भूतापीय प्रवणता

From Vigyanwiki
आंतरिक पृथ्वी का तापमान प्रोफ़ाइल, योजनाबद्ध दृश्य (अनुमान)। 410 ऊपरी आच्छादन में एक संक्रमण क्षेत्र के शीर्ष को संदर्भित करता है। लिथोस्फीयर 300 किमी से कम मोटा है।

भूतापीय प्रवणता पृथ्वी के आंतरिक भाग में बढ़ती गहराई के संबंध में तापमान परिवर्तन की दर है। सामान्य नियम के रूप में, पृथ्वी की पपड़ी का तापमान अधिक गर्म पृथ्वी के आच्छादन से गर्मी के प्रवाह के कारण गहराई के साथ बढ़ता है; टेक्टोनिक प्लेट की सीमाओं से दूर, दुनिया के अधिकांश हिस्सों में सतह के पास लगभग 25-30 डिग्री सेल्सियस/किमी (72-87 डिग्री फारेनहाइट/मील) गहराई में तापमान बढ़ता है। [1] यद्यपि, कुछ स्थितियों में तापमान बढ़ती गहराई के साथ गिर सकता है, विशेष रूप से सतह के पास, इस घटना को उलटा या नकारात्मक भू-तापीय ढाल के रूप में जाना जाता है। मौसम, सूरज और मौसम के प्रभाव केवल लगभग 10-20 मीटर की गहराई तक पहुँचते हैं।

सख्ती से बोलते हुए, भू-तापीय अनिवार्य रूप से पृथ्वी को संदर्भित करता है किन्तु अवधारणा अन्य ग्रहों पर प्रयुक्त हो सकती है। इकाइयों की अंतर्राष्ट्रीय प्रणाली में, भू-तापीय प्रवणता को डिग्री सेंटीग्रेट/किमी के रूप में व्यक्त किया जाता है, [1] के / किमी, [2] या एमके / एम। [3] ये सभी समतुल्य हैं।

पृथ्वी का आंतरिक ताप बजट|पृथ्वी की आंतरिक गर्मी ग्रहों की वृद्धि से अवशिष्ट गर्मी, रेडियोधर्मी क्षय के माध्यम से उत्पन्न गर्मी, कोर क्रिस्टलीकरण से गुप्त गर्मी, और संभवतः अन्य स्रोतों से गर्मी के संयोजन से आती है। पृथ्वी में प्रमुख गर्मी उत्पन्न करने वाले न्यूक्लाइड हैं पोटैशियम|पोटेशियम-40, यूरेनियम|यूरेनियम-238, यूरेनियम-235, और थोरियम|थोरियम-232। [4] ऐसा माना जाता है कि आंतरिक कोर का तापमान 4000 से 7000केल्विन की सीमा में है, और ग्रह के केंद्र पर दबाव लगभग 360 जीपीए (3.6 मिलियन एटीएम) माना जाता है। [5] (त्रुटिहीन मान पृथ्वी में घनत्व प्रोफ़ाइल पर निर्भर करता है।) क्योंकि बहुत अधिक गर्मी रेडियोधर्मी क्षय द्वारा प्रदान की जाती है, वैज्ञानिकों का मानना ​​है कि पृथ्वी के इतिहास की शुरुआत में, कम अर्ध-जीवन वाले न्यूक्लाइड्स से पहले। अर्ध-जीवन समाप्त हो गया था, पृथ्वी की गर्मी उत्पादन कहीं अधिक होता। लगभग 3 अरब साल पहले गर्मी का उत्पादन आज के समय से दोगुना था, [6] जिसके परिणामस्वरूप पृथ्वी के भीतर बड़े तापमान में उतार-चढ़ाव, आच्छादन संवहन और थाली की वस्तुकला की बड़ी दर होती है, जिससे आग्नेय चट्टानों जैसे कोमा में का उत्पादन होता है जो अब नहीं बनते हैं। [7]

