प्राकृतिक-गैस प्रसंस्करण
प्राकृतिक-गैस प्रसंस्करण औद्योगिक प्रक्रियाओं की श्रृंखला है जिसे कच्ची प्राकृतिक गैस को अशुद्धियों, दूषित पदार्थों और उच्च आणविक द्रव्यमान वाष्पशील कार्बनिक यौगिक को पृथक करके शुद्ध करने के लिए डिज़ाइन किया गया है, जिसे 'पाइपलाइन गुणवत्ता' शुष्क प्राकृतिक गैस के रूप में जाना जाता है।[1] प्राकृतिक गैस को अंतिम उपयोग के लिए तैयार करने और प्रदूषकों के उन्मूलन को सुनिश्चित करने के लिए संसाधित किया जाता है।[2]
प्राकृतिक-गैस प्रसंस्करण भूमिगत या कुएं के शीर्ष पर प्रारंभ होता है। यदि गैस का उत्पादन किया जा रहा है, उदाहरण के लिए, कच्चे तेल के साथ, पृथक्करण प्रक्रिया पहले से ही पार हो जाती है क्योंकि जलाशय की चट्टानों के माध्यम से द्रव तब तक बहता है जब तक कि यह अच्छी तरह से टयूबिंग तक नहीं पहुंच जाता है।[3] वेलहेड पर प्रारंभ होने वाली प्रक्रिया भूमिगत निक्षेप के प्रकार, गहराई और स्थान और क्षेत्र के भूविज्ञान के अनुसार प्राकृतिक गैस की संरचना को निकालती है।[2] पेट्रोलियम और प्राकृतिक गैस अधिकांशतः एक साथ एक ही जलाशय में पाए जाते हैं। तेल के कुओं से उत्पादित प्राकृतिक गैस को सामान्यतः संबद्ध-भंग गैस के रूप में वर्गीकृत किया जाता है, जिसका अर्थ है कि गैस कच्चे तेल से जुड़ी या उसमें घुली हुई थी। प्राकृतिक गैस का उत्पादन जो कच्चे तेल से जुड़ा नहीं है, उसे "गैर-संबद्ध" के रूप में वर्गीकृत किया गया है। 2009 में, प्राकृतिक गैस के यूएस वेलहेड उत्पादन का 89 प्रतिशत गैर-संबद्ध था।[4] गैर-संबद्ध गैस जो संघनित और पानी की स्थिति में सूखी गैस का उत्पादन करती है, बिना किसी पृथक्करण प्रक्रिया के सीधे पाइपलाइन या गैस संयंत्र में भेजी जाती है।[5]
प्राकृतिक-गैस प्रसंस्करण संयंत्र ठोस, पानी, कार्बन डाईऑक्साइड (CO2), हाइड्रोजन सल्फाइड (H2S), पारा और उच्च आणविक द्रव्यमान हाइड्रोकार्बन जैसे दूषित पदार्थों को हटाकर कच्ची प्राकृतिक गैस को शुद्ध करते हैं। प्राकृतिक गैस को दूषित करने वाले कुछ पदार्थों का आर्थिक मूल्य होता है और उन्हें आगे संसाधित या बेचा जाता है। परिचालन प्राकृतिक गैस संयंत्र पाइपलाइन-गुणवत्ता वाली सूखी प्राकृतिक गैस प्रदान करता है, जिसका उपयोग आवासीय, वाणिज्यिक और औद्योगिक उपभोक्ताओं द्वारा ईंधन के रूप में या रासायनिक संश्लेषण के लिए फीडस्टॉक के रूप में किया जा सकता है।
कच्चे-प्राकृतिक-गैस कुओं के प्रकार
कच्ची प्राकृतिक गैस मुख्य रूप से तीन प्रकार के कुओं अर्थात् कच्चे तेल के कुएँ, गैस के कुएँ और संघनित कुएँ में से किसी एक से आती है।
कच्चे तेल के कुओं से निकलने वाली प्राकृतिक गैस को सामान्यतः संबंधित गैस कहा जाता है। यह गैस भूमिगत जलाशय में कच्चे तेल के ऊपर गैस कैप के रूप में उपस्थित हो सकती है, या उत्पादन के समय दबाव कम होने के कारण समाधान से निकलने वाले कच्चे तेल में भंग हो सकती है।
प्राकृतिक गैस जो गैस के कुओं और संघनित कुओं से आती है, जिसमें बहुत कम या कोई कच्चा तेल नहीं होता है, गैर-संबंधित गैस कहलाती है। गैस के कुएँ सामान्यतः केवल कच्ची प्राकृतिक गैस का उत्पादन करते हैं, जबकि संघनित कुएँ कच्चे प्राकृतिक गैस के साथ-साथ अन्य कम आणविक भार हाइड्रोकार्बन का उत्पादन करते हैं। वे जो परिवेशी परिस्थितियों में तरल होते हैं, (अर्थात्, पेंटेन और भारी) उनको प्राकृतिक-गैस कंडेनसेट (कभी-कभी प्राकृतिक गैसोलीन या बस कंडेनसेट भी कहा जाता है) कहा जाता है।
