मैक संख्या

From Vigyanwiki

ध्वनि की गति तक पहुँचने से ठीक पहले ट्रांसोनिक गति से वाष्प शंकु बनाते हुए एक F/A-18 हॉर्नेट

मैक संख्या (अधिकतम) द्रव गति में एक आयामहीन मात्रा है जो ध्वनि की स्थानीय गति सीमा (उष्मागतिकी) से आगे प्रवाह वेग के अनुपात का प्रतिनिधित्व करती है।[1][2] इसका नाम मोरावियन भौतिक विज्ञानी और दार्शनिक अर्नस्ट मैक के नाम पर रखा गया है।

जहां:

M स्थानीय मैक संख्या है,
u सीमाओं के संबंध में स्थानीय प्रवाह वेग है (या तो आंतरिक, जैसे प्रवाह में विसर्जित वस्तु, या बाहरी, एक चैनल की तरह है), और
c माध्यम में ध्वनि की गति है, जो हवा में उष्मागतिकी तापमान के वर्गमूल के साथ बदलती है।

परिभाषा के अनुसार, मैक  स्थानीय प्रवाह वेग ध्वनि की गति के बराबर होती है। मैक 0.65, ध्वनि की गति (सबसोनिक) का 65% है, और मैक  ध्वनि की गति (सुपरसोनिक) से 35% तेज है। उच्च-ऊंचाई वाले आंतरिक्ष वाहनों के पायलट वाहन के वास्तविक वायुगति को व्यक्त करने के लिए उड़ान मैक संख्या का उपयोग करते हैं, परंतु वाहन के चारों ओर प्रवाह क्षेत्र तीन आयामों में भिन्न होता है, स्थानीय मैक संख्या में इसी भिन्नता के साथ,

ध्वनि की स्थानीय गति, और मैक संख्या, आसपास की गैस के तापमान पर निर्भर करती है। मैक संख्या का उपयोग मुख्य रूप से उस सन्निकटन को निर्धारित करने के लिए किया जाता है जिसके साथ एक प्रवाह को एकअसंपीड्य प्रवाह के रूप में माना जा सकता है। माध्यम गैस या तरल हो सकता है। सीमा माध्यम से संचारण कर सकता है, या स्थिर हो सकता है जबकि माध्यम इसके साथ धाराप्रवाह है, या वे दोनों भिन्न भिन्न वेगों के साथ गतिमान हो सकते हैं: एक दूसरे के संबंध में उनका सापेक्ष वेग क्या उद्देश्य रखता है। सीमा माध्यम में डूबी किसी वस्तु की सीमा हो सकती है, या माध्यम चैनल को करने वाले नोजल, विसारक या वात सुरंग जैसे चैनल हो सकते है। जैसा कि मैक संख्या को दो गतियों के अनुपात के रूप में परिभाषित किया गया है, यह एक आयाम रहित संख्या M<0.2–0.3 है। और प्रवाह अर्ध-स्थिर और समतापी प्रक्रम, संपीड्यता प्रभाव छोटा है तो सरलीकृत असंपीड़ित प्रवाह समीकरणों का उपयोग कर सकते है।[1][2]


व्युत्पत्ति

मैक संख्या का नाम मोरावियन भौतिक विज्ञानी और दार्शनिक अर्नस्ट मैक के नाम पर रखा गया है,[3] और यह 1929 में वैमानिकी इंजीनियर जैकब एकरेट द्वारा प्रस्तावित पदनाम है।[4] जैसा कि मैक संख्या माप की इकाई के अतिरिक्त एक आयाम रहित मात्रा है, जो संख्या इकाई के बाद आती है; दूसरी मैक संख्या के अतिरिक्त है। यह कुछ हद तक प्रारंभिक आधुनिक महासागर ध्वन्यात्मक यूनिट मार्क की याद दिलाती है, जो यूनिट-प्रथम भी था, और जो मैक शब्द के उपयोग को प्रभावित कर सकता है। ध्वनि से तेज़ मानव उड़ान से पहले के दशक में, वैमानिकी अभियान्ताओं ने ध्वनि की गति को मैक की संख्या के रूप में संदर्भित किया है।[5]