भूतापीय प्रवणता का शीर्ष वायुमंडलीय तापमान से प्रभावित होता है। ठोस ग्रह की सबसे ऊपर की परतें स्थानीय मौसम द्वारा उत्पादित तापमान पर होती हैं, जो जमीन, चट्टान के प्रकार के आधार पर लगभग 10-20 मीटर की उथली गहराई पर लगभग वार्षिक औसत औसत|औसत-औसत तापमान (एमएटीटी) तक क्षय होती है। आदि; [8] [9]

[10] [11] [12] यह वह गहराई है जिसका उपयोग कई भू-स्रोत ताप पंपों के लिए किया जाता है। [13] शीर्ष सैकड़ों मीटर पिछले जलवायु परिवर्तन को दर्शाते हैं; [14] जैसे-जैसे आंतरिक ताप स्रोत हावी होने लगते हैं, वैसे-वैसे गर्माहट और बढ़ती जाती है।

ऊष्मा स्रोत

पृथ्वी कोर से बहिर्मंडल तक कटी हुई है
विस्कॉन्सिन, संयुक्त राज्य अमेरिका में भूतापीय ड्रिल मशीन

पृथ्वी के भीतर तापमान गहराई के साथ बढ़ता है। बीच के तापमान पर अत्यधिक चिपचिपा या आंशिक रूप से पिघला हुआ चट्टान 650 to 1,200 °C (1,200 to 2,200 °F) टेक्टोनिक प्लेटों के हाशिए पर पाए जाते हैं, आसपास के क्षेत्र में भू-तापीय प्रवणता को बढ़ाते हैं, किन्तु केवल बाहरी कोर को पिघला हुआ या द्रव अवस्था में उपस्थित माना जाता है, और पृथ्वी के आंतरिक कोर/बाहरी कोर सीमा पर तापमान, चारों ओर 3,500 kilometres (2,200 mi) गहरा, 5650 ± 600 केल्विन होने का अनुमान है। [15] [16] पृथ्वी की ऊष्मा सामग्री 1031 जूल है। [1]

  • ज़्यादातर गर्मी स्वाभाविक रूप से रेडियोधर्मी तत्वों के रेडियोधर्मी क्षय से उत्पन्न होती है। पृथ्वी से निकलने वाली ऊष्मा का अनुमानित 45 से 90 प्रतिशत मुख्य रूप से आच्छादन में स्थित तत्वों के रेडियोधर्मी क्षय से उत्पन्न होता है। [6] [17] [18]
  • गुरुत्वाकर्षण ऊर्जा, जिसे आगे विभाजित किया जा सकता है:
  • आंतरिक कोर सीमा पर तरल बाहरी कोर क्रिस्टलीकरण के रूप में जारी गुप्त गर्मी।
  • पृथ्वी पर ज्वारीय बल द्वारा गर्मी उत्पन्न की जा सकती है क्योंकि यह घूमता है (कोणीय गति का संरक्षण)। परिणामी पृथ्वी ज्वार पृथ्वी के आंतरिक भाग में ऊष्मा के रूप में ऊर्जा का प्रसार करती है।
के क्षय से रेडियोधर्मी ऊष्मा 238यू और 232थ अब पृथ्वी के आंतरिक ताप बजट में प्रमुख योगदानकर्ता हैं।

पृथ्वी की महाद्वीपीय परत में, प्राकृतिक रेडियोधर्मी न्यूक्लाइड का क्षय भू-तापीय ताप उत्पादन में महत्वपूर्ण योगदान देता है। महाद्वीपीय क्रस्ट कम घनत्व वाले खनिजों में प्रचुर मात्रा में है, किन्तु भारी गोल्डस्मिथ वर्गीकरण या लिथोफाइल तत्वों जैसे यूरेनियम की महत्वपूर्ण सांद्रता भी सम्मिलित है। इस वजह से, यह पृथ्वी में पाए जाने वाले रेडियोधर्मी तत्वों का सबसे अधिक केंद्रित वैश्विक भंडार है। [19] प्राकृतिक रूप से पाए जाने वाले रेडियोधर्मी तत्व ग्रेनाइट और बेसाल्टिक चट्टानों में समृद्ध होते हैं, विशेष रूप से पृथ्वी की सतह के करीब की परतों में। [20] इन उच्च स्तर के रेडियोधर्मी तत्वों को आच्छादन खनिजों में स्थानापन्न करने में असमर्थता और आच्छादन पिघलने की प्रक्रिया के समय पिघलने में परिणामी संवर्धन के कारण बड़े माप पर पृथ्वी के आच्छादन से बाहर रखा गया है। आच्छादन अधिकांशतः उच्च घनत्व वाले खनिजों से बना होता है, जिसमें तत्वों की उच्च सांद्रता होती है, जिनमें मैग्नीशियम (Mg), टाइटेनियम (Ti) और कैल्शियम (Ca) जैसे अपेक्षाकृत छोटे परमाणु त्रिज्या होते हैं। [19]

