकाश की रेडियल गति dr/dt को श्वार्ज़स्चिल्ड निर्देशांक में परिभाषित किया जा सकता है, जिसमें t अनंत पर स्थिर घड़ी पर रिकॉर्ड किया गया समय है। इस प्रकार से परिणाम प्रदर्शित है

जहाँ m MG/c2 है और जहां प्राकृतिक इकाइयों का उपयोग इस प्रकार किया जाता है कि c0 के सामान होते है।[5][6]

डिके का प्रस्ताव (1957)

1957 में रॉबर्ट डिके ने गुरुत्वाकर्षण का VSL सिद्धांत विकसित किया है इस प्रकार का सिद्धांत जिसमें (सामान्य सापेक्षता के विपरीत) मुक्त रूप से गिरने वाले पर्यवेक्षक द्वारा स्थानीय रूप से मापी गई प्रकाश की गति भिन्न हो सकती है।[7] डिके ने माना कि आवृत्तियों और तरंग दैर्ध्य दोनों भिन्न हो सकते हैं, डिके ने माना कि आवृत्तियाँ और तरंग दैर्ध्य दोनों भिन्न हो सकते हैं, जिसके परिणामस्वरूप के परिणामस्वरूप c का सापेक्ष परिवर्तन हुआ।

सूचकांक ग्रहण किया (eqn. 5) और इसे प्रकाश विक्षेपण के लिए देखे गए मान के अनुरूप प्रमाणित किया गया है। मच के सिद्धांत से संबंधित टिप्पणी में, डिके ने सुझाव दिया कि, इस प्रकार से eq में शब्द का दाहिना भाग होता है। 5 छोटा भाग है, बायां भाग, 1, ब्रह्मांड के शेष पदार्थ में इसकी उत्पत्ति हो सकती है।

यह देखते हुए कि बढ़ते क्षितिज वाले ब्रह्मांड में अधिक से अधिक द्रव्यमान उपरोक्त अपवर्तक सूचकांक में योगदान करते हैं, डिके ने ब्रह्मांड विज्ञान पर विचार किया जहां सी समय में कमी आई, हबल के नियम के लिए वैकल्पिक स्पष्टीकरण प्रदान किया।[7]: 374 

बाद के प्रस्ताव

डिके सहित प्रकाश मॉडल की परिवर्तनीय गति विकसित की गई है जो सामान्य सापेक्षता के सभी ज्ञात परीक्षणों से सहमत होते हैं।[8]

अन्य मॉडल तुल्यता सिद्धांत पर प्रकाश डालने का प्रमाणित करते हैं[9] या डिराक की बड़ी संख्या परिकल्पना से लिंक बनाते हैं।[10]

प्रकाश की अलग-अलग गति के लिए कई परिकल्पनाएं, सामान्य सापेक्षता सिद्धांत के विपरीत प्रतीत होती हैं, प्रकाशित की गई हैं, जिनमें गियर और टैन (1986) सम्मिलित किये गये हैं।[11] और संजौंड (2009)।[12] और 2003 में, मैगुएजो ने ऐसी परिकल्पनाओं की समीक्षा की थी।[13]

इस पकर से प्रकाश की अलग-अलग गति वाले कॉस्मोलॉजिकल मॉडल को प्रस्तावित किया गया है [14] और 1988 में जीन-पियरे पेटिट द्वारा स्वतंत्र रूप से प्रयुक्त किया गया है,[15] जिससे जॉन मोफ़त (भौतिक विज्ञानी) 1992 में,[16] और 1998 में एंड्रियास अल्ब्रेक्ट (ब्रह्माण्ड विज्ञानी)और जोआओ मगुइजो की टीम[17] और भौतिक ब्रह्माण्ड विज्ञान की क्षितिज समस्या की व्याख्या करने और ब्रह्मांडीय मुद्रास्फीति के विकल्प का प्रस्ताव करने के लिए आवश्यक होते है।

