ब्लैक होल ऊष्मप्रवैगिकी

From Vigyanwiki

भौतिकी में, ब्लैक होल ऊष्मप्रवैगिकी[1] अध्ययन का वह क्षेत्र है जो ब्लैक होल घटना क्षितिज के अस्तित्व के साथ ऊष्मप्रवैगिकी के नियम का समाधान करना चाहता है। श्याम पिंडों से उत्पन्न विकिरण के सांख्यिकीय यांत्रिकी के अध्ययन के कारण क्वांटम यांत्रिकी के सिद्धांत का विकास हुआ, ब्लैक होल के सांख्यिकीय यांत्रिकी को समझने के प्रयास का क्वांटम गुरुत्व की समझ पर गहरा प्रभाव पड़ा, जिसके कारण होलोग्राफिक सिद्धांत का सूत्रीकरण हुआ।

कलाकार द्वारा दो ब्लैक होल के विलय का चित्रण, ऐसी प्रक्रिया जिसमें ऊष्मप्रवैगिकी के नियमों को निरंतर रखा जाता है

सिंहावलोकन

ऊष्मप्रवैगिकी के दूसरे नियम के लिए आवश्यक है कि ब्लैक होल में एन्ट्रापी हो। यदि ब्लैक होल में एन्ट्रापी नहीं होती है, तो ब्लैक होल में द्रव्यमान फेंक कर दूसरे कानून का उल्लंघन करना संभव होगा। ब्लैक होल की एन्ट्रॉपी में वृद्धि निगली गई वस्तु द्वारा की गई एन्ट्रापी में कमी की भरपाई से अधिक है।

1972 में, जैकब बेकनस्टीन ने अनुमान लगाया कि ब्लैक होल में एन्ट्रापी होनी चाहिए,[2] जहां उसी वर्ष उन्होंने नो-हेयर प्रमेय प्रस्तावित किए।

1973 में बेकनस्टीन ने सुझाव दिया आनुपातिकता के स्थिरांक के रूप में, यह प्रमाणित करते हुए कि यदि स्थिरांक वास्तव में ऐसा नहीं था, तो यह इसके बहुत करीब होना चाहिए। अगले वर्ष, 1974 में, स्टीफन हॉकिंग ने दिखाया कि ब्लैक होल थर्मल हॉकिंग विकिरण उत्सर्जित करते हैं[3][4] निश्चित तापमान (हॉकिंग तापमान) के अनुरूप।[5][6] ऊर्जा, तापमान और एन्ट्रापी के बीच थर्मोडायनामिक संबंध का उपयोग करते हुए, हॉकिंग बेकेंस्टीन अनुमान की पुष्टि करने और आनुपातिकता के स्थिरांक को ठीक करने में सक्षम थे। :[7][8]

कहाँ घटना क्षितिज का क्षेत्र है, बोल्ट्जमैन स्थिरांक है, और प्लैंक की लंबाई है। इसे अधिकांशतः बेकनस्टीन-हॉकिंग फॉर्मूला के रूप में जाना जाता है. सबस्क्रिप्ट बीएच या तो ब्लैक होल या बेकनस्टीन-हॉकिंग के लिए है। ब्लैक होल एन्ट्रॉपी अपने घटना क्षितिज के क्षेत्र के समानुपाती होता है . तथ्य यह है कि ब्लैक होल एन्ट्रापी अधिकतम एन्ट्रापी भी है जिसे बेकनस्टीन बाध्य द्वारा प्राप्त किया जा सकता है (जिसमें बेकेनस्टाइन बाउंड समानता बन जाता है) मुख्य अवलोकन था जिसने होलोग्राफिक सिद्धांत का नेतृत्व किया।