अवलोकन

ध्वनि की गति (नीला) केवल ऊंचाई (लाल) पर तापमान भिन्नता पर निर्भर करती है और ध्वनि की गति पर पृथक घनत्व और दबाव प्रभाव एक दूसरे को रद्द करने के बाद से इसकी गणना की जा सकती है। ध्वनि की गति समताप मंडल और तापमंडल के दो क्षेत्रों में ऊंचाई के साथ बढ़ती है, इन क्षेत्रों में ताप प्रभाव के कारण।

मैक संख्या संकुचित प्रवाह की संपीड्यता विशेषताओं का एक माप है: द्रव (वायु) संपीड़ितता के प्रभाव में एक दिए गए मैक संख्या पर समान पद्धति से व्यवहार करता है, अन्य परिवर्तनशीलों की संरक्षण किए बिना।[6] जैसा कि अंतर्राष्ट्रीय मानक वायुमंडल में प्रतिरूपित किया गया है,औसत समुद्र तल पर शुष्क हवा, 15 °C (59 °F), का मानक तापमान, ध्वनि की गति है 340.3 meters per second (1,116.5 ft/s; 761.23 mph; 661.49 kn).[7] ध्वनि की गति स्थिर नहीं है; एक गैस में, यह निरपेक्ष तापमान के वर्गमूल के अनुपात में बढ़ता है, और चूंकि वायुमंडलीय तापमान सामान्यतः समुद्र के स्तर और 11,000 meters (36,089 ft), के बीच बढ़ती ऊंचाई के साथ घटता है, इसलिए ध्वनि की गति भी कम हो जाती है। उदाहरण के लिए, मानक वातावरण मॉडल 11,000 meters (36,089 ft) की ऊंचाई पर तापमान −56.5 °C (−69.7 °F) तक कम हो जाता है, साथ ही ध्वनि की गति (मैक 1) के साथ  295.0 meters per second (967.8 ft/s; 659.9 mph; 573.4 kn), समुद्र तल के मूल्य का 86.7% स्तर होता है।

निरंतरता समीकरण में उपस्थिति

प्रवाह संपीड्यता के एक उपाय के रूप में, मैक संख्या को निरंतरता समीकरण के उपयुक्त प्रवर्धन से प्राप्त किया जा सकता है।[8] सामान्य द्रव प्रवाह के लिए पूर्ण निरंतरता समीकरण है:

जहां सामग्री व्युत्पन्न है, घनत्व है, और प्रवाह वेग है। आइसेंट्रोपिक दबाव प्रेरित घनत्व परिवर्तन के लिए, जहां ध्वनि की गति है। अतः इस संबंध को ध्यान में रखते हुए निरंतरता समीकरण को थोड़ा संशोधित किया जा सकता है:
दूसरी गति चर को इस तरह से गैर-आयामी बनाना है:
जहां विशेषता लंबाई पैमाने है, विशेषता वेग पैमाना है, संदर्भ दबाव है, और संदर्भ घनत्व है। तब निरंतरता समीकरण के गैर-आयामी रूप को इस प्रकार लिखा जा सकता है:
जहां मैक संख्या . की सीमा में , निरंतरता समीकरण - यह असंपीड्य प्रवाह के लिए मानक आवश्यकता है।

मैक शासनों का वर्गीकरण

जबकि शब्द सबसोनिक और सुपरसोनिक, शुद्धतम अर्थों में क्रमशः ध्वनि की स्थानीय गति से नीचे और ऊपर की गति को संदर्भित करते हैं,वायु गतिकीय विशेषज्ञ अधिकांशतः मैक मानों की विशेष श्रेणियों के बारे में बात करने के लिए समान शब्दों का उपयोग करते हैं। यह उड़ान (स्पष्ट प्रवाह) एम = 1 के आसपास एक पारध्वनिक शासन की उपस्थिति के कारण होता है, जहां सबसोनिक डिजाइन के लिए उपयोग किए जाने वाले नेवियर-स्टोक्स समीकरणों के अनुमान अब लागू नहीं होते हैं; सबसे सरल व्याख्या यह है कि स्थानीय रूप से एक वायुयान निर्माणों के चारों ओर प्रवाह M = 1 से अधिक होने लगता है, यद्यपि स्पष्ट प्रवाह मैक संख्या इस मान से कम हो।

