बहुरेखीय प्रमुख घटक विश्लेषण

From Vigyanwiki

बहुरेखीय प्रमुख घटक विश्लेषण (एमपीसीए) प्रमुख घटक विश्लेषण (पीसीए) का "बहुरेखीय बीजगणित विस्तार होता है। और एमपीसीए का उपयोग एम-वे सारणियों के विश्लेषण में किया जाता है, अर्थात संख्याओं का घन या हाइपर-क्यूब होता हैं| जिसे अनौपचारिक रूप से डेटा टेंसर भी कहा जाता है| इस प्रकार एम-वे सारणियों को इसके द्वारा प्रतिरूपित किया जा सकता है|

  • रैखिक टेंसर मॉडल जैसे कैंडेकॉम्प/पैराफैक हैं |
  • "बहुरेखीय टेंसर मॉडल, जैसे "बहुरेखीय प्रमुख घटक विश्लेषण (एमपीसीए), या "बहुरेखीय स्वतंत्र घटक विश्लेषण (एमआईसीए), आदि होते हैं।

एमपीसीए की उत्पत्ति का पता टकर अपघटन के द्वारा लगाया जा सकता है[1] और पीटर क्रूनबर्ग का 3-मोड पीसीए कार्य से लगाया जा सकता हैं।[2] 2000 में, डी लाथौवर एट अल टकर और क्रूनेनबर्ग के काम को उनके एसआईएएम पेपर में बहुरेखीय एकवचन मान अपघटन नामक (एचओएसवीडी) नाम से जाना जाता हैं और उनके पेपर में सर्वश्रेष्ठ पद -1 और पद -(R1, R2, ..., RN ) पर स्पष्ट और संक्षिप्त संख्यात्मक कम्प्यूटेशनल शब्दों में दोहराया गया है ,[3] और यह उच्च-क्रम टेन्सर्स का अनुमान होता हैं।[4]

लगभग 2001 में, वासिलेस्कु और टेरज़ोपोलोस ने डेटा विश्लेषण, पहचान और संश्लेषण समस्याओं को बहुरेखीय टेंसर समस्याओं के रूप में पुनः परिभाषित किया जाता है। टेन्सर कारक विश्लेषण डेटा निर्माण के अनेक कारण कारकों का संरचनात्मक परिणाम होता है, और बहु -मोडल डेटा टेन्सर विश्लेषण के लिए उपयुक्त होता है। इस प्रकार निम्नलिखित कार्यों में डेटा निर्माण के उनके कारण कारकों के संदर्भ में मानव गति संयुक्त कोणों चेहरे की छवियों या बनावट का विश्लेषण करके टेंसर रूपरेखा की शक्ति का प्रदर्शन किया गया था| मानव गति हस्ताक्षर[5] (सीवीपीआर 2001, आईसीपीआर 2002), चेहरा पहचान - टेन्सरफेसेस,[6][7] (ईसीसीवी 2002, सी वीपी आर 2003, आदि) हैं और कंप्यूटर ग्राफ़िक्स - टेंसर टेक्सचर[8] (सिग्राफ 2004) होता हैं।

ऐतिहासिक रूप से, एमपीसीए को एम-मोड पीसीए के रूप में संदर्भित किया गया है, और शब्दावली जिसे 1980 में पीटर क्रूनबर्ग द्वारा गढ़ा गया था।[2] 2005 में, वासिलेस्कु और दिमित्रिस टेरज़ोपोलोस ने रैखिक और बहुरेखीय टेंसर अपघटन के मध्य उत्तम अंतर करने के साथ-साथ कार्य के मध्य उत्तम अंतर करने के विधि के रूप में शब्दावली को प्रारंभ किया हैं| [5] [6] [7] [8] जिसने प्रत्येक डेटा टेंसर मोड (अक्ष) से ​​जुड़े दूसरे क्रम के आँकड़ों की गणना की गई थी और बहुरेखीय स्वतंत्र घटक विश्लेषण पर पश्चात् में काम किया गया था।[9] जिसमे प्रत्येक टेंसर मोड/अक्ष से जुड़े उच्च क्रम के आँकड़ों की गणना की गई हैं।

बहुरेखीय पीसीए को डेटा निर्माण के कारण कारकों की गणना करने के लिए या डेटा टेंसर पर सिग्नल प्रोसेसिंग उपकरण के रूप में प्रयुक्त किया जा सकता है, जिनके व्यक्तिगत अवलोकन को या तब सदिश किया गया है,[5][6][7][8] या जिनके अवलोकनों को संग्रह के रूप में माना जाता है और स्तंभ/पंक्ति अवलोकनों, डेटा आव्युह के और डेटा टेंसर में संयोजित किया जाता है। इस दृष्टिकोण का मुख्य हानि सभी संभावित संयोजनों की गणना करना होता है|