चूंकि हॉकिंग की गणना ने ब्लैक होल एन्ट्रापी के लिए और थर्मोडायनामिक सबूत दिए, किन्तु 1995 तक कोई भी सांख्यिकीय यांत्रिकी के आधार पर ब्लैक होल एन्ट्रॉपी की नियंत्रित गणना करने में सक्षम नहीं था, जो एंट्रॉपी को बड़ी संख्या में माइक्रोस्टेट्स से जोड़ता है। वास्तव में, तथाकथित नो-हेयर प्रमेय|नो-हेयर प्रमेय[9] ऐसा लगता है कि ब्लैक होल में केवल माइक्रोस्टेट हो सकता है। 1995 में स्थिति बदली जब एंड्रयू स्ट्रोमिंगर और कमरुन संदेह ने गणना की[10] डी- ब्रैंस और स्ट्रिंग द्वैत पर आधारित विधियों का उपयोग करते हुए, स्ट्रिंग सिद्धांत में सुपरसिमेट्री ब्लैक होल की दाहिनी बेकेंस्टीन-हॉकिंग एंट्रॉपी। उनकी गणना के बाद अन्य एक्स्ट्रीमल ब्लैक होल और [[निकट-चरम ब्लैक होल]] के बड़े वर्गों की एन्ट्रापी की कई समान संगणनाएँ हुईं, और परिणाम हमेशा बेकनस्टीन-हॉकिंग सूत्र से सहमत थे। चूंकि, श्वार्जस्चिल्ड ब्लैक होल के लिए, जिसे सबसे दूर-से-चरम ब्लैक होल के रूप में देखा जाता है, माइक्रो- और मैक्रोस्टेट्स के बीच संबंध की विशेषता नहीं बताई गई है। स्ट्रिंग थ्योरी के ढांचे के भीतर पर्याप्त उत्तर विकसित करने का प्रयास जारी है।

पाश क्वांटम गुरुत्वाकर्षण (एलक्यूजी) में [nb 1] ज्यामितीय व्याख्या को माइक्रोस्टेट्स के साथ जोड़ना संभव है: ये क्षितिज की क्वांटम ज्यामिति हैं। एलक्यूजी एंट्रॉपी की सूक्ष्मता और क्षितिज के क्षेत्र की आनुपातिकता की ज्यामितीय व्याख्या प्रदान करता है।[11][12] पूर्ण क्वांटम सिद्धांत (स्पिन फोम ) के सहसंयोजक सूत्रीकरण से ऊर्जा और क्षेत्र (प्रथम नियम), उरुह तापमान और हॉकिंग एंट्रॉपी उत्पन्न करने वाले वितरण के बीच सही संबंध प्राप्त करना संभव है।[13] गणना गतिशील क्षितिज की धारणा का उपयोग करती है और गैर-चरम ब्लैक होल के लिए की जाती है। ऐसा प्रतीत होता है कि लूप क्वांटम ग्रेविटी के दृष्टिकोण से बेकनस्टीन-हॉकिंग एंट्रॉपी की गणना पर भी चर्चा की जा रही है। ब्लैक होल के लिए वर्तमान स्वीकृत माइक्रोस्टेट पहनावा माइक्रोकैनोनिकल पहनावा है। ब्लैक होल के लिए विभाजन कार्य के परिणामस्वरूप नकारात्मक ताप क्षमता होती है। कैनोनिकल समेकन में, सकारात्मक ताप क्षमता के लिए सीमा होती है, जबकि माइक्रोकैनोनिकल समेकन नकारात्मक ताप क्षमता पर उपस्थित हो सकते हैं।[14]



ब्लैक होल यांत्रिकी के नियम

ब्लैक होल यांत्रिकी के चार नियम भौतिक गुण हैं जो ब्लैक होल को संतुष्ट करने के लिए माना जाता है। ऊष्मप्रवैगिकी के नियमों के अनुरूप कानूनों की खोज जैकब बेकनस्टीन, ब्रैंडन कार्टर और जेम्स एम. बार्डीन ने की थी। आगे के विचार स्टीफन हॉकिंग द्वारा किए गए थे।