अन्य स्थिरांकों से संबंध और उनकी भिन्नता

गुरुत्वाकर्षण स्थिरांक G

इस प्रकार से 1937 में, पॉल डिराक और अन्य ने समय के साथ बदलते प्राकृतिक स्थिरांक के परिणामों की जांच प्रारंभ की गयी।[18] उदाहरण के लिए, डिराक ने 10 में केवल 5 भागों का परिवर्तन प्रस्तावित किया और अन्य मौलिक बल की तुलना में गुरुत्वाकर्षण बल की सापेक्ष अशक्तता की व्याख्या करने के लिए 11 प्रति वर्ष गुरुत्वाकर्षण स्थिरांक G यह डिराक बड़ी संख्या परिकल्पना के रूप में जाना जाता है।

चूँकि रिचर्ड फेनमैन ने यह दिखाया की [19] भूगर्भीय और सौर प्रणाली के अवलोकनों के आधार पर पिछले 4 बिलियन वर्षों में गुरुत्वाकर्षण स्थिरांक सबसे अधिक संभावना को नहीं बदल सकता है, किन्तु यह G के अलगाव में भिन्नता के बारे में धारणाओं पर निर्भर हो सकता है। (मजबूत समतुल्य सिद्धांत भी देखें गए है।)

ललित-संरचना स्थिरांक α

दूर के क्वासरों का अध्ययन करने वाले समूह ने सही प्रकार से स्थिरांक की भिन्नता का पता लगाने का प्रमाणित किया है[20] 105 में भाग में स्तर अन्य लेखक इन परिणामों पर विवाद करते हैं। और क्वासर का अध्ययन करने वाले अन्य समूह बहुत अधिक संवेदनशीलता पर कोई पता लगाने योग्य भिन्नता का प्रमाणित नहीं करते हैं।[21][22][23]

ओक्लो के प्राकृतिक परमाणु रिएक्टर का उपयोग यह जांचने के लिए किया गया है कि पिछले 2 अरब वर्षों में परमाणु ठीक-संरचना स्थिर α संभवतः बदल गया हो या नहीं। ऐसा इसलिए है क्योंकि α विभिन्न परमाणु प्रतिक्रियाओं की दर को प्रभावित करता है। उदाहरण के लिए, 149
Sm
बनने के लिए न्यूट्रॉन को पकड़ लेता है 150
Sm
, और चूंकि न्यूट्रॉन कैप्चर की दर α के मान पर निर्भर करती है, ओक्लो से नमूनों में दो समैरियम समस्थानिकों के अनुपात का उपयोग 2 अरब साल पहले के α के मूल्य की गणना के लिए किया जा सकता है। कई अध्ययनों ने ओक्लो में छोड़े गए रेडियोधर्मी समस्थानिकों की सापेक्ष सांद्रता का विश्लेषण किया है, और अधिकांश ने निष्कर्ष यह निकाला है कि परमाणु प्रतिक्रियाएं तब भी वैसी ही थीं जैसी वर्तमान समय में प्रयुक्त हैं, जिसका अर्थ यह है कि α भी वही था।[24][25]

पॉल डेविस और सहयोगियों ने सुझाव दिया है कि सैद्धांतिक रूप से यह संभव है कि कौन से विमीय स्थिरांक (प्राथमिक आवेश, प्लैंक का स्थिरांक, और प्रकाश की गति) में से कौन सा सूक्ष्म-संरचना स्थिरांक बना है, भिन्नता के लिए उत्तरदायी होते है।[26] चूंकि यह अन्य लोगों द्वारा विवादित रहा है और सामान्यतः पर इसे स्वीकार नहीं किया जाता है।[27][28]

विभिन्न वीएसएल अवधारणाओं की आलोचना

विमाहीन और विमापूर्ण मात्राएं

यह स्पष्ट किया जाना चाहिए कि विमीय मात्रा में भिन्नता का वास्तव में क्या अर्थ है, क्योंकि ऐसी किसी भी मात्रा को केवल अपनी पसंद की इकाइयों को परावर्तित किया जा सकता है। इसे जॉन डी. बैरो ने लिखा था:

एक महत्वपूर्ण सबक हम इस तरह से सीखते हैं कि α जैसी शुद्ध संख्याएं ब्रह्माण्ड को परिभाषित करती हैं, ब्रह्माण्ड के अलग होने का वास्तव में क्या अर्थ है। शुद्ध संख्या जिसे हम फाइन-स्ट्रक्चर स्थिरांक कहते हैं और α द्वारा निरूपित करते हैं, इलेक्ट्रॉन आवेश, e, प्रकाश की गति, c, और प्लांक स्थिरांक, h का संयोजन है। सबसे पहले हम यह विचार के लिए विवश हो सकते हैं कि जिस ब्रह्माण्ड में प्रकाश की गति धीमी थी वह अलग ब्रह्माण्ड होगी। किन्तु यह गलती होगी. यदि c, h, और e सभी को बदल दिया गया था ताकि मीट्रिक (या किसी अन्य) इकाइयों में उनके मान अलग-अलग हों, इस प्रकार से जब हम उन्हें भौतिक स्थिरांक की तो हमारी तालिकाओं में देखा गया की , किन्तु α का मान वही रहा, यह नई ब्रह्माण्ड और हमारी ब्रह्माण्ड से अवलोकनीय रूप से अप्रभेद्य होगा। किन्तु ब्रह्माण्ड की परिभाषा में केवल चीज जो प्रमुख मानी जाती है वह प्रकृति के आयामहीन स्थिरांक के मूल्य होते हैं। यदि सभी द्रव्यमान मूल्य में दोहरा हो गए [प्लैंक द्रव्यमान mP] इस प्रकार से आप प्रयुक्त नहीं कर सकते हो क्योंकि द्रव्यमान के किसी भी युग्म के अनुपात द्वारा परिभाषित सभी शुद्ध संख्याएँ अपरिवर्तित रहती हैं।[29]

भौतिक नियम के किसी भी समीकरण को ऐसे रूप में व्यक्त किया जा सकता है जिसमें सभी आयामी मात्राओं को समान-आयाम वाली मात्राओं के विरुद्ध सामान्यीकृत किया जाता है (जिसे गैर-विमीयकरण कहा जाता है), जिसके परिणामस्वरूप केवल आयाम रहित संख्या शेष रहती है। वास्तव में, भौतिक विज्ञानी अपनी इकाइयों का चयन कर सकते हैं ताकि भौतिक स्थिरांक प्रकाश की गति, गुरुत्वाकर्षण स्थिरांक, प्लैंक स्थिरांक|ħ = h/(2π), 4πε0,और kB का मान एक लें, जिसके परिणामस्वरूप प्रत्येक भौतिक मात्रा को उसकी संबंधित प्लैंक इकाई के विरुद्ध सामान्यीकृत किया जाता है। उसके लिए, यह प्रयुक्त किया गया है कि आयामी मात्रा के विकास को निर्दिष्ट करना अर्थहीन है और इसका कोई प्रमाणित नहीं होते है।[30] जब प्लैंक इकाइयों का उपयोग किया जाता है और भौतिक नियम के ऐसे समीकरणों को इस गैर-आयामी रूप में व्यक्त किया जाता है, तो c, G, ħ, ε0, जैसे कोई आयामी भौतिक स्थिरांक नहीं होते हैं। न ही kB बकिंघम π प्रमेय द्वारा भविष्यवाणी की गई, केवल आयामहीन मात्राएं बनी रहें। उनकी मानव मौलिक यूनिट निर्भरता से कम, प्रकाश की कोई गति नहीं है, गुरुत्वाकर्षण स्थिरांक, और न ही प्लैंक स्थिरांक, भौतिक वास्तविकता के गणितीय अभिव्यक्तियों में शेष है जो की इस प्रकार के काल्पनिक भिन्नता के अधीन होते है। उदाहरण के लिए, काल्पनिक रूप से भिन्न गुरुत्वीय स्थिरांक, G के स्थितियों में, प्रासंगिक आयाम रहित मात्राएँ जो संभावित रूप से भिन्न होती हैं, अंततः मौलिक कण के द्रव्यमान के लिए प्लैंक द्रव्यमान का अनुपात बन जाती हैं। कुछ प्रमुख आयाम रहित मात्राएँ (स्थिर मानी जाती हैं) जो प्रकाश की गति से संबंधित हैं (अन्य आयामी मात्राओं जैसे ħ, e, ε0 के बीच), विशेष रूप से ठीक-संरचना स्थिरांक या प्रोटॉन-से-इलेक्ट्रॉन द्रव्यमान अनुपात, सिद्धांत रूप में अर्थपूर्ण विचरण हो सकता है और उनकी संभावित भिन्नता का अध्ययन जारी है।[30]