वर्तमान में प्रमुख गर्मी पैदा करने वाले न्यूक्लाइड [21]
न्यूक्लाइड उष्मा निकालना

[डब्ल्यू / किग्रा न्यूक्लाइड]

हाफ लाइफ

[साल]

आच्छादन एकाग्रता

[किलो न्यूक्लाइड/किग्रा आच्छादन]

उष्मा निकालना

[डब्ल्यू / किग्रा आच्छादन]

238U 9.46 × 10−5 4.47 × 109 30.8 × 10−9 2.91 × 10−12
235U 56.9 × 10−5 0.704 × 109 0.22 × 10−9 0.125 × 10−12
232Th 2.64 × 10−5 14.0 × 109 124 × 10−9 3.27 × 10−12
40K 2.92 × 10−5 1.25 × 109 36.9 × 10−9 1.08 × 10−12

भूतापीय प्रवणता स्थलमंडल में आच्छादन की तुलना में तेज है क्योंकि आच्छादन मुख्य रूप से संवहन द्वारा ऊष्मा का परिवहन करता है, जिससे भूतापीय प्रवणता होती है, जो कि लिथोस्फीयर में प्रचलित प्रवाहकीय ऊष्मा अंतरण प्रक्रियाओं के अतिरिक्त आच्छादन एडियाबैट द्वारा निर्धारित होती है, जो कार्य करती है। तापीय सीमा परत की मोटाई और संवहन आच्छादन के आकार के रूप में।[citation needed]

ऊष्मा प्रवाह

ऊष्मा पृथ्वी के भीतर अपने स्रोतों से लगातार सतह की ओर प्रवाहित होती है। पृथ्वी से कुल ऊष्मा हानि 44.2 टीडब्लू (4.42 × 1013 वाट). [22] औसत ताप प्रवाह 65 mW/m है2 महाद्वीपीय क्रस्ट के ऊपर और 101 mW/m2 समुद्री पपड़ी के ऊपर। [22] यह औसतन 0.087 वाट/वर्ग मीटर (पृथ्वी द्वारा अवशोषित सौर ऊर्जा का 0.03 प्रतिशत) है [23] ), किन्तुउन क्षेत्रों में बहुत अधिक केंद्रित है जहां लिथोस्फीयर पतला है, जैसे कि मध्य-महासागर की लकीरें (जहां नया समुद्री लिथोस्फीयर बनाया गया है) और आच्छादन प्लम के पास। [24]

पृथ्वी की पपड़ी प्रभावी रूप से एक मोटी इंसुलेटिंग कंबल के रूप में कार्य करती है जिसे नीचे की गर्मी को छोड़ने के लिए द्रव नलिकाओं (मैग्मा, पानी या अन्य) द्वारा छेद किया जाना चाहिए। मध्य-महासागर की लकीरों से जुड़े आच्छादन अपवेलिंग द्वारा प्लेट टेक्टोनिक्स के माध्यम से पृथ्वी में अधिक गर्मी खो जाती है। गर्मी के हानि का एक अन्य प्रमुख विधि लिथोस्फीयर के माध्यम से तापीय चालन द्वारा होता है, जिनमें से अधिकांश महासागरों में होता है क्योंकि क्रस्ट महाद्वीपों की तुलना में बहुत पतले और छोटे होते हैं। [22] [25]