कानूनों का विवरण

ब्लैक होल यांत्रिकी के नियम ज्यामितीय इकाइयों में व्यक्त किए जाते हैं।

शून्यवाँ नियम

स्थिर ब्लैक होल के लिए क्षितिज में निरंतर सतह गुरुत्वाकर्षण होता है।

पहला नियम

स्थिर ब्लैक होल के गड़बड़ी के लिए, ऊर्जा का परिवर्तन क्षेत्र के परिवर्तन, कोणीय गति और विद्युत आवेश से संबंधित है

कहाँ ऊर्जा है, सतह गुरुत्वाकर्षण है, क्षितिज क्षेत्र है, कोणीय वेग है, कोणीय गति है, विद्युत संभावित ऊर्जा है और विद्युत आवेश है।

दूसरा नियम

क्षितिज क्षेत्र, ऊर्जा की स्थिति को मानते हुए # गणितीय कथन, समय का गैर-घटता कार्य है:

इस कानून को हॉकिंग की खोज से बदल दिया गया था कि ब्लैक होल विकिरण करते हैं, जिससे ब्लैक होल का द्रव्यमान और उसके क्षितिज का क्षेत्र समय के साथ घटता जाता है।

तीसरा नियम

गायब सतह गुरुत्वाकर्षण के साथ ब्लैक होल बनाना संभव नहीं है। वह है, प्राप्त नहीं किया जा सकता।

कानूनों की चर्चा

शून्यवाँ नियम

शून्यवाँ नियम ऊष्मप्रवैगिकी के शून्य नियम के अनुरूप है, जो बताता है कि तापीय संतुलन में पूरे शरीर में तापमान स्थिर रहता है। यह बताता है कि सतह का गुरुत्वाकर्षण तापमान के अनुरूप है। सामान्य प्रणाली के लिए तापीय संतुलन के लिए T स्थिरांक समान होता है स्थिर ब्लैक होल के क्षितिज पर स्थिर।

पहला नियम

बायाँ पक्ष, , ऊर्जा में परिवर्तन है (द्रव्यमान के समानुपाती)। चूंकि पहले पद की तत्काल स्पष्ट भौतिक व्याख्या नहीं है, दाईं ओर दूसरा और तीसरा पद घूर्णन और विद्युत चुंबकत्व के कारण ऊर्जा में परिवर्तन का प्रतिनिधित्व करता है। समान रूप से, ऊष्मप्रवैगिकी का पहला नियम ऊर्जा के संरक्षण का बयान है, जिसमें इसके दाईं ओर शब्द सम्मिलित है .

दूसरा नियम

दूसरा नियम हॉकिंग के क्षेत्र प्रमेय का कथन है। अनुरूप रूप से, ऊष्मप्रवैगिकी का दूसरा नियम कहता है कि पृथक प्रणाली में एन्ट्रॉपी में परिवर्तन सहज प्रक्रिया के लिए 0 से अधिक या उसके बराबर होगा, जो एंट्रॉपी और ब्लैक होल क्षितिज के क्षेत्र के बीच लिंक का सुझाव देता है। चूंकि, यह संस्करण थर्मोडायनामिक्स के दूसरे नियम का उल्लंघन करता है, क्योंकि यह एंट्रॉपी में कमी देते हुए पदार्थ (इसकी) एन्ट्रापी को खो देता है। चूंकि, ब्लैक होल एंट्रॉपी और बाहरी एंट्रॉपी के योग के रूप में दूसरे कानून को सामान्यीकृत करना दर्शाता है कि थर्मोडायनामिक्स के दूसरे कानून का उल्लंघन क्षितिज से परे ब्रह्मांड समेत किसी प्रणाली में नहीं होता है।