अलग-अलग ब्रह्मांड विज्ञान की सामान्य समालोचना

इस प्रकार से बहुत ही सामान्य दृष्टिकोण से, जॉर्ज फ्रांसिस रेनर एलिस जी. एफ आर एलिस और जीन-फिलिप उज़ान [एफआर ] ने चिंता व्यक्त की कि भिन्न c को वर्तमान प्रणाली को बदलने के लिए आधुनिक भौतिकी के बहुत से पुनर्लेखन की आवश्यकता होती है जो की स्थिर c पर निर्भर करता है।[31][32] एलिस ने प्रमाणित किया है कि किसी भी बदलते सी सिद्धांत (1) को दूरी माप को फिर से परिभाषित करना चाहिए; (2) सामान्य सापेक्षता में मीट्रिक टेंसर के लिए वैकल्पिक अभिव्यक्ति प्रदान करनी चाहिए; (3) लोरेंत्ज़ के आक्रमण का खंडन कर सकता है; (4) मैक्सवेल के समीकरणों को संशोधित करना चाहिए; और (5) अन्य सभी भौतिक सिद्धांतों के संबंध में निरन्तर किया जाना चाहिए। इस प्रकार से वीएसएल ब्रह्माण्ड विज्ञान भौतिकी की मुख्यधारा से बाहर होती हैं।

