फोटॉन रॉकेट

From Vigyanwiki

फोटॉन राकेट एक रॉकेट है जो अपने प्रणोदन के लिए उत्सर्जित फोटोन (विकिरण दबाव या उत्सर्जन द्वारा विकिरण दबाव) की गति से जोर का उपयोग करता है।[1] फोटॉन रॉकेट की प्रणोदन प्रणाली के रूप में चर्चा की गई है जो इंटरस्टेलर उड़ान को संभव बना सकती है, जिसके लिए अंतरिक्ष यान को प्रकाश की गति के कम से कम 10% की गति के लिए प्रेरित करने की क्षमता की आवश्यकता होती है, v ≈ 0.1c = 30,000 km/s[2]. फोटॉन प्रणोदन को सर्वश्रेष्ठ उपलब्ध इंटरस्टेलर प्रणोदन अवधारणाओं में से एक माना जाता है, क्योंकि यह स्थापित भौतिकी और प्रौद्योगिकियों पर स्थापित है।[3] परमाणु फोटोनिक रॉकेट के रूप में पारंपरिक फोटॉन रॉकेट को ऑनबोर्ड जनरेटर द्वारा संचालित करने का प्रस्ताव है। ऐसे रॉकेट का मानक पाठ्यपुस्तक केस आदर्श स्थिति है जहां सभी ईंधन फोटॉन में परिवर्तित हो जाते हैं जो एक ही दिशा में विकीर्ण होते हैं। अधिक यथार्थवादी उपचारों में, यह ध्यान में रखा जाता है कि फोटॉनों का बीम पूरी तरह से संमिलित नहीं होता है, कि सभी ईंधन फोटॉन में परिवर्तित नहीं होते हैं, और इसी तरह। बड़ी मात्रा में ईंधन की आवश्यकता होगी और रॉकेट विशाल पोत होगा।[4][5]

सियोलकोवस्की रॉकेट समीकरण द्वारा उत्पन्न सीमाओं को दूर किया जा सकता है, जब तक कि प्रतिक्रिया द्रव्यमान अंतरिक्ष यान द्वारा नहीं किया जाता है। लेजर प्रणोदन (बीएलपी) में, फोटॉन जनरेटर और अंतरिक्ष यान भौतिक रूप से अलग हो जाते हैं और फोटॉन को लेजर का उपयोग करके फोटॉन स्रोत से अंतरिक्ष यान में भेज दिया जाता है। चूंकि, फोटॉन परावर्तन की अति कम थ्रस्ट जनरेशन दक्षता के कारण बीएलपी सीमित है। फोटॉन थ्रस्टर के थ्रस्ट के उत्पादन में अंतर्निहित अक्षमता को दूर करने के सर्वोत्तम उपायों में से है, दो उच्च परावर्तक दर्पणों के बीच फोटॉनों को पुनर्चक्रित करके फोटॉनों के संवेग हस्तांतरण को बढ़ाना, स्थिर होना या थ्रस्टर पर होना, दूसरा "सेल" है।

गति

गति आदर्श फोटॉन रॉकेट तक पहुंच जाएगी (संदर्भ फ्रेम में जिसमें रॉकेट प्रारंभिक रूप से आराम पर था), बाहरी ताकतों की अनुपस्थिति में, प्रारंभिक और अंतिम द्रव्यमान के अनुपात पर निर्भर करता है:

कहाँ पे प्रारंभिक द्रव्यमान है और अंतिम द्रव्यमान है।[6]

उदाहरण के लिए, मान लें कि अंतरिक्ष यान शुद्ध से सुसज्जित है हीलियम-3 फ्यूजन रिएक्टर और इसका प्रारंभिक द्रव्यमान है 2300 kg, समेत 1000 kg का हीलियम-3 - अर्थ, 2.3 kg ऊर्जा में परिवर्तित हो जाएगा[lower-alpha 1] - और यह मानते हुए कि यह सारी ऊर्जा यात्रा की दिशा के विपरीत दिशा में फोटॉनों के रूप में उत्सर्जित होती है, और संलयन उत्पादों को मानते हुए (हीलियम-4 और हाइड्रोजन) को बोर्ड पर रखा जाता है, तो अंतिम द्रव्यमान होगा (2300 − 2.3) kg = 2297.7 kg और अंतरिक्ष यान प्रकाश की गति के 1/1000 की गति तक पहुंच जाएगा। यदि संलयन उत्पादों को अंतरिक्ष में छोड़ दिया जाता है, तो गति अधिक होगी, किन्तु इसकी गणना करने के लिए उपरोक्त समीकरण का उपयोग नहीं किया जा सकता है, क्योंकि यह मानता है कि द्रव्यमान में सभी कमी ऊर्जा में परिवर्तित हो जाती है।

फोटॉन रॉकेट की गति से संबंधित गामा कारक की सरल अभिव्यक्ति है:

10% प्रकाश की गति पर, गामा कारक लगभग 1.005 है, जिसका अर्थ है बहुत करीब 0.9 है।

व्युत्पत्ति

हम रॉकेट के चार गति को आराम से निरूपित करते हैं , रॉकेट के बाद यह अपने ईंधन के रूप में जला दिया है , और उत्सर्जित फोटॉन के चार-संवेग के रूप में . चार-संवेग के संरक्षण का अर्थ है:

दोनों पक्षों को समापन करना (अर्थात लोरेंत्ज़ स्केलर लेना या दोनों पक्षों के त्वरण और वेग का आंतरिक उत्पाद) देता है:

ऊर्जा-संवेग संबंध के अनुसार , चार-संवेग का वर्ग द्रव्यमान के वर्ग के बराबर होता है, और क्योंकि फोटॉनों का द्रव्यमान शून्य होता है।

जैसे ही हम रॉकेट के रेस्ट फ्रेम (अर्थात शून्य-गति फ्रेम) में प्रारंभ करते हैं, रॉकेट का प्रारंभिक चार-मोमेंटम है:

जबकि अंतिम चार गति है:

इसलिए, मिंकोवस्की आंतरिक उत्पाद (चार-वेक्टर देखें) लेने पर, हमें मिलता है:

अब हम प्राप्त करके गामा कारक के लिए हल कर सकते हैं:

अधिकतम गति सीमा

मानक सिद्धांत कहता है कि फोटॉन रॉकेट की सैद्धांतिक गति सीमा प्रकाश की गति से कम होती है। हॉग ने वर्तमान में सुझाव दिया है[7] आदर्श फोटॉन रॉकेट के लिए अधिकतम गति सीमा जो प्रकाश की गति के ठीक नीचे है। चूंकि, टॉमासिनी एट अल द्वारा उनके दावों का विरोध किया गया है।[6] क्योंकि ऐसा वेग सापेक्षतावादी द्रव्यमान के लिए तैयार किया गया है और इसलिए फ्रेम-निर्भर है।

फोटॉन जनरेटर विशेषताओं के अतिरिक्त, परमाणु विखंडन और संलयन के साथ संचालित फोटॉन रॉकेटों में इन प्रक्रियाओं की दक्षता से गति सीमा होती है। यहाँ यह माना जाता है कि प्रणोदन प्रणाली का ही चरण है। मान लें कि फोटॉन रॉकेट/अंतरिक्ष यान का कुल द्रव्यमान M है जिसमें αM के द्रव्यमान के साथ α < 1 के साथ ईंधन सम्मलित है। 1, प्रणोदन के लिए उत्पन्न अधिकतम कुल फोटॉन ऊर्जा, Ep, द्वारा दिया गया है

यदि कुल फोटॉन फ्लक्स को थ्रस्ट उत्पन्न करने के लिए 100% दक्षता पर निर्देशित किया जा सकता है, तो कुल फोटॉन थ्रस्ट, Tp, द्वारा दिया गया है

अधिकतम प्राप्य अंतरिक्ष यान वेग, Vmax के लिए फोटॉन प्रणोदन प्रणाली की Vmaxc, द्वारा दिया गया है

उदाहरण के लिए, अनुमानित मापदंडों के साथ ऑनबोर्ड परमाणु संचालित फोटॉन रॉकेट द्वारा प्राप्त किए जाने वाले अनुमानित अधिकतम वेग तालिका 1 में दिए गए हैं। ऐसे परमाणु संचालित रॉकेट द्वारा अधिकतम वेग सीमा प्रकाश वेग (60 km/s) के 0.02% से कम है। इसलिए, ऑनबोर्ड परमाणु फोटॉन रॉकेट इंटरस्टेलर मिशनों के लिए अनुपयुक्त हैं।

तालिका 1  अनुकरणीय मापदंडों के साथ ऑनबोर्ड परमाणु फोटॉन जनरेटर के साथ फोटॉन रॉकेट द्वारा प्राप्त किया जाने वाला अधिकतम वेग है।

ऊर्जा स्रोत α γ δ Vmax/c
विखंडन 0.1 10−3 0.5 5 × 10−5
विलय 0.1 4 × 10−3 0.5 2 × 10−4

बीम्ड लेजर प्रणोदन, जैसे फोटोनिक लेजर थ्रस्टर, चूंकि, प्रकाश की गति, सी, सिद्धांत रूप में अधिकतम अंतरिक्ष यान वेग प्रदान कर सकता है।

यह भी देखें

टिप्पणियाँ

  1. Pure helium-3 fusion reaction is . The share of mass converted to energy is .

संदर्भ

  1. McCormack, John W. "5. PROPULSION SYSTEMS". SPACE HANDBOOK: ASTRONAUTICS AND ITS APPLICATIONS. Select Committee on Astronautics and Space Exploration. Retrieved 29 October 2012.
  2. Tsander, F.A / K (1967). "Tsander, K. (1967) From a Scientific Heritage, NASA Technical Translation TTF-541. - References - Scientific Research Publishing" (PDF). Archived (PDF) from the original on 2017-08-11. Retrieved 2021-11-16.
  3. Forward, Robert L. (1984). "Roundtrip interstellar travel using laser-pushed lightsails". Journal of Spacecraft and Rockets. 21 (2): 187–195. doi:10.2514/3.8632. ISSN 0022-4650.
  4. "A Photon Rocket, by G.G. Zel'kin" (PDF). Archived from the original (PDF) on 2017-05-17. Retrieved 2015-03-04.
  5. There will be no photon rocket, by V. Smilga
  6. 6.0 6.1 Tommasini, Daniele; Paredes, Angel; Michinel, Humberto (2019). "Comment on "the ultimate limits of the relativistic rocket equation. The Planck photon rocket"". Acta Astronautica. 161: 373–374. Bibcode:2019AcAau.161..373T. doi:10.1016/j.actaastro.2019.01.051. ISSN 0094-5765. S2CID 115201278.
  7. Haug, E.G. (2017). "The ultimate limits of the relativistic rocket equation. The Planck photon rocket". Acta Astronautica. 136: 144–147. arXiv:1807.10280. Bibcode:2017AcAau.136..144H. doi:10.1016/j.actaastro.2017.03.011. S2CID 119009228.

बाहरी कड़ियाँ