हाइड्रोजन सल्फाइड से अपेक्षाकृत मुक्त होने पर प्राकृतिक गैस को मीठी गैस कहा जाता है; तथा ऐसी गैस जिसमें हाइड्रोजन सल्फाइड होता है उसे खट्टी गैस कहा जाता है। प्राकृतिक गैस, या कोई अन्य गैस मिश्रण, जिसमें महत्वपूर्ण मात्रा में हाइड्रोजन सल्फाइड, कार्बन डाइऑक्साइड या इसी तरह की अम्लीय गैसें होती हैं, अम्लीय गैस कहलाती हैं।
कच्ची प्राकृतिक गैस भी कोयला सीम के छिद्रों में मीथेन निक्षेप से आ सकती है, जो अधिकांशतः कोयले की सतह पर अवशोषण की अधिक केंद्रित अवस्था में भूमिगत होता है। ऐसी गैस को कोलबेड गैस या कोयला तल मीथेन (ऑस्ट्रेलिया में कोयला भंडारों में मिलने वाली प्राकृतिक गैस) कहा जाता है। कोलबेड गैस हाल के दशकों में ऊर्जा का महत्वपूर्ण स्रोत बन गई है।
कच्चे प्राकृतिक गैस में प्रदूषक
कच्ची प्राकृतिक गैस में सामान्यतः मुख्य रूप से मीथेन (CH4) और इथेन (C2H6), होते हैं, जो सबसे छोटा और सबसे हल्का हाइड्रोकार्बन अणु है। इसमें अधिकांशतः अलग-अलग मात्राएँ भी होती हैं:
- भारी गैसीय हाइड्रोकार्बन: प्रोपेन (C3H8), ब्यूटेन (n-C4H10), आइसोब्यूटेन (i-C4H10) और पेंटेन, इन सभी को सामूहिक रूप से प्राकृतिक गैस तरल पदार्थ या एनजीएल के रूप में संदर्भित किया जाता है और तैयार उप-उत्पादों में संसाधित किया जा सकता है।
- तरल हाइड्रोकार्बन (जिसे केसिंगहेड गैसोलीन या प्राकृतिक गैसोलीन भी कहा जाता है) और/या कच्चा तेल भी कहा जाता है।
- अम्लीय गैसें: कार्बन डाइऑक्साइड (CO2), हाइड्रोजन सल्फाइड (H2S) और मर्कैप्टन जैसे मेथेनेथियोल (CH3SH) और एथेनथियोल (C2H5SH)।
- अन्य गैसें: नाइट्रोजन (N2) और हीलियम (He)।
- जल: जल वाष्प और तरल जल, साथ ही घुले हुए लवण और घुली हुई गैसें (अम्ल)।
- पारा (तत्व): मुख्य रूप से प्राथमिक रूप में पारा की बहुत कम मात्रा, लेकिन क्लोराइड और अन्य प्रजातियां संभवतः उपस्थित हैं।[6]
- स्वाभाविक रूप से होने वाली रेडियोधर्मी पदार्थ (NORM): प्राकृतिक गैस में रेडॉन हो सकता है, और उत्पादित पानी में रेडियम के घुले अंश हो सकते हैं, जो पाइपिंग और प्रसंस्करण उपकरण के अंदर निक्षेप हो सकते हैं। यह समय के साथ पाइपिंग और उपकरण को रेडियोधर्मी बना सकता है।
प्रमुख पाइपलाइन परिवहन पारेषण और वितरण कंपनियों द्वारा निर्दिष्ट गुणवत्ता मानकों को पूरा करने के लिए कच्चे प्राकृतिक गैस को शुद्ध किया जाना चाहिए। वे गुणवत्ता मानक पाइपलाइन से पाइपलाइन में भिन्न होते हैं और सामान्यतः पाइपलाइन प्रणाली के डिजाइन और इसके द्वारा प्रदान किए जाने वाले व्यापारों का कार्य होते हैं। सामान्यतः, मानक निर्दिष्ट करते हैं कि प्राकृतिक गैस:
- ताप मान (कैलोरी मान) की विशिष्ट सीमा के अंदर रहें। उदाहरण के लिए, युनाइटेड स्टेट्स में, यह 1 वायुमंडल पर लगभग 1035 ± 5% ब्रिटिश थर्मल इकाई प्रति घन फुट गैस और 60 °F (41 मेगाजूल ± 5% प्रति घन मीटर गैस 1 वायुमंडल और 15.6 °C) पर होना चाहिए। यूनाइटेड किंगडम में नेशनल ट्रांसमिशन प्रणाली (एनटीएस) में प्रवेश के लिए सकल कैलोरी मान 37.0 - 44.5 MJ/m3 की सीमा में होना चाहिए।[7]