इस मध्य से, सुपरसोनिक नियम का उपयोग सामान्यतः मैक संख्या के सेट के बारे में बात करने के लिए किया जाता है, उदाहरण के लिए (वायु) प्रवाह रासायनिक रूप से प्रतिक्रिया नहीं करता है, और जहां हवा और वाहन के बीच गर्मी हस्तांतरण उचित रूप से उपेक्षित हो सकता है।

निम्नलिखित तालिका में, मैक मूल्यों के नियम या श्रेणी को संदर्भित किया जाता है, न कि सबसोनिक और सुपरसोनिक शब्दों के शुद्ध अर्थों को ।

सामान्यतः, नासा अतिपराध्वनिक उड़ानों को 10 से 25 तक किसी भी मैक संख्या के रूप में परिभाषित करता है, और मैक 25 से अधिक कुछ भी पुन: प्रवेश गति के रूप में परिभाषित करता है। इस व्यवस्था में चलने वाले विमानों में अंतरिक्ष यान और विकास में विभिन्न अंतरिक्ष विमान सम्मलित हैं।

रैश़ीम उड़ान की गति सामान्य विमान विशेषताएँ
(मैक) (गाँठें) (मील प्रति घंटे) (किमी/घंटा) (एमएस)
सब्सानिक <0.8 <530 <609 <980 <273 अधिकांशतः प्रोपेलर-चालित और वाणिज्यिक टर्बोफैन विमान उच्च पहलू-अनुपात (पतले) पंखों और नाक और अग्रणी किनारों जैसी गोल सुविधाओं के साथ।

सबसोनिक स्पीड रेंज गति की वह सीमा है जिसके कारण, एक विमान के ऊपर सभी एयरफ्लो मैक 1 से कम है। क्रिटिकल मैक नंबर (मैक्रिट) सबसे कम फ्री स्ट्रीम मैक नंबर है, जिस पर विमान के किसी भी हिस्से पर एयरफ्लो सबसे पहले मैक तक पहुंचता है। 1. इसलिए सबसोनिक स्पीड रेंज में वे सभी स्पीड सम्मलित हैं जो मैक्रिट से कम हैं।

ट्रैन्सानिक 0.8–1.2 530–794 609–914 980–1,470 273–409 ट्रांसोनिक विमान में लगभग सदैव स्वेप्ट विंग्स होते हैं, जिससे ड्रैग-डाइवर्जेंस में देरी होती है, और अधिकांशतः एक ऐसा डिज़ाइन उपस्थित करता है जो व्हिटकोम्ब एरिया नियम के सिद्धांतों का पालन करता है।

ट्रांसोनिक स्पीड रेंज गति की वह सीमा है जिसके कारण एक विमान के विभिन्न भागों में वायु प्रवाह सबसोनिक और सुपरसोनिक के बीच होता है। इसलिए मैक्रिट से मैक 1.3 तक की उड़ान के नियम को ट्रांसोनिक रेंज कहा जाता है।

सूपर्सानिक 1.2–5.0 794-3,308 915-3,806 1,470–6,126 410–1,702 सुपरसोनिक गति की वह सीमा है जिसके अन्दर एक विमान पर सभी एयरफ्लो सुपरसोनिक (मैक 1 से अधिक) होते हैं। परंतु अग्रणी किनारों से मिलने वाले एयरफ्लो को प्रारंभ में कम किया जाता है, इसलिए यह सुनिश्चित करने के लिए फ्री स्ट्रीम की गति मैक 1 से थोड़ी अधिक होनी चाहिए ताकि यह सुनिश्चित हो सके कि विमान पर सभी प्रवाह सुपरसोनिक हैं। यह सामान्यतः स्वीकार किया जाता है कि सुपरसोनिक गति सीमा मैक 1.3 से अधिक मुक्त प्रवाह गति से प्रारंभ होती है।