एमपीसीए डेटा टेंसर के प्रत्येक मोड से जुड़े ऑर्थोनॉर्मल आव्युह के समुच्चय की गणना करता है और जो आव्युह एसवीडी द्वारा गणना किए गए आव्युह की ऑर्थोनॉर्मल पंक्ति और स्तंभ सम्मिस्ट के अनुरूप होते हैं। इस प्रकार परिवर्तन का उद्देश्य प्रत्येक डेटा टेंसर मोड (अक्ष) से ​​जुड़े डेटा में अधिक से अधिक परिवर्तनशीलता को ध्यान में रखते हुए, जितना संभव हो उतना उच्च भिन्नता प्राप्त करते है।

एल्गोरिथ्म

एमपीसीए समाधान वैकल्पिक न्यूनतम वर्ग (एएलएस) दृष्टिकोण का पालन करता है। और यह प्रकृति में पुनरावर्ती है पीसीए की तरह एमपीसीए केंद्रित डेटा पर काम करता है। टेंसरों के लिए केंद्रीकरण थोड़ा अधिक जटिल होता है, और यह समस्या पर निर्भर करता है।

सुविधा चयन

एमपीसीए विशेषताएं: पर्यवेक्षित एमपीसीए को कारण कारक विश्लेषण में नियोजित किया जाता है जो वस्तु पहचान की सुविधा प्रदान करता है[10] जबकि अर्ध-पर्यवेक्षित एमपीसीए सुविधा चयन आभासीकरण कार्यों में नियोजित किया जाता है।[11]

एक्सटेंशन

एमपीसीए के विभिन्न विस्तार:

  • शक्तिशाली एमपीसीए (आरएमपीसीए)[12]
  • बहु-टेंसर गुणन, जो स्वचालित रूप से घटकों की (एमटीएफ) संख्या भी खोजता है| [13]


संदर्भ

  1. Tucker, Ledyard R (September 1966). "Some mathematical notes on three-mode factor analysis". Psychometrika. 31 (3): 279–311. doi:10.1007/BF02289464. PMID 5221127.
  2. 2.0 2.1 P. M. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97.
  3. Lathauwer, L.D.; Moor, B.D.; Vandewalle, J. (2000). "एक बहुरेखीय एकवचन मूल्य अपघटन". SIAM Journal on Matrix Analysis and Applications. 21 (4): 1253–1278. doi:10.1137/s0895479896305696.
  4. Lathauwer, L. D.; Moor, B. D.; Vandewalle, J. (2000). "On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of higher-order tensors". SIAM Journal on Matrix Analysis and Applications. 21 (4): 1324–1342. doi:10.1137/s0895479898346995.
  5. 5.0 5.1 5.2 M.A.O. Vasilescu (2002) "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460.
  6. 6.0 6.1 6.2 M.A.O. Vasilescu, D. Terzopoulos (2002) "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision – ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460.
  7. 7.0 7.1 7.2 M.A.O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis for Image Ensembles, M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.
  8. 8.0 8.1 8.2 M.A.O. Vasilescu, D. Terzopoulos (2004) "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342.
  9. M. A. O. Vasilescu, D. Terzopoulos (2005) "Multilinear Independent Component Analysis", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."
  10. M. A. O. Vasilescu, D. Terzopoulos (2003) "Multilinear Subspace Analysis of Image Ensembles", "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003"
  11. H. Lu, H.-L. Eng, M. Thida, and K.N. Plataniotis, "Visualization and Clustering of Crowd Video Content in MPCA Subspace," in Proceedings of the 19th ACM Conference on Information and Knowledge Management (CIKM 2010), Toronto, ON, Canada, October, 2010.
  12. K. Inoue, K. Hara, K. Urahama, "Robust multilinear principal component analysis", Proc. IEEE Conference on Computer Vision, 2009, pp. 591–597.
  13. Khan, Suleiman A.; Leppäaho, Eemeli; Kaski, Samuel (2016-06-10). "बायेसियन मल्टी-टेंसर फ़ैक्टराइज़ेशन". Machine Learning (in English). 105 (2): 233–253. arXiv:1412.4679. doi:10.1007/s10994-016-5563-y. ISSN 0885-6125.


बाहरी संबंध