- निर्दिष्ट हाइड्रोकार्बन ओस बिंदु तापमान पर या उससे ऊपर वितरित किया जाना चाहिए (जिसके नीचे गैस में कुछ हाइड्रोकार्बन पाइप लाइन के दबाव में संघनित हो सकते हैं जो तरल स्लग बनाते हैं जो पाइपलाइन को हानि पहुंचा सकते हैं।) हाइड्रोकार्बन ओस-बिंदु समायोजन भारी हाइड्रोकार्बन की एकाग्रता को कम करता है। संक्षेपण पाइपलाइनों में आगामी परिवहन के समय होता है। यूके में एनटीएस में प्रवेश के लिए हाइड्रोकार्बन ओस बिंदु को <-2 डिग्री सेल्सियस के रूप में परिभाषित किया गया है।[7] हाइड्रोकार्बन ओसांक प्रचलित परिवेश के तापमान के साथ बदलता है, मौसमी भिन्नता है:[8]
हाइड्रोकार्बन ओसांक | 30°F (–1.1°C) | 35°F (1.7°C) | 40°F (4.4°C) | 45°F (7.2°C) | 50°F (10°C) |
---|---|---|---|---|---|
माह | दिसंबर
जनवरी फरवरी मार्च |
अप्रैल
नवम्बर |
मई
अक्टूबर |
जून
सितम्बर |
जुलाई
अगस्त |
प्राकृतिक गैस चाहिए:
- कटाव, जंग या पाइप लाइन को अन्य हानि को रोकने के लिए कण ठोस और तरल पानी से मुक्त रहें।
- गैस प्रसंस्करण संयंत्र के अंदर या बाद में बिक्री गैस संचरण पाइपलाइन के अंदर मीथेन हाइड्रेट के गठन को रोकने के लिए जल वाष्प का पर्याप्त निर्जलीकरण करें। अमेरिका में विशिष्ट जल पदार्थ विनिर्देश यह है कि गैस में प्रति मिलियन मानक घन फुट गैस में सात पाउंड से अधिक पानी नहीं होना चाहिए।[9][10] यूके में इसे एनटीएस में प्रवेश के लिए <-10 °C @ 85बर्ग के रूप में परिभाषित किया गया है।[7]
- हाइड्रोजन सल्फाइड, कार्बन डाइऑक्साइड, मर्कैप्टन और नाइट्रोजन जैसे घटकों की ट्रेस मात्रा से अधिक न हो। हाइड्रोजन सल्फाइड पदार्थ के लिए सबसे सामान्य विनिर्देश 0.25 ग्रेन (इकाई) H2S है प्रति 100 घन फीट गैस, या लगभग 4 पीपीएम है। CO2 के लिए विनिर्देश सामान्यतः पदार्थ को दो या तीन प्रतिशत से अधिक तक सीमित नहीं करते हैं। यूके में हाइड्रोजन सल्फाइड को ≤5 mg/m3 निर्दिष्ट किया गया है और कुल सल्फर को ≤50 mg/m3, कार्बन डाइऑक्साइड ≤2.0% (मोलर) और नाइट्रोजन ≤5.0% (मोलर) के रूप में एनटीएस में प्रवेश के लिए निर्दिष्ट किया गया है।[7]
- मुख्य रूप से पारा समामेलन और एल्यूमीनियम और अन्य धातुओं के उत्सर्जन से गैस प्रसंस्करण संयंत्र या पाइपलाइन ट्रांसमिशन प्रणाली में हानिकारक उपकरणों से बचने के लिए पता लगाने योग्य सीमा (लगभग 0.001 भाग प्रति बिलियन मात्रा) से कम पारा बनाए रखें।[6][11][12]
प्राकृतिक-गैस प्रसंस्करण संयंत्र का विवरण
कच्चे प्राकृतिक गैस के उपचार में उपयोग की जाने वाली विभिन्न इकाई प्रक्रियाओं को विन्यस्त करने की कई विधियाँ हैं। नीचे प्रक्रिया प्रवाह आरेख गैर-संबद्ध गैस कुओं से कच्चे प्राकृतिक गैस के प्रसंस्करण के लिए सामान्यीकृत, विशिष्ट विन्यास है। यह दिखाता है कि कच्चे प्राकृतिक गैस को अंतिम उपयोगकर्ता व्यापारों में बिक्री गैस के रूप में कैसे संसाधित किया जाता है।[13][14][15][16][17] इससे यह भी पता चलता है कि कच्चे प्राकृतिक गैस के प्रसंस्करण से इन उप-उत्पादों का उत्पादन कैसे होता है:
- प्राकृतिक-गैस संघनित
- गंधक
- ईथेन