30 टीडब्लू की दर से रेडियोधर्मी क्षय द्वारा पृथ्वी की गर्मी की भरपाई की जाती है। [26] वैश्विक भू-तापीय प्रवाह दर सभी प्राथमिक स्रोतों से मानव ऊर्जा खपत की दर से दोगुनी से अधिक है। ऊष्मा-प्रवाह घनत्व पर वैश्विक डेटा को इंटरनेशनल यूनियन ऑफ जियोडेसी एंड जियोफिजिक्स या स्ट्रक्चर्स/इंटरनेशनल यूनियन ऑफ जियोडेसी एंड जियोफिजिक्स के इंटरनेशनल हीट फ्लो कमीशन (आईएचएफसी) द्वारा एकत्र और संकलित किया जाता है। [27]

प्रत्यक्ष आवेदन

पृथ्वी के आंतरिक भाग से निकलने वाली ऊष्मा का उपयोग ऊर्जा स्रोत के रूप में किया जा सकता है, जिसे भूतापीय ऊर्जा के रूप में जाना जाता है। भू-तापीय ढाल का उपयोग प्राचीन रोमन काल से ही अंतरिक्ष को गर्म करने और स्नान करने के लिए किया जाता रहा है, और हाल ही में बिजली उत्पन्न करने के लिए किया गया है। जैसे-जैसे मानव आबादी बढ़ती जा रही है, वैसे-वैसे ऊर्जा का उपयोग और पर्यावरण से संबंधित प्रभाव भी बढ़ते जा रहे हैं जो ऊर्जा के वैश्विक प्राथमिक स्रोतों के अनुरूप हैं। इसने नवीकरणीय ऊर्जा के स्रोतों को खोजने में बढ़ती रुचि उत्पन्न की है और ग्रीनहाउस गैस उत्सर्जन को कम किया है। उच्च भू-तापीय ऊर्जा घनत्व के क्षेत्रों में, वर्तमान प्रौद्योगिकी इसी उच्च तापमान के कारण विद्युत शक्ति के उत्पादन की अनुमति देती है। भू-तापीय संसाधनों से विद्युत शक्ति उत्पन्न करने के लिए किसी ईंधन की आवश्यकता नहीं होती है जबकि विश्वसनीयता दर पर सच्ची बेसलोड ऊर्जा प्रदान करती है जो लगातार 90% से अधिक होती है। [19] भू-तापीय ऊर्जा निकालने के लिए, भू-तापीय जलाशय से बिजली संयंत्र में गर्मी को कुशलता से स्थानांतरित करना आवश्यक है, जहां जनरेटर से जुड़े टर्बाइन के माध्यम से भाप को पार करके विद्युत ऊर्जा को गर्मी से परिवर्तित किया जाता है। [19] भूतापीय ताप को बिजली में परिवर्तित करने की दक्षता गर्म तरल पदार्थ (पानी या भाप) और पर्यावरण के तापमान के बीच के तापमान के अंतर पर निर्भर करती है, इसलिए गहरे, उच्च तापमान वाले ताप स्रोतों का उपयोग करना फायदेमंद होता है। विश्वव्यापी माप पर, पृथ्वी के आंतरिक भाग में संग्रहीत ऊष्मा ऊर्जा प्रदान करती है जिसे अभी भी विदेशी स्रोत के रूप में देखा जाता है। 2007 तक दुनिया भर में लगभग 10 जीडब्लू की भू-तापीय विद्युत क्षमता स्थापित है, जो वैश्विक बिजली की मांग का 0.3% उत्पन्न करती है। जिला हीटिंग, स्पेस हीटिंग, स्पा, औद्योगिक प्रक्रियाओं, अलवणीकरण और कृषि अनुप्रयोगों के लिए अतिरिक्त 28 जीडब्लू की प्रत्यक्ष भू-तापीय ताप क्षमता स्थापित की गई है। [1]