संदर्भ

  1. Will, Clifford M. (2018-09-30). गुरुत्वाकर्षण भौतिकी में सिद्धांत और प्रयोग (in English). Cambridge University Press. p. 238. ISBN 978-1-108-57749-6.
  2. Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (2017-10-03). आकर्षण-शक्ति (in English). Princeton University Press. p. 297. ISBN 978-1-4008-8909-9.
  3. Weinberg, S. (1972). गुरुत्वाकर्षण और ब्रह्मांड विज्ञान. London: Wiley. p. 222. ISBN 9780471925675.
  4. Bergmann, Peter (1992). गुरुत्वाकर्षण की पहेली (1st reprint from 1968 ed.). New York: Dover. p. 94. ISBN 978-0-486-27378-5.
  5. Tolman, Richard (1958). सापेक्षता ब्रह्मांड विज्ञान और ऊष्मप्रवैगिकी (1st reprint from 1934 ed.). Oxford UK: Oxford. p. 212.
  6. Stavrov, Iva (2020). ज्यामितीय विश्लेषण के परिचय के साथ अंतरिक्ष और समय की वक्रता. Providence, Rhode Island: American Mathematical Society. p. 179. ISBN 978-1-4704-6313-7. OCLC 1202475208.
  7. 7.0 7.1 R. Dicke (1957). "समतुल्यता के सिद्धांत के बिना गुरुत्वाकर्षण". Reviews of Modern Physics. 29 (3): 363–376. Bibcode:1957RvMP...29..363D. doi:10.1103/RevModPhys.29.363.
  8. J. Broekaert (2008). "जीआरटी की 1-पीएन सीमा के साथ एक स्थानिक-वीएसएल ग्रेविटी मॉडल". Foundations of Physics. 38 (5): 409–435. arXiv:gr-qc/0405015. Bibcode:2008FoPh...38..409B. doi:10.1007/s10701-008-9210-8. S2CID 8955243.
  9. M. Arminjon (2006). "गुरुत्वाकर्षण के एक अदिश सिद्धांत में अंतरिक्ष आइसोट्रॉपी और कमजोर तुल्यता सिद्धांत". Brazilian Journal of Physics. 36 (1B): 177–189. arXiv:gr-qc/0412085. Bibcode:2006BrJPh..36..177A. doi:10.1590/S0103-97332006000200010. S2CID 6415412.
  10. A. Unzicker (2009). "Dirac, Sciama, और Dicke के ब्रह्माण्ड विज्ञान में परित्यक्त योगदान पर एक नज़र". Annalen der Physik. 521 (1): 57–70. arXiv:0708.3518. Bibcode:2009AnP...521...57U. doi:10.1002/andp.200810335. S2CID 11248780.
  11. Giere, A. C.; A. Tan (1986). "हबल की व्युत्पत्ति।". Chinese Journal of Physics. 24 (3): 217–219.
  12. Sanejouand, Yves-Henri (2009). "अलग-अलग गति-की-प्रकाश के पक्ष में अनुभवजन्य साक्ष्य". Europhysics Letters. 88: 59002. arXiv:0908.0249. doi:10.1209/0295-5075/88/59002. S2CID 121784053.
  13. Magueijo, João (2003). "प्रकाश सिद्धांतों की नई बदलती गति". Reports on Progress in Physics. 66 (11): 2025–2068. arXiv:astro-ph/0305457. Bibcode:2003RPPh...66.2025M. doi:10.1088/0034-4885/66/11/R04. S2CID 15716718.
  14. J.D. Barrow (1998). "Cosmologies with varying light-speed". Physical Review D. 59 (4): 043515. arXiv:astro-ph/9811022. Bibcode:1999PhRvD..59d3515B. doi:10.1103/PhysRevD.59.043515. S2CID 119374406.
  15. J.P. Petit (1988). "An interpretation of cosmological model with variable light velocity" (PDF). Mod. Phys. Lett. A. 3 (16): 1527–1532. Bibcode:1988MPLA....3.1527P. CiteSeerX 10.1.1.692.9603. doi:10.1142/S0217732388001823.
  16. J. Moffat (1993). "Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology". Int. J. Mod. Phys. D. 2 (3): 351–366. arXiv:gr-qc/9211020. Bibcode:1993IJMPD...2..351M. doi:10.1142/S0218271893000246. S2CID 17978194.
  17. A. Albrecht; J. Magueijo (1999). "ब्रह्माण्ड संबंधी पहेलियों के समाधान के रूप में प्रकाश की अलग-अलग गति". Phys. Rev. D59 (4): 043516. arXiv:astro-ph/9811018. Bibcode:1999PhRvD..59d3516A. doi:10.1103/PhysRevD.59.043516. S2CID 56138144.
  18. P.A.M. Dirac (1938). "ब्रह्मांड विज्ञान के लिए एक नया आधार". Proceedings of the Royal Society A. 165 (921): 199–208. Bibcode:1938RSPSA.165..199D. doi:10.1098/rspa.1938.0053.
  19. R. P. Feynman; R. Leighton; M. Sands (2006) [1964]. "7: The Theory of Gravitation". भौतिकी पर फेनमैन व्याख्यान. Vol. 1 (definitive ed.). Addison Wesley Longman. ISBN 0-8053-9045-6.