- प्राकृतिक गैस तरल पदार्थ (एनजीएल): प्रोपेन, ब्यूटेन और C5+ (जो पेंटेन प्लस उच्च आणविक भार हाइड्रोकार्बन के लिए सामान्यतः उपयोग किया जाने वाला शब्द है।)[18][19][20]
कच्चे प्राकृतिक गैस को सामान्यतः निकट के कुओं के समूह से एकत्र किया जाता है और मुक्त तरल पानी और प्राकृतिक गैस कंडेनसेट को हटाने के लिए उस संग्रह बिंदु पर पहले विभाजक जहाजों में संसाधित किया जाता है। कंडेनसेट को सामान्यतः तेल रिफाइनरी में ले जाया जाता है, और पानी को उपचारित किया जाता है और अपशिष्ट जल के रूप में निपटाया जाता है।
कच्ची गैस को फिर गैस प्रसंस्करण संयंत्र में पाइप किया जाता है, जहां प्रारंभिक शुद्धिकरण सामान्यतः अम्लीय गैसों (हाइड्रोजन सल्फाइड और कार्बन डाइऑक्साइड) को हटाना होता है। उस उद्देश्य के लिए कई प्रक्रियाएँ उपलब्ध हैं जैसा कि प्रवाह आरेख में दिखाया गया है, लेकिन अमाइन गैस उपचार वह प्रक्रिया है जो ऐतिहासिक रूप से उपयोग की जाती थी। चूंकि, अमाइन प्रक्रिया के प्रदर्शन और पर्यावरणीय बाधाओं की श्रृंखला के कारण, कार्बन डाइऑक्साइड और हाइड्रोजन सल्फाइड को प्राकृतिक गैस धारा से अलग करने के लिए पॉलिमरिक मेम्ब्रेन के उपयोग पर आधारित नई विधि ने बढ़ती स्वीकृति प्राप्त की है। मेम्ब्रेन आकर्षक होते हैं क्योंकि कोई अभिकर्मक नहीं फीड किया जाता है।[21]
अम्लीय गैसें, यदि उपस्थित हैं, मेम्ब्रेन या अमाइन उपचार द्वारा हटा दी जाती हैं और फिर उन्हें सल्फर रिकवरी इकाई में भेजा जा सकता है जो अम्लीय गैस में हाइड्रोजन सल्फाइड को मौलिक सल्फर या सल्फ्यूरिक अम्ल में परिवर्तित करता है। इन रूपांतरणों के लिए उपलब्ध प्रक्रियाओं में, क्लॉस प्रक्रिया मौलिक सल्फर को पुनर्प्राप्त करने के लिए अब तक सबसे प्रसिद्ध है, जबकि पारंपरिक संपर्क प्रक्रिया और डब्ल्यूएसए (गीला सल्फ्यूरिक अम्लीय प्रक्रिया) सल्फ्यूरिक अम्ल को पुनर्प्राप्त करने के लिए सबसे अधिक उपयोग की जाने वाली विधियाँ हैं। फ्लेयरिंग द्वारा कम मात्रा में अम्लीय गैस का निपटान किया जा सकता है।
क्लॉस प्रक्रिया से अवशिष्ट गैस को सामान्यतः टेल गैस कहा जाता है और उस गैस को क्लॉस इकाई में वापस अवशिष्ट सल्फर युक्त यौगिकों को पुनर्प्राप्त करने और रीसायकल करने के लिए टेल गैस ट्रीटिंग इकाई (टीजीटीयू) में संसाधित किया जाता है। पुनः, जैसा कि प्रवाह आरेख में दिखाया गया है, क्लॉस इकाई टेल गैस के उपचार के लिए कई प्रक्रियाएं उपलब्ध हैं और उस उद्देश्य के लिए डब्ल्यूएसए प्रक्रिया भी बहुत उपयुक्त है क्योंकि यह टेल गैसों पर ऑटोथर्मली कार्य कर सकती है।
गैस प्रसंस्करण संयंत्र में अगला कदम तरल ट्राइथिलीन ग्लाइकोल (टीईजी) में पुन: उत्पन्न करने योग्य अवशोषण (रसायन विज्ञान) का उपयोग करके गैस से जल वाष्प को निकालना है।[10] सामान्यतः ग्लाइकोल निर्जलीकरण, डिलिकसेंट क्लोराइड डिसेकेंट्स, और या प्रेशर स्विंग अवशोषण (पीएसए) इकाई के रूप में जाना जाता है जो ठोस अवशोषण का उपयोग करके पुन: उत्पन्न करने योग्य अवशोषण है।[22] मेम्ब्रेन प्रौद्योगिकी जैसी अन्य नई प्रक्रियाओं पर भी विचार किया जा सकता है।
इसके बाद पारा अवशोषण की प्रक्रिया (जैसा कि प्रवाह आरेख में दिखाया गया है) जैसे कि सक्रिय कार्बन या पुनर्योजी आणविक छलनी का उपयोग करके हटा दिया जाता है।[6]
