मार्कोव ब्लैंकेट

From Vigyanwiki
बायेसियन नेटवर्क में, नोड a की मार्कोव सीमा में उसके माता-पिता, बच्चे और उसके सभी बच्चों के अन्य माता-पिता सम्मिलित हैं।

सांख्यिकी और मशीन लर्निंग में, जब कोई वेरिएबल के सम्मुचय के साथ यादृच्छिक वेरिएबल का अनुमान लगाना चाहता है, तब सामान्यतः उपसमूह पर्याप्त होता है, और अन्य वेरिएबल व्यर्थ होते हैं। ऐसा उपसमुच्चय जिसमें सभी उपयोगी जानकारी होती है, वह मार्कोव ब्लैंकेट कहलाता है। यदि मार्कोव ब्लैंकेट न्यूनतम है, जिसका अर्थ है कि यह जानकारी खोए बिना किसी भी वेरिएबल को नहीं गिरा सकता है, तब इसे मार्कोव सीमा कहा जाता है। मार्कोव ब्लैंकेट या मार्कोव सीमा की पहचान करने से उपयोगी सुविधाएँ निकालने में सहायता मिलती है। मार्कोव ब्लैंकेट और मार्कोव सीमा के नियम 1988 में जुडिया पर्ल द्वारा लिखे गए थे। [1] मार्कोव ब्लैंकेट का गठन मार्कोव श्रृंखलाओं के सम्मुचय द्वारा किया जा सकता है।

मार्कोव ब्लैंकेट

यादृच्छिक वेरिएबल सम्मुचय में यादृच्छिक वेरिएबल का मार्कोव ब्लैंकेट का कोई उपसमुच्चय होता है, जो इस बात पर आधारित है कि अन्य वेरिएबल के साथ स्वतंत्र हैं

यह अर्थ है कि इसमें कम से कम वह सारी जानकारी सम्मिलित है जिसका अनुमान लगाना आवश्यक है, जहां में वेरिएबल अनावश्यक हैं |

सामान्यतः दिया गया मार्कोव ब्लैंकेट अद्वितीय नहीं है। और कोई भी सम्मुचय जिसमें मार्कोव ब्लैंकेट है वह भी मार्कोव ब्लैंकेट ही होता है। विशेष रूप से, , में का मार्कोव ब्लैंकेट है |

मार्कोव सीमा

में की मार्कोव सीमा, का उपसमुच्चय होता है, वह स्वयं का मार्कोव ब्लैंकेट है, किन्तु का कोई भी उचित उपसमुच्चय का मार्कोव ब्लैंकेट नहीं है। अन्य के शब्दों में, मार्कोव सीमा न्यूनतम मार्कोव ब्लैंकेट है।

बायेसियन नेटवर्क में नोड की मार्कोव सीमा 's के माता-पिता, 's के बच्चों और 's के बच्चों के अन्य माता-पिता से बने नोड्स का सम्मुचय है। मार्कोव यादृच्छिक क्षेत्र में, नोड के लिए मार्कोव सीमा उसके निकटतम नोड्स का सम्मुचय होता है। इसके निर्भरता नेटवर्क में, नोड के लिए मार्कोव सीमा उसके माता-पिता का सम्मुचय है।

मार्कोव सीमा की विशिष्टता

मार्कोव सीमा सदैव उपस्थित रहती है। कुछ माइल्ड परिस्थितियों में, मार्कोव सीमा अद्वितीय होती है। चूँकि, अधिकांश व्यावहारिक और सैद्धांतिक परिदृश्यों के लिए एकाधिक मार्कोव सीमाएँ वैकल्पिक समाधान प्रदान कर सकती हैं।[2] जब अनेक मार्कोव सीमाएँ होती हैं, तब कारण प्रभाव को मापने वाली मात्राएँ विफल हो सकती हैं। [3]

यह भी देखें

टिप्पणियाँ

  1. Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series. San Mateo CA: Morgan Kaufmann. ISBN 0-934613-73-7.
  2. Statnikov, Alexander; Lytkin, Nikita I.; Lemeire, Jan; Aliferis, Constantin F. (2013). "एकाधिक मार्कोव सीमाओं की खोज के लिए एल्गोरिदम" (PDF). Journal of Machine Learning Research. 14: 499–566.
  3. Wang, Yue; Wang, Linbo (2020). "Causal inference in degenerate systems: An impossibility result". Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics: 3383–3392.
  [Category:Markov networ