सुपरसोनिक गति से उड़ान भरने के लिए डिज़ाइन किए गए विमान अपने वायुगतिकीय डिज़ाइन में बड़े अंतर दिखाते हैं चूंकि मैक 1 से ऊपर के प्रवाह के व्यवहार में मौलिक अंतर होता है। तेज किनारों, पतले एरोफॉइल-सेक्शन, और ऑल-मूविंग टेलप्लेन / कैनार्ड्स साधारण हैं। कम गति की हैंडलिंग बनाए रखने के लिए आधुनिक लड़ाकू विमानों को समझौता करना चाहिए; "वास्तविक" सुपरसोनिक डिजाइनों में F-104 स्टारफाइटर, मिग-31, उत्तरी अमेरिकी XB-70 वाल्किरी, SR-71 ब्लैकबर्ड, और BAC/एयरो स्थानिक कॉनकॉर्ड सम्मलित हैं।

हाइपर्सानिक 5.0–10.0 3,308–6,615 3,806–7,680 6,126–12,251 1,702–3,403 X-15, मैक 6.72 पर सबसे तेज़ मानवयुक्त विमानों में से एक है। इसके अतिरिक्त, ठंडा निकल-टाइटेनियम त्वचा; अत्यधिक एकीकृत (हस्तक्षेप प्रभाव के प्रभुत्व के कारण: गैर-रैखिक व्यवहार का अर्थ है कि अलग-अलग घटकों के लिए परिणामों का सुपरपोजिशन अमान्य है), छोटे पंख, जैसे कि Mach 5 X-51A वेवराइडर पर।
हाइ हाइपर्सानिक 10.0–25.0 6,615–16,537 7,680–19,031 12,251–30,626 3,403–8,508 नासा X-43, मैक 9.6 पर सबसे तेज विमानों में से एक है। थर्मल नियंत्रण एक प्रमुख डिजाइन विचार बन जाता है। संरचना को या तो गर्म संचालित करने के लिए डिज़ाइन किया जाना चाहिए, या विशेष सिलिकेट टाइलों या समान द्वारा संरक्षित किया जाना चाहिए। रासायनिक रूप से प्रतिक्रियाशील प्रवाह भी वाहन की त्वचा के क्षरण का कारण बन सकता है, जिसमें मुक्त-परमाणु ऑक्सीजन बहुत उच्च गति वाले प्रवाह में होता है। वक्रता के कम त्रिज्या के साथ वायुगतिकीय ताप बढ़ने के कारण हाइपरसोनिक डिजाइनों को अधिकांशतः कुंद विन्यास में मजबूर किया जाता है।
स्पीड >25.0 >16,537 >19,031 >30,626 >8,508 एब्लेटिव हीट शील्ड; छोटे या कोई पंख नहीं; कुंद आकार। रूस का अवनगार्ड (हाइपरसोनिक ग्लाइड व्हीकल) 27 मैक तक पहुंचता है।


वस्तुओं के चारों ओर उच्च गति का प्रवाह

उड़ान को छह श्रेणियों में वर्गीकृत किया जा सकता है:

रैश़ीम सब्सानिक ट्रैन्सानिक स्पीड आफ साउन्ड सूपर्सानिक हाइपर्सानिक हाइपरवेलोसिटी
मैक <0.8 0.8–1.2 1.0 1.2–5.0 5.0–10.0 >8.8

तुलना के लिए: कम पृथ्वी की कक्षा के लिए आवश्यक गति लगभग 7.5 km/s = मैक 25.4 उच्च ऊंचाई पर हवा में है।