चूंकि सामान्य नहीं है, प्रवाह आरेख पर संकेतित तीन प्रक्रियाओं में से एक का उपयोग करके नाइट्रोजन को कभी-कभी हटा दिया जाता है और अस्वीकार कर दिया जाता है:
- क्रायोजेनिक प्रक्रिया (नाइट्रोजन अस्वीकृति इकाई),[23] कम तापमान निरंतर आसवन का उपयोग करना। वांछित होने पर हीलियम को पुनर्प्राप्त करने के लिए इस प्रक्रिया को संशोधित किया जा सकता है (औद्योगिक गैस भी देखें)।
- अवशोषण प्रक्रिया,[24] लीन तेल या विशेष विलायक का उपयोग करना[25] शोषक के रूप में।
- अवशोषण प्रक्रिया, अवशोषण के रूप में सक्रिय कार्बन या आणविक छलनी का उपयोग करना। इस प्रक्रिया की सीमित प्रयोज्यता हो सकती है क्योंकि कहा जाता है कि इससे ब्यूटेन और भारी हाइड्रोकार्बन की हानि होती है।
एनजीएल विभाजन
एनजीएल अंशांकन प्रक्रिया तेल टर्मिनल पर विभाजकों से ऑफगैस या रिफाइनरी में क्रूड डिस्टिलेशन कॉलम से ओवरहेड अंश का उपचार करती है। फ्रैक्शनेशन का उद्देश्य औद्योगिक और घरेलू उपभोक्ताओं के लिए पाइपिंग के लिए उपयुक्त प्राकृतिक गैस सहित उपयोगी उत्पादों; बिक्री के लिए तरलीकृत पेट्रोलियम गैस (प्रोपेन और ब्यूटेन); और तरल ईंधन सम्मिश्रण के लिए गैसोलीन फीडस्टॉक का उत्पादन करना है।[26] पुनर्प्राप्त एनजीएल स्ट्रीम को फ्रैक्शनेशन ट्रेन के माध्यम से संसाधित किया जाता है, जिसमें श्रृंखला में पांच डिस्टिलेशन टावर: डेमेथेनाइज़र, डीथेनेज़र, डीप्रोपैनाइज़र, डेब्यूटेनाइज़र और ब्यूटेन स्प्लिटर सम्मिलित होते हैं। यह अन्य क्रायोजेनिक कम तापमान आसवन प्रक्रिया का उपयोग करता है, जिसमें टर्बो विस्तारक के माध्यम से गैस का विस्तार सम्मिलित होता है, जिसके बाद डिमेथेनाइजिंग आंशिक स्तंभ में आसवन होता है।[27][28] कुछ गैस प्रसंस्करण संयंत्र क्रायोजेनिक टर्बो-विस्तारक प्रक्रिया के अतिरिक्त लीन तेल अवशोषण प्रक्रिया का उपयोग करते हैं[24] ।
एनजीएल फ्रैक्शनेशन प्लांट को गैसीय फीड सामान्यतः लगभग 60 बार (इकाई) और 37 डिग्री सेल्सियस तक संकुचित किया जाता है।[29] डेमेथेनाइज़र ओवरहेड उत्पाद के साथ विनिमय करके और प्रशीतन प्रणाली द्वारा फ़ीड को -22 °C तक ठंडा किया जाता है और इसे तीन धाराओं में विभाजित किया जाता है:
- संघनित तरल जूल-थॉमसन प्रभाव से होकर निकलता है। जूल-थॉमसन वाल्व दबाव को 20 बार तक कम कर देता है और -44.7 डिग्री सेल्सियस पर कम फीड के रूप में डेमेथेनिज़र में प्रवेश करता है।
- कुछ वाष्प टर्बो-एक्सपैंडर के माध्यम से रूट किया जाता है और -64 डिग्री सेल्सियस पर ऊपरी फ़ीड के रूप में डेमेथेनाइज़र में प्रवेश करता है।
- शेष वाष्प को डेमेथेनाइज़र ओवरहेड उत्पाद और जूल-थॉमसन कूलिंग (वाल्व के माध्यम से) द्वारा ठंडा किया जाता है और -96 डिग्री सेल्सियस पर भाटा के रूप में स्तंभ में प्रवेश करता है।[29]
ओवरहेड उत्पाद मुख्य रूप से 20 बार और -98 डिग्री सेल्सियस पर मीथेन है। इसे 20 बार और 40 डिग्री सेल्सियस पर सेल्स गैस बनाने के लिए गर्म और संपीड़ित किया जाता है। नीचे का उत्पाद 20 बारग पर एनजीएल है जिसे डीथेनाइज़र को फीड किया जाता है।