ऊष्मप्रवैगिकी के दूसरे नियम को मान्य के रूप में प्रस्तुत करने के लिए ऊष्मप्रवैगिकी (जीएसएल) के सामान्यीकृत दूसरे नियम की आवश्यकता थी। इसका कारण यह है कि ऊष्मप्रवैगिकी का दूसरा नियम, ब्लैक होल के बाहरी हिस्से के पास एन्ट्रापी के गायब होने के परिणामस्वरूप उपयोगी नहीं है। जीएसएल कानून के आवेदन की अनुमति देता है क्योंकि अब आंतरिक, सामान्य एन्ट्रापी का मापन संभव है। जीएसएल की वैधता को उदाहरण का अध्ययन करके स्थापित किया जा सकता है, जैसे कि एन्ट्रॉपी वाली प्रणाली को देखना जो बड़े, गैर-चलती ब्लैक होल में गिरती है, और ब्लैक होल एंट्रॉपी और एंट्रॉपी में वृद्धि के लिए ऊपरी और निचले एन्ट्रॉपी सीमा की स्थापना करती है। प्रणाली की, क्रमशः।[15] किसी को यह भी ध्यान रखना चाहिए कि जीएसएल गुरुत्वाकर्षण के सिद्धांतों जैसे सामान्य सापेक्षता, गुरुत्वाकर्षण के लवलॉक सिद्धांत, या ब्रैनवर्ल्ड ग्रेविटी के लिए मान्य होगा, क्योंकि इनके लिए जीएसएल का उपयोग करने की शर्तों को पूरा किया जा सकता है।[16]

हालाँकि, ब्लैक होल के निर्माण के विषय पर, यह प्रश्न बनता है कि क्या ऊष्मप्रवैगिकी का सामान्यीकृत दूसरा नियम मान्य होगा या नहीं, और यदि यह है, तो यह सभी स्थितियों के लिए मान्य सिद्ध होगा। क्योंकि ब्लैक होल का निर्माण स्थिर नहीं होता है, बल्कि गतिमान होता है, जिससे यह सिद्ध होता है कि जीएसएल धारण करना कठिन है। जीएसएल को सामान्यतः वैध सिद्ध करने के लिए क्वांटम सांख्यिकीय यांत्रिकी | क्वांटम-सांख्यिकीय यांत्रिकी का उपयोग करने की आवश्यकता होगी, क्योंकि जीएसएल क्वांटम कानून और अनुभवजन्य सांख्यिकीय कानून दोनों है। यह अनुशासन उपस्थित नहीं है इसलिए जीएसएल को सामान्य रूप से और साथ ही भविष्यवाणी के लिए उपयोगी माना जा सकता है। उदाहरण के लिए, कोई जीएसएल का उपयोग भविष्यवाणी करने के लिए कर सकता है कि, ठंडे, गैर-घूर्णन असेंबली के लिए न्यूक्लियंस, , कहाँ ब्लैक होल की एन्ट्रापी है और साधारण एन्ट्रापी का योग है।[15][17]


तीसरा नियम

एक्सट्रीमल ब्लैक होल[18] गायब सतह गुरुत्वाकर्षण है। ये कहते हुए शून्य पर नहीं जा सकता ऊष्मप्रवैगिकी के तीसरे नियम के अनुरूप है, जो बताता है कि परम शून्य पर प्रणाली की एन्ट्रापी अच्छी तरह से परिभाषित स्थिरांक है। ऐसा इसलिए है क्योंकि शून्य तापमान पर प्रणाली अपनी जमीनी अवस्था में उपस्थित होती है। आगे, शून्य तापमान पर शून्य पर पहुंच जाएगा, किन्तु कम से कम पूर्ण क्रिस्टलीय पदार्थों के लिए स्वयं भी शून्य तक पहुंच जाएगा। ऊष्मप्रवैगिकी के नियमों का कोई प्रायोगिक रूप से सत्यापित उल्लंघन अभी तक ज्ञात नहीं है।

