प्लांचरेल प्रमेय
गणित में, प्लांचरेल प्रमेय ( जिसे कभी-कभी मार्क-एंटोनी पारसेवल पहचान कहा जाता है)[1] और हार्मोनिक विश्लेषण का परिणाम है, जिसे 1910 में मिशेल प्लांचरेल द्वारा सिद्ध किया गया था। इसमें कहा गया है इस प्रकार से किसी फलन के वर्ग मापांक का अभिन्न अंग उसके आवृत्ति स्पेक्ट्रम के वर्ग मापांक के अभिन्न अंग के समान होता है। अर्थात यदि वास्तविक रेखा पर फलन है, और तो, इसका आवृत्ति स्पेक्ट्रम है तब
इस प्रकार से अधिक स्पष्ट सूत्रीकरण यह माना जाता है कि यदि कोई फलन Lp स्पेस और दोनों में व्यक्त है तो इसका फ़ोरियर रूपांतरण में है और फ़ोरियर रूपांतरण मैप L2 मानदंड के संबंध में एक आइसोमेट्री है। इसका तात्पर्य यह है कि तक सीमित फूरियर रूपांतरण मैप में एक रैखिक आइसोमेट्रिक मैप का एक अलग विस्तार है जिसे कभी-कभी प्लांचरेल रूपांतरण भी कहा जाता है। यह आइसोमेट्री वास्तव में एक एकात्मक मानचित्र माना जाता है। वास्तव में, इससे द्विघात रूप से एकीकृत फलन के फूरियर परिवर्तनों के बारे में संवाद करना संभव हो जाता है।
जैसा कि n-आयामी यूक्लिडियन स्पेस पर कहा गया है, प्लैंचरेल का प्रमेय मान्य होता है यह प्रमेय समान्यतः स्पेस रूप से सघन एबेलियन समूह में भी प्रयुक्त किया जाता है। और प्लांचरेल प्रमेय का संस्करण भी है, जो की कुछ विधियों मान्यताओं को संतुष्ट करने वाले गैर-कम्यूटेटिव स्पेसकीय रूप से कॉम्पैक्ट समूहों के लिए समझ में आता है। इस प्रकार से यह गैर-कम्यूटेटिव हार्मोनिक विश्लेषण का विषय माना जाता है।
इस प्रकार से फूरियर रूपांतरण के एकात्मक परिवर्तन को सदैव विज्ञान और इंजीनियरिंग क्षेत्रों में पार्सेवल का प्रमेय कहा जाता है, जो की प्रथम (किन्तु कम सामान्य) परिणाम पर आधारित था, जिसका उपयोग फूरियर श्रृंखला की एकात्मकता को प्रमाणित करने के लिए किया गया था।
अतः ध्रुवीकरण पहचान के कारण, कोई व्यक्ति दो फलन के आंतरिक उत्पाद पर प्लांचरेल के प्रमेय को भी प्रयुक्त कर सकता है। अर्थात्, यदि और दो फलन हैं, और प्लैंचरेल रूपांतरण को दर्शाता है
इसलिए
यह भी देखें
- गोलाकार फलन के लिए प्लांचरेल का प्रमेय
संदर्भ
- ↑ Cohen-Tannoudji, Claude; Dupont-Roc, Jacques; Grynberg, Gilbert (1997). Photons and Atoms : Introduction to Quantum Electrodynamics. Wiley. p. 11. ISBN 0-471-18433-0.
- Plancherel, Michel (1910), "Contribution à l'étude de la représentation d'une fonction arbitraire par des intégrales définies", Rendiconti del Circolo Matematico di Palermo, 30 (1): 289–335, doi:10.1007/BF03014877, S2CID 122509369.
- Dixmier, J. (1969), Les C*-algèbres et leurs Représentations, Gauthier Villars.
- Yosida, K. (1968), Functional Analysis, Springer Verlag.
बाहरी संबंध
- "Plancherel theorem", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Plancherel's Theorem on Mathworld