डीथनाइज़र से ओवरहेड उत्पाद ईथेन होता है, और बॉटम्स को डीप्रोपेनाइज़र को फीड किया जाता है। डीप्रोपेनाइज़र से ओवरहेड उत्पाद प्रोपेन है, और बॉटम्स को डेबेटनाइज़र को फीड किया जाता है। डेब्यूटेनाइज़र से ओवरहेड उत्पाद सामान्य और आइसो-ब्यूटेन का मिश्रण है, और बॉटम्स उत्पाद C5+ गैसोलीन मिश्रण है।
एनजीएल फ्रैक्शनेशन ट्रेन में जहाजों की परिचालन की स्थिति सामान्यतः निम्नानुसार होती है।[26][30][31]
डेमेथेनाइज़र | डीथनाइज़र | डिप्रोपेनिज़र | डेब्यूटेनाइज़र | ब्यूटेन स्प्लिटर | |
---|---|---|---|---|---|
फ़ीड दबाव | 60 बर्ग | 30 बर्ग | |||
फ़ीड तापमान | 37°C | 25°C | 37°C | 125°C | 59°C |
स्तंभ संचालन दबाव | 20 बर्ग | 26-30 बर्ग | 10-16.2 बर्ग | 3.8-17 बर्ग | 4.9-7 बर्ग |
ओवरहेड उत्पाद का तापमान | -98°C | 50°C | 59°C | 49°C | |
निचला उत्पाद तापमान | 12°C | 37°C | 125°C | 118°C | 67°C |
ओवरहेड उत्पाद | मीथेन (प्राकृतिक गैस) | ईथेन | प्रोपेन | ब्यूटेन | आइसोबुटेन |
निचला उत्पाद | प्राकृतिक गैस द्रव | (डेब्यूटेनाइज़र फ़ीड) | (डेब्यूटेनाइज़र फ़ीड) | गैसोलीन | सामान्य ब्यूटेन |
फ़ीड और उत्पाद की विशिष्ट संरचना इस प्रकार है।[29]
अवयव | फ़ीड | एनजीएल | ईथेन | प्रोपेन | आइसोबुटेन | एन-ब्यूटेन | गैसोलीन |
---|---|---|---|---|---|---|---|
मीथेन | 89.4 | 0.5 | 1.36 | ||||
ईथेन | 4.9 | 37.0 | 95.14 | 7.32 | |||
प्रोपेन | 2.2 | 26.0 | 3.5 | 90.18 | 2.0 | ||
आइसोबुटेन | 1.3 | 7.2 | 2.5 | 96.0 | 4.5 | ||
एन-ब्यूटेन | 2.2 | 14.8 | 2.0 | 95.0 | 3.0 | ||
आइसोपेंटेन | 5.0 | 33.13 | |||||
एन-पेंटेन | 3.5 | 0.5 | 23.52 | ||||
एन-हेक्सेन | 4.0 | 26.9 | |||||
एन-हेप्टेन | 2.0 | 13.45 | |||||
कुल | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
प्रोपेन, ब्यूटेन और C5+ की पुनर्प्राप्त धाराएं अवांछित मर्कैप्टन को डाइसल्फ़ाइड में परिवर्तित करने के लिए मेरॉक्स प्रोसेस इकाई में "मीठा" हो सकती हैं और बरामद ईथेन के साथ, गैस प्रसंस्करण संयंत्र से अंतिम एनजीएल उप-उत्पाद हैं। वर्तमान में, अधिकांश क्रायोजेनिक संयंत्रों में आर्थिक कारणों से अंशांकन शामिल नहीं है, और एनजीएल स्ट्रीम को मिश्रित उत्पाद के रूप में रिफाइनरियों या रासायनिक संयंत्रों के पास स्थित स्टैंडअलोन अंशांकन परिसरों में ले जाया जाता है जो फीडस्टॉक के घटकों का उपयोग करते हैं। यदि भौगोलिक कारण से पाइपलाइन बिछाना संभव नहीं है, या स्रोत और उपभोक्ता के बीच की दूरी 3000 किमी से अधिक है, तो प्राकृतिक गैस को एलएनजी (तरलीकृत प्राकृतिक गैस) के रूप में जहाज द्वारा ले जाया जाता है और पुनः उपभोक्ता के आसपास के क्षेत्र में इसकी गैसीय अवस्था में परिवर्तित कर दिया जाता है।
उत्पाद
एनजीएल रिकवरी सेक्शन से अवशिष्ट गैस अंतिम, शुद्ध बिक्री गैस है, जिसे अंतिम उपयोगकर्ता व्यापारों में पाइपलाइन किया जाता है। गैस की गुणवत्ता को लेकर क्रेता और विक्रेता के बीच नियम और समझौते होते हैं। ये सामान्यतः CO2, H2S और H2O की अधिकतम स्वीकार्य सांद्रता के साथ-साथ गैस को आपत्तिजनक गंध और सामग्री, और धूल या अन्य ठोस या तरल पदार्थ, मोम, गोंद और गोंद बनाने वाले घटकों से व्यावसायिक रूप से मुक्त होने की आवश्यकता को निर्दिष्ट करते हैं, जो हानि पहुंचा सकते हैं या खरीदारों के उपकरण के संचालन पर प्रतिकूल प्रभाव डालता है। जब उपचार संयंत्र में गड़बड़ी होती है तो खरीदार सामान्यतः गैस को स्वीकार करने से मना कर सकते हैं, प्रवाह दर कम कर सकते हैं या मूल्य पर पुनः वार्तालाप कर सकते हैं।