कानूनों की व्याख्या

ब्लैक होल यांत्रिकी के चार नियम सुझाव देते हैं कि किसी को तापमान के साथ ब्लैक होल की सतह के गुरुत्वाकर्षण की पहचान करनी चाहिए और एन्ट्रापी के साथ घटना क्षितिज का क्षेत्र कम से कम कुछ गुणक स्थिरांक तक होना चाहिए। यदि कोई ब्लैक होल को केवल मौलिक रूप से मानता है, तो उनका तापमान शून्य होता है और नो-हेयर प्रमेय द्वारा,[9]शून्य एन्ट्रापी, और ब्लैक होल यांत्रिकी के नियम सादृश्य बने हुए हैं। चूंकि, जब क्वांटम -यांत्रिक प्रभावों को ध्यान में रखा जाता है, तो पाया जाता है कि ब्लैक होल तापमान पर थर्मल विकिरण (हॉकिंग विकिरण) उत्सर्जित करते हैं।

ब्लैक होल यांत्रिकी के पहले नियम से, यह बेकेनस्टाइन-हॉकिंग एंट्रॉपी के गुणात्मक स्थिरांक को निर्धारित करता है, जो (ज्यामितीकृत इकाइयों में) है

जो आइंस्टीन के सामान्य सापेक्षता में ब्लैक होल की एंट्रॉपी है। घुमावदार अंतरिक्ष-समय में क्वांटम क्षेत्र सिद्धांत का उपयोग गुरुत्वाकर्षण के लिए किसी सहसंयोजक सिद्धांत में ब्लैक होल के लिए एंट्रॉपी की गणना करने के लिए किया जा सकता है, जिसे वाल्ड एंट्रॉपी के रूप में जाना जाता है।[19]



एन्ट्रापी में क्वांटम गुरुत्वीय सुधार

जैसे ही क्वांटम प्रभाव को ध्यान में रखा जाता है, एंट्रॉपी के लिए हॉकिंग के सूत्र में सुधार हो जाता है। क्वांटम गुरुत्व के किसी भी यूवी परिमित सिद्धांत को कम ऊर्जा पर सामान्य सापेक्षता में कम करना चाहिए। बर्विंस्की और विलकविस्की द्वारा अग्रणी काम करता है [20][21][22][23] स्थानीय और गैर-स्थानीय शर्तों से मिलकर वक्रता में दूसरे क्रम तक प्रारंभिक बिंदु के रूप में सुझाव दें:

कहाँ ऊर्जा पैमाना है। गुणांकों के त्रुटिहीन मान अज्ञात हैं, क्योंकि वे क्वांटम गुरुत्वीय के अल्ट्रा-वायलेट सिद्धांत की प्रकृति पर निर्भर करते हैं। अभिन्न प्रतिनिधित्व वाला ऑपरेटर है

कार्रवाई में नए अतिरिक्त शब्द गति के मौलिक आइंस्टीन समीकरणों को संशोधित करते हैं। इसका तात्पर्य यह है कि किसी दिए गए मौलिक मीट्रिक को क्वांटम सुधार प्राप्त होते हैं, जो बदले में घटना क्षितिज की मौलिक स्थिति को बदलते हैं। वाल्ड एंट्रॉपी की गणना करते समय, स्थानांतरित स्थिति लेता है घटना क्षितिज को ध्यान में रखते हुए:

यहाँ, सिद्धांत का लाग्रंगियन घनत्व है, , रीमैन टेंसर है और के रूप में सामान्यीकृत एंटीसिमेट्रिक टेंसर है

यह प्रणाली 2021 में कैल्मेट एट अल द्वारा प्रायुक्त किया गया था।[24] श्वार्जस्चिल्ड ब्लैक होल के लिए। श्वार्ज़स्चिल्ड मीट्रिक वक्रता में दूसरे क्रम पर क्वांटम सुधार प्राप्त नहीं करता है और एंट्रॉपी है

बाद में कैम्पोस डेलगाडो द्वारा चार्ज किए गए (रीस्नर-नॉर्डस्ट्रॉम) ब्लैक होल के लिए सामान्यीकरण किया गया।[25]