विविधताएं

भू-तापीय प्रवणता स्थान के साथ भिन्न होती है और सामान्यतः बोरहोल ड्रिलिंग के बाद नीचे के खुले छेद के तापमान का निर्धारण करके मापा जाता है। ड्रिलिंग के तुरंत बाद प्राप्त तापमान लॉग यद्यपि ड्रिलिंग द्रव परिसंचरण के कारण प्रभावित होते हैं। निचले छेद के तापमान का त्रुटिहीन अनुमान प्राप्त करने के लिए, कुएं के लिए स्थिर तापमान तक पहुंचना आवश्यक है। यह व्यावहारिक कारणों से हमेशा प्राप्त करने योग्य नहीं होता है।

उष्ण कटिबंध में स्थिर विवर्तनिक क्षेत्रों में तापमान-:विक्त:गहराई प्लॉट वार्षिक औसत सतह तापमान में परिवर्तित हो जाएगा। यद्यपि, उन क्षेत्रों में जहां प्लेस्टोसीन के समय गहरे पर्मफ़्रॉस्ट का विकास हुआ, वहां कम तापमान की विसंगति देखी जा सकती है जो कई सौ मीटर तक बनी रहती है। [28] पोलैंड में सुवाल्की ठंड विसंगति ने मान्यता दी है कि प्लीस्टोसिन-अभिनव युग जलवायु परिवर्तन से संबंधित इसी तरह की थर्मल गड़बड़ी पूरे पोलैंड के साथ-साथ अलास्का, उत्तरी कनाडा और साइबेरिया में बोरहोल में अंकित की गई है।

300px-Geothermgradients.png

होलोसीन टेक्टोनिक उत्थान और क्षरण (चित्र 1) के क्षेत्रों में उथला ढाल तब तक ऊंचा रहेगा जब तक कि यह एक बिंदु तक नहीं पहुंच जाता (चित्र में इन्फ्लेक्शन बिंदु लेबल किया गया) जहां यह स्थिर ताप-प्रवाह शासन तक पहुंच जाता है। यदि स्थिर शासन के ढाल को इस बिंदु से ऊपर वर्तमान वार्षिक औसत तापमान के साथ इसके चौराहे पर प्रक्षेपित किया जाता है, तो वर्तमान सतह के ऊपर इस चौराहे की ऊंचाई होलोसीन उत्थान और क्षरण की सीमा का उपाय देती है। होलोसीन अवतलन और जमाव (तलछट) (चित्र 2) के क्षेत्रों में प्रारंभिक ढाल औसत से कम होगी जब तक कि यह उस बिंदु तक नहीं पहुंच जाती जहां यह स्थिर ताप-प्रवाह व्यवस्था में सम्मिलित हो जाती है।

सतह के तापमान में भिन्नता, चाहे दैनिक, मौसमी, या जलवायु परिवर्तन (सामान्य अवधारणा) और मिलनकोविच चक्र से प्रेरित हो, पृथ्वी की सतह के नीचे प्रवेश करती है और भू-तापीय प्रवणता में दोलन उत्पन्न करती है, जिसकी अवधि एक दिन से लेकर दसियों हजार वर्षों तक भिन्न होती है। और आयाम जो गहराई के साथ घटता जाता है। सबसे लंबी अवधि की विविधताओं में कई किलोमीटर की गहराई होती है। [29] [30] समुद्र की तलहटी के साथ बहने वाली ध्रुवीय बर्फ की टोपी से पिघला हुआ पानी पृथ्वी की सतह पर निरंतर भू-तापीय ढाल बनाए रखता है। [29][dubious ][verification needed]