हीलियम रिकवरी
यदि गैस में महत्वपूर्ण हीलियम पदार्थ है, तो आंशिक आसवन द्वारा हीलियम को पुनः प्राप्त किया जा सकता है। प्राकृतिक गैस में 7% हीलियम तक हो सकता है, और यह महान गैस का व्यावसायिक स्रोत है।[32] उदाहरण के लिए, संयुक्त राज्य अमेरिका में कान्सास और ओकलाहोमा में ह्यूगोटन गैस फील्ड में 0.3% से 1.9% तक हीलियम की सांद्रता होती है, जिसे मूल्यवान उपोत्पाद के रूप में अलग किया जाता है।[33]
उपभोग
सभी देशों में प्राकृतिक गैस का उपभोग का पैटर्न पहुंच के आधार पर अलग-अलग होता है। बड़े भंडार वाले देश कच्चे माल की प्राकृतिक गैस को अधिक उदारता से संभालते हैं, जबकि दुर्लभ या संसाधनों की कमी वाले देश अधिक लाभदायक होते हैं। अत्यधिक खोज के अतिरिक्त, प्राकृतिक गैस भंडार की अनुमानित उपलब्धता संभवतया ही बदली है।
प्राकृतिक गैस के अनुप्रयोग
- औद्योगिक हीटिंग और अवशोषण की प्रक्रिया के लिए ईंधन
- सार्वजनिक और औद्योगिक विद्युत् केन्द्रों के संचालन के लिए ईंधन
- खाना पकाने, गर्म करने और गर्म पानी उपलब्ध कराने के लिए घरेलू ईंधन
- पर्यावरण के अनुकूल संपीड़ित या तरल प्राकृतिक गैस वाहनों के लिए ईंधन
- रासायनिक संश्लेषण के लिए कच्चा माल
- गैस-टू-लिक्विड (जीटीएल) प्रक्रिया का उपयोग करके बड़े पैमाने पर ईंधन उत्पादन के लिए कच्चा माल (उदाहरण के लिए कम उत्सर्जन दहन के साथ सल्फर-और सुगंधित-मुक्त डीजल का उत्पादन करने के लिए)
यह भी देखें
- प्राकृतिक गैस के मूल्य
- पेट्रोलियम निकासी
- तेल शोधशाला
- संयुक्त राज्य अमेरिका में प्राकृतिक गैस और तेल उत्पादन दुर्घटनाओं की सूची
संदर्भ
- ↑ "PHMSA: Stakeholder Communications - NG Processing Plants". primis.phmsa.dot.gov. Retrieved 9 April 2018.
- ↑ 2.0 2.1 Speight, James G. (2015). पेट्रोलियम उत्पाद विश्लेषण की पुस्तिका, दूसरा संस्करण (in English). Hoboken, NJ: John Wiley & Sons. p. 71. ISBN 978-1-118-36926-5.
- ↑ Agency, United States Central Intelligence (1977). प्राकृतिक गैस (in English). Washington, D.C.: U.S. Central Intelligence Agency. p. 25.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2016-03-05. Retrieved 2014-09-21.
- ↑ Kidnay, Arthur J.; Parrish, William R.; McCartney, Daniel G. (2019). प्राकृतिक गैस प्रसंस्करण के मूल सिद्धांत, तीसरा संस्करण (in English). Boca Raton, FL: CRC Press. p. 165. ISBN 978-0-429-87715-5.
- ↑ 6.0 6.1 6.2 "प्राकृतिक गैस और तरल पदार्थों से पारा निकालना" (PDF). UOP LLC. Archived from the original (PDF) on 2011-01-01.
- ↑ 7.0 7.1 7.2 7.3 "Gas Safety (Management) Regulations 1996". legislation.co.uk. 1996. Retrieved 13 June 2020.
- ↑ Institute of Petroleum (1978). उत्तरी सागर तेल और गैस प्रौद्योगिकी के लिए एक गाइड. London: Heyden & Son. p. 133. ISBN 0855013168.