समालोचना

जबकि ब्लैक होल ऊष्मप्रवैगिकी (बीएचटी) को गुरुत्वाकर्षण के क्वांटम सिद्धांत के सबसे गहरे सुरागों में से एक माना जाता है, फिर भी कुछ दार्शनिक आलोचनाएँ बनी रहीं कि यह "अधिकांशतः ऊष्मप्रवैगिकी के एक प्रकार के कैरिकेचर पर आधारित है" और यह स्पष्ट नहीं है कि बीएचटी में क्या प्रणालियाँ हैं। माना जाता है, जो निष्कर्ष की ओर ले जाता है - सादृश्य लगभग उतना अच्छा नहीं है जितना सामान्यतः माना जाता है।[26][27]

इन आलोचनाओं ने ब्लैक होल को थर्मोडायनामिक सिस्टम के रूप में स्थितियों की फिर से जांच करने के लिए साथी संदेह को जन्म दिया, ब्लैक होल को एक दूसरे के साथ थर्मल संपर्क में रहने की अनुमति देने में हॉकिंग विकिरण की केंद्रीय भूमिका पर विशेष ध्यान दिया गया और हॉकिंग विकिरण की व्याख्या के करीब ब्लैक होल गुरुत्वाकर्षण से बंधे थर्मल वातावरण के रूप में, विपरीत निष्कर्ष के साथ समाप्त होता है - स्थिर ब्लैक होल थर्मोडायनामिक सिस्टम के अनुरूप नहीं होते हैं: वे थर्मोडायनामिक सिस्टम हैं, पूर्ण अर्थ में।[28]


ब्लैक होल से परे

गैरी गिबन्स और हॉकिंग ने दिखाया है कि ब्लैक होल ऊष्मप्रवैगिकी ब्लैक होल की तुलना में अधिक सामान्य है - कि कण क्षितिज में एन्ट्रॉपी और तापमान भी होता है।

अधिक मौलिक रूप से, जेरार्डस 'टी हूफ्ट |' टी हूफ्ट और लियोनार्ड सुस्किंड ने प्रकृति के सामान्य होलोग्राफिक सिद्धांत के लिए तर्क देने के लिए ब्लैक होल थर्मोडायनामिक्स के नियमों का उपयोग किया, जो प्रमाणित करता है कि गुरुत्वाकर्षण और क्वांटम यांत्रिकी के सुसंगत सिद्धांतों को निम्न-आयामी होना चाहिए। चूंकि सामान्य रूप से अभी तक पूरी तरह से समझा नहीं गया है, होलोग्राफिक सिद्धांत एडीएस/सीएफटी पत्राचार जैसे सिद्धांतों के लिए केंद्रीय है।[29]

ब्लैक होल एंट्रॉपी और द्रव सतह तनाव के बीच भी संबंध हैं।[30]