यदि उथले बोरहोल में देखी गई गहराई के साथ तापमान में वृद्धि की दर अधिक गहराई पर बनी रहती है, तो पृथ्वी के भीतर का तापमान जल्द ही उस बिंदु तक पहुंच जाएगा जहां चट्टानें पिघल जाएंगी। हालाँकि, हम जानते हैं कि एस-तरंगों के संचरण के कारण पृथ्वी का आवरण ठोस है। गहराई के साथ तापमान प्रवणता नाटकीय रूप से दो कारणों से घटती है। सबसे पहले, ऊष्मीय परिवहन का तंत्र ऊष्मा चालन से बदलता है, जैसा कि कठोर टेक्टोनिक प्लेटों के भीतर, संवहन के लिए, पृथ्वी के आवरण के उस हिस्से में होता है जो संवहन करता है। इसकी ठोसता के अतिरिक्त, पृथ्वी के अधिकांश आच्छादन तरल पदार्थ के रूप में लंबे समय के माप पर व्यवहार करते हैं, और गर्मी संवहन, या भौतिक परिवहन द्वारा ले जाया जाता है। दूसरा, क्षय ताप उत्पादन पृथ्वी की पपड़ी के भीतर और विशेष रूप से पपड़ी के ऊपरी हिस्से के भीतर केंद्रित है, क्योंकि यूरेनियम, थोरियम और पोटेशियम की सांद्रता वहां सबसे अधिक है: ये तीन तत्व पृथ्वी के भीतर रेडियोधर्मी गर्मी के मुख्य उत्पादक हैं। इस प्रकार, पृथ्वी के आच्छादन के थोक के भीतर भू-तापीय ढाल 0.5 केल्विन प्रति किलोमीटर के क्रम का है, और यह आच्छादन सामग्री (ऊपरी आच्छादन में मुफ्त में मिली वस्तु) से जुड़े स्थिरोष्म ग्रेडिएंट द्वारा निर्धारित किया जाता है। [31]

नकारात्मक भूतापीय ढाल

जहां तापमान गहराई के साथ घटता है वहां ऋणात्मक भूतापीय प्रवणता होती है। यह सतह के पास सैकड़ों मीटर के ऊपरी कुछ में होता है। चट्टानों की कम ऊष्मीय विसारकता के कारण, गहरे भूमिगत तापमान दैनिक या वार्षिक सतह तापमान भिन्नताओं से संभवतः ही प्रभावित होते हैं। इसलिए कुछ मीटर की गहराई पर, भूमिगत तापमान वार्षिक औसत सतह के तापमान के समान होता है। अधिक गहराई पर, भूमिगत तापमान पिछले जलवायु के दीर्घकालिक औसत को दर्शाता है, जिससे अंकितनों से सैकड़ों मीटर की गहराई पर तापमान में पिछले सैकड़ों से हजारों वर्षों की जलवायु के बारे में जानकारी हो। स्थान के आधार पर, ये पिछले हिम युग के करीब ठंडे मौसम के कारण, या हाल ही में जलवायु परिवर्तन के कारण वर्तमान तापमान से अधिक ठंडे हो सकते हैं। [32] [33] [14]

गहरे जलभृत के कारण नकारात्मक भू-तापीय प्रवणता भी हो सकती है, जहां संवहन और संवहन द्वारा गहरे पानी से गर्मी हस्तांतरण के परिणामस्वरूप उथले स्तरों पर पानी निकटवर्ती चट्टानों को कुछ गहरे स्तर पर चट्टानों की तुलना में उच्च तापमान पर गर्म करता है। [34]