  20. J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska and A.M. Wolfe (2001). "फाइन स्ट्रक्चर कॉन्स्टेंट के कॉस्मोलॉजिकल इवोल्यूशन के लिए और साक्ष्य". Phys. Rev. Lett. 87 (9): 091301. arXiv:astro-ph/0012539. Bibcode:2001PhRvL..87i1301W. doi:10.1103/PhysRevLett.87.091301. PMID 11531558. S2CID 40461557.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. H. Chand, R. Srianand, P. Petitjean and B. Aracil (2004). "Probing the cosmological variation of the fine-structure constant: results based on VLT-UVES sample". Astron. Astrophys. 417 (3): 853–871. arXiv:astro-ph/0401094. Bibcode:2004A&A...417..853C. doi:10.1051/0004-6361:20035701. S2CID 17863903.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. R. Srianand, H. Chand, P. Petitjean and B. Aracil (2004). "दूर के क्वासरों के स्पेक्ट्रा में अवशोषण लाइनों से कम ऊर्जा सीमा में विद्युत चुम्बकीय नी-संरचना स्थिरांक की समय भिन्नता पर सीमाएं". Phys. Rev. Lett. 92 (12): 121302. arXiv:astro-ph/0402177. Bibcode:2004PhRvL..92l1302S. doi:10.1103/PhysRevLett.92.121302. PMID 15089663. S2CID 29581666.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. S. A. Levshakov, M. Centurion, P. Molaro and S. D'Odorico (2005). "VLT/UVES constraints on the cosmological variability of the fine-structure constant". Astron. Astrophys. 434 (3): 827–838. arXiv:astro-ph/0408188. Bibcode:2005A&A...434..827L. doi:10.1051/0004-6361:20041827. S2CID 119351573.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Petrov, Yu. V.; Nazarov, A. I.; Onegin, M. S.; Sakhnovsky, E. G. (2006). "Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core". Physical Review C. 74 (6): 064610. arXiv:hep-ph/0506186. Bibcode:2006PhRvC..74f4610P. doi:10.1103/PHYSREVC.74.064610. S2CID 118272311.
  25. Davis, Edward D.; Hamdan, Leila (2015). "Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors". Physical Review C. 92 (1): 014319. arXiv:1503.06011. Bibcode:2015PhRvC..92a4319D. doi:10.1103/physrevc.92.014319. S2CID 119227720.
  26. P.C.W. Davies; Tamara M. Davis; Charles H. Lineweaver (2002). "Cosmology: Black holes constrain varying constants". Nature. 418 (6898): 602–603. Bibcode:2002Natur.418..602D. doi:10.1038/418602a. PMID 12167848. S2CID 1400235.
  27. Duff, M. J. (2002). "मौलिक नियतांकों के काल-विचरण पर टिप्पणी कीजिए". arXiv:hep-th/0208093.
  28. S. Carlip & S. Vaidya (2003). "ब्लैक होल अलग-अलग स्थिरांक को बाधित नहीं कर सकते हैं". Nature. 421 (6922): 498. arXiv:hep-th/0209249. Bibcode:2003Natur.421..498C. doi:10.1038/421498a. PMID 12556883. S2CID 209814835.
  29. John D. Barrow, The Constants of Nature; From Alpha to Omega – The Numbers that Encode the Deepest Secrets of the Universe, Pantheon Books, New York, 2002, ISBN 0-375-42221-8.
  30. 30.0 30.1 Uzan, Jean-Philippe (2003). "The fundamental constants and their variation: Observational status and theoretical motivations". Reviews of Modern Physics. 75 (2): 403–455. arXiv:hep-ph/0205340. Bibcode:2003RvMP...75..403U. doi:10.1103/RevModPhys.75.403. S2CID 118684485.
  31. George F R Ellis (April 2007). "लाइट कॉस्मोलॉजी की बदलती गति पर ध्यान दें". General Relativity and Gravitation. 39 (4): 511–520. arXiv:astro-ph/0703751. Bibcode:2007GReGr..39..511E. doi:10.1007/s10714-007-0396-4. S2CID 119393303.
  32. Ellis, George F. R.; Uzan, Jean-Philippe (March 2005). "c is the speed of light, isn't it?". American Journal of Physics (in English). 73 (3): 240–247. arXiv:gr-qc/0305099. Bibcode:2005AmJPh..73..240E. doi:10.1119/1.1819929. ISSN 0002-9505. S2CID 119530637.

बाहरी संबंध