यह भी देखें

टिप्पणियाँ


उद्धरण

  1. Carlip, S (2014). "ब्लैक होल थर्मोडायनामिक्स". International Journal of Modern Physics D. 23 (11): 1430023–736. arXiv:1410.1486. Bibcode:2014IJMPD..2330023C. CiteSeerX 10.1.1.742.9918. doi:10.1142/S0218271814300237. S2CID 119114925.
  2. Bekenstein, A. (1972). "ब्लैक होल और दूसरा कानून". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID 120254309.
  3. "First Observation of Hawking Radiation" Archived 2012-03-01 at the Wayback Machine from the Technology Review.
  4. Matson, John (Oct 1, 2010). "कृत्रिम घटना क्षितिज सैद्धांतिक ब्लैक होल विकिरण के प्रयोगशाला एनालॉग का उत्सर्जन करता है". Sci. Am.
  5. Charlie Rose: A conversation with Dr. Stephen Hawking & Lucy Hawking Archived March 29, 2013, at the Wayback Machine
  6. A Brief History of Time, Stephen Hawking, Bantam Books, 1988.
  7. Hawking, S. W (1975). "ब्लैक होल द्वारा कण निर्माण". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID 55539246.
  8. Majumdar, Parthasarathi (1999). "ब्लैक होल एंट्रॉपी और क्वांटम ग्रेविटी". Indian J. Phys. 73.21 (2): 147. arXiv:gr-qc/9807045. Bibcode:1999InJPB..73..147M.
  9. 9.0 9.1 Bhattacharya, Sourav (2007). "एक सकारात्मक ब्रह्माण्ड संबंधी स्थिरांक के लिए ब्लैक-होल नो-हेयर प्रमेय". Physical Review Letters. 99 (20): 201101. arXiv:gr-qc/0702006. Bibcode:2007PhRvL..99t1101B. doi:10.1103/PhysRevLett.99.201101. PMID 18233129. S2CID 119496541.
  10. Strominger, A.; Vafa, C. (1996). "बेकेनस्टाइन-हॉकिंग एंट्रॉपी की सूक्ष्म उत्पत्ति". Physics Letters B. 379 (1–4): 99–104. arXiv:hep-th/9601029. Bibcode:1996PhLB..379...99S. doi:10.1016/0370-2693(96)00345-0. S2CID 1041890.
  11. Rovelli, Carlo (1996). "लूप क्वांटम ग्रेविटी से ब्लैक होल एंट्रॉपी". Physical Review Letters. 77 (16): 3288–3291. arXiv:gr-qc/9603063. Bibcode:1996PhRvL..77.3288R. doi:10.1103/PhysRevLett.77.3288. PMID 10062183. S2CID 43493308.
  12. Ashtekar, Abhay; Baez, John; Corichi, Alejandro; Krasnov, Kirill (1998). "क्वांटम ज्यामिति और ब्लैक होल एंट्रॉपी". Physical Review Letters. 80 (5): 904–907. arXiv:gr-qc/9710007. Bibcode:1998PhRvL..80..904A. doi:10.1103/PhysRevLett.80.904. S2CID 18980849.
  13. Bianchi, Eugenio (2012). "लूप ग्रेविटी से नॉन-एक्सट्रीमल ब्लैक होल की एंट्रोपी". arXiv:1204.5122 [gr-qc].
  14. Casadio, R. (2011). "(सूक्ष्म) ब्लैक होल का माइक्रोकैनोनिकल विवरण". Entropy. 13 (2): 502–517. arXiv:1101.1384. Bibcode:2011Entrp..13..502C. doi:10.3390/e13020502. S2CID 120254309.
  15. 15.0 15.1 Bekenstein, Jacob D. (1974-06-15). "ब्लैक होल भौतिकी में ऊष्मप्रवैगिकी का सामान्यीकृत दूसरा नियम". Physical Review D. 9 (12): 3292–3300. Bibcode:1974PhRvD...9.3292B. doi:10.1103/physrevd.9.3292. ISSN 0556-2821. S2CID 123043135.
  16. Wu, Wang, Yang, Zhang, Shao-Feng,Bin,Guo-Hang,Peng-Ming (17 November 2008). "सामान्यीकृत गुरुत्वाकर्षण सिद्धांतों में ऊष्मप्रवैगिकी का सामान्यीकृत दूसरा नियम". Classical and Quantum Gravity. 25 (23): 235018. arXiv:0801.2688. Bibcode:2008CQGra..25w5018W. doi:10.1088/0264-9381/25/23/235018. S2CID 119117894.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Wald, Robert M. (2001). "ब्लैक होल की ऊष्मप्रवैगिकी". Living Reviews in Relativity. 4 (1): 6. arXiv:gr-qc/9912119. Bibcode:2001LRR.....4....6W. doi:10.12942/lrr-2001-6. ISSN 1433-8351. PMC 5253844. PMID 28163633.