- ↑ Dehydration of Natural Gas Archived 2007-02-24 at the Wayback Machine by Prof. Jon Steiner Gudmundsson, Norwegian University of Science and Technology
- ↑ 10.0 10.1 Glycol Dehydration Archived 2009-09-12 at the Wayback Machine (includes a flow diagram)
- ↑ Desulfurization of and Mercury Removal From Natural Gas Archived 2008-03-03 at the Wayback Machine by Bourke, M.J. and Mazzoni, A.F., Laurance Reid Gas Conditioning Conference, Norman, Oklahoma, March 1989.
- ↑ Using Gas Geochemistry to Assess Mercury Risk Archived 2015-08-28 at the Wayback Machine, OilTracers, 2006
- ↑ Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Archived 2011-03-04 at the Wayback Machine
- ↑ Example Gas Plant Archived 2010-12-01 at the Wayback Machine
- ↑ From Purification to Liquefaction Gas Processing Archived 2010-01-15 at the Wayback Machine
- ↑ "पर्ल जीटीएल परियोजना के लिए फ़ीड-गैस उपचार डिजाइन" (PDF). spe.org. Retrieved 9 April 2018.
- ↑ Benefits of integrating NGL extraction and LNG liquefaction Archived 2013-06-26 at the Wayback Machine
- ↑ "MSDS: Natural gas liquids" (PDF). ConocoPhillips.
- ↑ "What are natural gas liquids and how are they used?". United States Energy Information Administration. April 20, 2012.
- ↑ "प्राकृतिक गैस और प्राकृतिक गैस तरल पदार्थों को समझने के लिए मार्गदर्शिका". STI Group. 2014-02-19.
- ↑ Baker, R. W. "Future Directions of Membrane Gas Separation Technology" Ind. Eng. Chem. Res. 2002, volume 41, pages 1393-1411. doi:10.1021/ie0108088
- ↑ Molecular Sieves Archived 2011-01-01 at the Wayback Machine (includes a flow diagram of a PSA unit)
- ↑ Gas Processes 2002, Hydrocarbon Processing, pages 84–86, May 2002 (schematic flow diagrams and descriptions of the Nitrogen Rejection and Nitrogen Removal processes)
- ↑ 24.0 24.1 Market-Driven Evolution of Gas Processing Technologies for NGLs Advanced Extraction Technology Inc. website page
- ↑ AET Process Nitrogen Rejection Unit Advanced Extraction Technology Inc. website page
- ↑ 26.0 26.1 Manley, D. B. (1998). "Thermodynamically efficient distillation: NGL Fractionation". Latin American Applied Research.
- ↑ Cryogenic Turbo-Expander Process Advanced Extraction Technology Inc. website page
- ↑ Gas Processes 2002, Hydrocarbon Processing, pages 83–84, May 2002 (schematic flow diagrams and descriptions of the NGL-Pro and NGL Recovery processes)
- ↑ 29.0 29.1 29.2 Muneeb Nawaz ‘Synthesis and Design of Demethaniser Flowsheets for Low Temperature Separation Processes,' University of Manchester,unpublished PhD thesis, 2011, pp. 137, 138, 154
- ↑ Luyben, W. L. (2013). "प्राकृतिक गैस के पृथक्करण के लिए आसवन स्तंभों की एक ट्रेन का नियंत्रण". Industrial and Engineering Chemistry Research. 52: 5710741–10753. doi:10.1021/ie400869v.
- ↑ ElBadawy, K. M.; Teamah, M. A.; Shehata, A. I.; Hanfy, A. A. (2017). "फ्रैक्शनेशन टावर्स का उपयोग करके प्राकृतिक गैस से एलपीजी उत्पादन का अनुकरण". International Journal of Advanced Scientific and Technical Research. 6 (7).
- ↑ Winter, Mark (2008). "Helium: the essentials". University of Sheffield. Retrieved 2008-07-14.
- ↑ Dwight E. Ward and Arthur P. Pierce (1973) "Helium" in United States Mineral Resources, US Geological Survey, Professional Paper 820, p.285-290.
बाहरी संबंध
- Simulate natural gas processing using Aspen HYSYS
- Natural Gas Processing Principles and Technology (an extensive and detailed course text by Dr. A.H. Younger, University of Calgary, Alberta, Canada).
- Processing Natural Gas, Website of the Natural Gas Supply Association (NGSA).
- Natural Gas Processing (part of the US EPA's AP-42 publication)
- Natural Gas Processing Plants (a US Department of Transportation website)
- Gas Processors Association, Website of the Gas Processors Association (GPA) headquartered in Tulsa, Oklahoma, United States.
- Gas Processing Journal (Publisher: College of Engineering, University of Isfahan, Iran.)
- Increasing Efficiency of Gas Processing Plants
- [1]
अग्रिम पठन
- Haring, H.W. (2008). Industrial Gases Processing. Weinheim, Germany: WILEY-VCH Verlag Gmbh & CO. KGaA
- Kohl, A., & Nielsen, R. (1997). Gas Purification. 5TH Edition. Houston, Texas: Gulf Publishing Company