सबडक्शन जोन में बड़े माप पर नकारात्मक भू-तापीय ग्रेडियेंट भी पाए जाते हैं। [35] एक सबडक्शन ज़ोन टेक्टोनिक प्लेट सीमा होती है, जहां समुद्री परत अंडरलेइंग आच्छादन के सापेक्ष महासागरीय प्लेट के उच्च घनत्व के कारण आच्छादन में डूब जाती है। चूंकि सिंकिंग प्लेट प्रति वर्ष कुछ सेंटीमीटर की दर से आच्छादन में प्रवेश करती है, इसलिए प्लेट जितनी जल्दी डूबती है उतनी जल्दी हीट कंडक्शन प्लेट को गर्म करने में असमर्थ होती है। इसलिए, डूबने वाली प्लेट का तापमान आसपास के आच्छादन से कम होता है, जिसके परिणामस्वरूप नकारात्मक भूतापीय प्रवणता होती है। [35]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (2008-02-11). O. Hohmeyer and T. Trittin (ed.). "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). IPCC Scoping Meeting on Renewable Energy Sources, Proceedings. Luebeck, Germany: 59–80. CiteSeerX 10.1.1.362.1202. Archived from the original on 2013-03-12. Retrieved 2013-11-03.
  2. Jones, M. Q. W. (July 2018). "Virgin rock temperatures and geothermal gradients in the Bushveld Complex". Journal of the Southern African Institute of Mining and Metallurgy. 118 (7): 671–680. doi:10.17159/2411-9717/2018/v118n7a1. ISSN 2225-6253.
  3. Global Heat Flow Compilation Group (11 April 2013). "Component parts of the World Heat Flow Data Collection". Pangaea (in English). doi:10.1594/PANGAEA.810104. Retrieved 23 September 2021.
  4. Sanders, Robert (2003-12-10). "Radioactive potassium may be major heat source in Earth's core". UC Berkeley News. Retrieved 2007-02-28.
  5. Alfè, D.; Gillan, M. J.; Vocadlo, L.; Brodholt, J.; Price, G. D. (2002). "The ab initio simulation of the Earth's core" (PDF). Philosophical Transactions of the Royal Society. 360 (1795): 1227–44. Bibcode:2002RSPTA.360.1227A. doi:10.1098/rsta.2002.0992. PMID 12804276. S2CID 21132433. Retrieved 2007-02-28.
  6. 6.0 6.1 Turcotte, DL; Schubert, G (2002). "4". Geodynamics (2nd ed.). Cambridge, England, UK: Cambridge University Press. pp. 136–7. ISBN 978-0-521-66624-4.
  7. Vlaar, N; Vankeken, P; Vandenberg, A (1994). "Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle". Earth and Planetary Science Letters. 121 (1–2): 1–18. Bibcode:1994E&PSL.121....1V. doi:10.1016/0012-821X(94)90028-0.
  8. Kalogirou, Soteris & Florides, Georgios. (2004). Measurements of Ground Temperature at Various Depths, conference paper 3rd International Conference on Sustainable Energy Technologies, Nottingham, UK, https://www.researchgate.net/publication/30500372_Measurements_of_Ground_Temperature_at_Various_Depths https://ktisis.cut.ac.cy/bitstream/10488/870/3/C55-PRT020-SET3.pdf
  9. Williams G. and Gold L. Canadian Building Digest 180m 1976. National Research Council of Canada, Institute for Research in Construction. https://nrc-publications.canada.ca/eng/view/ft/?id=386ddf88-fe8d-45dd-aabb-0a55be826f3f,
  10. "Groundwater temperature's measurement and significance - National Groundwater Association". National Groundwater Association. 23 August 2015. Archived from the original on 23 August 2015.
  11. "Mean Annual Air Temperature - MATT". www.icax.co.uk.
  12. "Ground Temperatures as a Function of Location, Season, and Depth". builditsolar.com.
  13. Rafferty, Kevin (April 1997). "An Information Survival Kit for the Prospective Residential Geothermal Heat Pump Owner" (PDF). Geo-Heat Centre Quarterly Bulletin. Vol. 18, no. 2. Klmath Falls, Oregon: Oregon Institute of Technology. pp. 1–11. ISSN 0276-1084. Archived from the original (PDF) on 17 February 2012. Retrieved 2009-03-21. The author issued an updated version Archived 2013-02-17 at the Wayback Machine of this article in February 2001.
  14. 14.0 14.1 Huang, S., H. N. Pollack, and P. Y. Shen (2000), Temperature trends over the past five centuries reconstructed from borehole temperatures, Nature, 403, 756–758.