  18. Kallosh, Renata (1992). "ब्रह्मांडीय सेंसर के रूप में सुपरसिमेट्री". Physical Review D. 46 (12): 5278–5302. arXiv:hep-th/9205027. Bibcode:1992PhRvD..46.5278K. doi:10.1103/PhysRevD.46.5278. PMID 10014916. S2CID 15736500.
  19. Wald, Robert (2001). "ब्लैक होल के ऊष्मप्रवैगिकी". Living Reviews in Relativity. 4 (1): 6. arXiv:gr-qc/9912119. Bibcode:2001LRR.....4....6W. doi:10.12942/lrr-2001-6. PMC 5253844. PMID 28163633.
  20. Barvinsky, Vilkovisky, A.O, G.A (1983). "सामान्यीकृत श्विंगर-डेविट तकनीक और क्वांटम गुरुत्व में अद्वितीय प्रभावी क्रिया". Phys. Lett. B. 131 (4–6): 313–318. Bibcode:1983PhLB..131..313B. doi:10.1016/0370-2693(83)90506-3.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Barvinsky, Vilkovisky, A.O, G.A (1985). "गेज थ्योरीज़ और क्वांटम ग्रेविटी में सामान्यीकृत श्विंगर-डेविट तकनीक". Phys. Rep. 119 (1): 1–74. Bibcode:1985PhR...119....1B. doi:10.1016/0370-1573(85)90148-6.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Barvinsky, Vilkovisky, A.O, G.A (1987). "Beyond the Schwinger-Dewitt Technique: Converting Loops Into Trees and In-In Currents". Nucl. Phys. B. 282: 163–188. Bibcode:1987NuPhB.282..163B. doi:10.1016/0550-3213(87)90681-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Barvinsky, Vilkovisky, A.O, G.A (1990). "Covariant perturbation theory. 2: Second order in the curvature. General algorithms". Nucl. Phys. B. 333: 471–511. doi:10.1016/0550-3213(90)90047-H.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Calmet, Kuipers, Xavier, Folkert (2021). "श्वार्जस्चिल्ड ब्लैक होल की एन्ट्रापी में क्वांटम गुरुत्वीय सुधार". Phys. Rev. D. 104 (6): 6. arXiv:2108.06824. Bibcode:2021PhRvD.104f6012C. doi:10.1103/PhysRevD.104.066012. S2CID 237091145.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Campos Delgado, Ruben (2022). "Quantum gravitational corrections to the entropy of a Reissner-Nordström black hole". Eur. Phys. J. C. 82 (3): 272. Bibcode:2022EPJC...82..272C. doi:10.1140/epjc/s10052-022-10232-0. S2CID 247824137.
  26. Dougherty, John; Callender, Craig. "Black Hole Thermodynamics: More Than an Analogy?" (PDF). philsci-archive.pitt.edu. Guide to the Philosophy of Cosmology, editors: A. Ijjas and B. Loewer. Oxford University Press.
  27. Foster, Brendan Z. (September 2019). "Are We All Wrong About Black Holes? Craig Callender worries that the analogy between black holes and thermodynamics has been stretched too far". quantamagazine.org. Retrieved 3 September 2021.
  28. Wallace, David (November 2018). "The case for black hole thermodynamics part I: Phenomenological thermodynamics". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. Philosophy of Modern Physics, Volume 64, Pages 52-67. 64: 52–67. arXiv:1710.02724. Bibcode:2018SHPMP..64...52W. doi:10.1016/j.shpsb.2018.05.002. S2CID 73706680.
  29. For an authoritative review, see Ofer Aharony; Steven S. Gubser; Juan Maldacena; Hirosi Ooguri; Yaron Oz (2000). "Large N field theories, string theory and gravity". Physics Reports. 323 (3–4): 183–386. arXiv:hep-th/9905111. Bibcode:1999PhR...323..183A. doi:10.1016/S0370-1573(99)00083-6. S2CID 119101855.
  30. Callaway, D. (1996). "Surface tension, hydrophobicity, and black holes: The entropic connection". Physical Review E. 53 (4): 3738–3744. arXiv:cond-mat/9601111. Bibcode:1996PhRvE..53.3738C. doi:10.1103/PhysRevE.53.3738. PMID 9964684. S2CID 7115890.


ग्रन्थसूची


बाहरी संबंध