  15. Alfe, D.; M. J. Gillan; G. D. Price (2003-02-01). "Thermodynamics from first principles: temperature and composition of Earth's core" (PDF). Mineralogical Magazine. 67 (1): 113–123. Bibcode:2003MinM...67..113A. doi:10.1180/0026461026610089. S2CID 98605003. Archived from the original (PDF) on 2007-03-16. Retrieved 2007-03-01.
  16. Steinle-Neumann, Gerd; Lars Stixrude; Ronald Cohen (2001-09-05). "New Understanding of Earth's Inner Core". Carnegie Institution of Washington. Archived from the original on 2006-12-14. Retrieved 2007-03-01.
  17. Anuta, Joe (2006-03-30). "Probing Question: What heats the earth's core?". physorg.com. Retrieved 2007-09-19.
  18. Johnston, Hamish (19 July 2011). "Radioactive decay accounts for half of Earth's heat". PhysicsWorld.com. Institute of Physics. Retrieved 18 June 2013.
  19. 19.0 19.1 19.2 19.3 William, G. E. (2010). Geothermal Energy: Renewable Energy and the Environment (pp. 1-176). Boca Raton, FL: CRC Press.
  20. Wengenmayr, R., & Buhrke, T. (Eds.). (2008). Renewable Energy: Sustainable Energy Concepts for the future (pp. 54-60). Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA.
  21. Turcotte, D. L.; Schubert, G. (2002). "4". Geodynamics (2nd ed.). Cambridge, England, UK: Cambridge University Press. p. 137. ISBN 978-0-521-66624-4.
  22. 22.0 22.1 22.2 Pollack, Henry N., et.al.,Heat flow from Earth's interior: Analysis of the global data set, Reviews of Geophysics, 31, 3 / August 1993, p. 273 Archived 2011-08-11 at the Wayback Machine doi:10.1029/93RG01249
  23. "Climate and Earth's Energy Budget". NASA. 2009-01-14.
  24. Richards, M. A.; Duncan, R. A.; Courtillot, V. E. (1989). "Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails". Science. 246 (4926): 103–107. Bibcode:1989Sci...246..103R. doi:10.1126/science.246.4926.103. PMID 17837768. S2CID 9147772.
  25. Sclater, John G; Parsons, Barry; Jaupart, Claude (1981). "Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss". Journal of Geophysical Research. 86 (B12): 11535. Bibcode:1981JGR....8611535S. doi:10.1029/JB086iB12p11535.
  26. Rybach, Ladislaus (September 2007). "Geothermal Sustainability" (PDF). Geo-Heat Centre Quarterly Bulletin. Vol. 28, no. 3. Klamath Falls, Oregon: Oregon Institute of Technology. pp. 2–7. ISSN 0276-1084. Retrieved 2018-03-07.
  27. www.ihfc-iugg.org IHFC: International Heat Flow Commission - Homepage. Retrieved 18/09/2019.
  28. The Frozen Time, from the Polish Geological Institute Archived 2010-10-27 at the Wayback Machine
  29. 29.0 29.1 Stacey, Frank D. (1977). Physics of the Earth (2nd ed.). New York: John Wiley & Sons. ISBN 0-471-81956-5. pp. 183-4
  30. Sleep, Norman H.; Kazuya Fujita (1997). Principles of Geophysics. Blackwell Science. ISBN 0-86542-076-9. pp. 187-9
  31. Turcotte, D. L.; Schubert, G. (2002). "4". भूगतिकी (2nd ed.). Cambridge, England, UK: Cambridge University Press. p. 187. ISBN 978-0-521-66624-4.
  32. Lachenbruch, A. H., & Marshall, B. V. (1986). Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science, 234(4777), 689-696.
  33. Šafanda, J., Szewczyk, J., & Majorowicz, J. (2004). Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet. Geophysical Research Letters, 31(7).
  34. Ziagos, J. P., & Blackwell, D. D. (1986). A model for the transient temperature effects of horizontal fluid flow in geothermal systems. Journal of Volcanology and Geothermal Research, 27(3-4), 371-397.
  35. 35.0 35.1 Ernst, W.G., (1976) Petrologic Phase Equilibria, W.H. Freeman, San Francisco.

"Geothermal Resources". DOE/EIA-0603(95) Background Information and 1990 Baseline Data Initially Published in the Renewable Energy Annual 1995. Retrieved May 4, 2005.