पारध्वनिक गति पर, वस्तु के चारों ओर प्रवाह क्षेत्र में उप- और सुपरसोनिक दोनों भाग सम्मलित होते हैं। पारध्वनिक अवधि तब प्रारंभ होती है जब वस्तु के चारों ओर एम> 1 प्रवाह के पहले क्षेत्र दिखाई देते हैं। एक वायुपत्रक (जैसे कि एक विमान का पंख) के स्थिति में, यह सम्मलित पंख के ऊपर होता है। पराध्वनिक गति प्रवाह एकमात्र सामान्य झटके से वापस अवध्वानिक में धीमा हो सकता है; यह सम्मलित अनुगामी किनारे से पहले होता है। (चित्र 1क)

जैसे-जैसे गति बढ़ती है, M > 1 प्रवाह का क्षेत्र अग्रणी और अनुगामी दोनों किनारों की ओर बढ़ता है। जैसा कि एम = 1 तक पहुंच गया है और पारित हो गया है, सामान्य झटका अनुगामी किनारे तक पहुंचता है और एक कमजोर तिरछा संक्षोभ बन जाता है: प्रवाह क्षुब्ध से कम हो जाता है, परंतु पराध्वनिक गति रहता है। वस्तु के आगे एक सामान्य क्षुब्ध बनाया जाता है, और प्रवाह क्षेत्र में एकमात्र अवध्वानिक क्षेत्र वस्तु के अग्रणी किनारे के आसपास एक छोटा क्षेत्र होता है। (चित्र 1ख)

Transsonic flow over airfoil 1.svg Transsonic flow over airfoil 2.svg
(a) (b)

अंजीर। 1. एक वायुपत्रक के चारों ओर ट्रांसोनिक वायु प्रवाह में मैक संख्या; एम <1 (ए) और एम> 1 (बी)।

जब एक विमान मैक 1 (यानी ध्वनि अवरोधक) से अधिक हो जाता है, तो विमान के ठीक सामने एक बड़ा दबाव अंतर पैदा हो जाता है। यह अचानक दबाव अंतर, जिसे प्रघाती तरंग कहा जाता है, एक शंकु के आकार (एक तथाकथित मैक कोन) में विमान से पीछे और बाहर की ओर फैलता है। यह क्षुब्ध की लहर है जो एक तेज गति से चलने वाले विमान के ऊपरी हिस्से में यात्रा के रूप में सुनाई देने वाली ध्वनि बूम का कारण बनती है। जिसके कारण विमान के अंदर बैठे व्यक्ति को यह नहीं सुनाई देता है। गति जितनी अधिक होगी, शंकु उतना ही संकीर्ण होगा;

पूरी तरह से पराध्वनिक गति पर, प्रघाती तरंग अपना शंकु आकार लेना शुरू कर देती है और प्रवाह या तो पूरी तरह से पराध्वनिक होता है, या (कुंद वस्तु के स्थिति में), केवल एक बहुत छोटा पराध्वनिक गति प्रवाह क्षेत्र वस्तु का अग्रभाग और इसके द्वारा बनाई जाने वाली प्रघाती तरंग के बीच रहता है। खुद का। (नुकीली वस्तु के स्थिति में, अग्रभाग और प्रघाती तरंग के बीच कोई हवा नहीं होती है: प्रघाती तरंग अग्रभाग से शुरू होती है।)

जैसे-जैसे मैक संख्या बढ़ती है, वैसे-वैसे प्रघाती तरंग की शक्ति और मैक कोन तेजी से संकीर्ण होता जाता है। जैसे ही द्रव का प्रवाह प्रघाती तरंग को पार करता है, इसकी गति कम हो जाती है और तापमान, दबाव और घनत्व बढ़ जाता है। झटका जितना मजबूत होगा, बदलाव उतने ही बड़े होंगे। उच्च पर्याप्त मैक संख्या में झटके से ऊपर तापमान इतना बढ़ जाता है कि क्षुब्ध की लहर के पीछे गैस अणुओं का आयनीकरण और पृथक्करण शुरू हो जाता है। ऐसे प्रवाह को अतिपराध्वनिक कहा जाता है।

यह स्पष्ट है कि अतिपराध्वनिक गति से यात्रा करने वाली कोई भी वस्तु अग्रभाग प्रघाती तरंग के पीछे गैस के समान चरम तापमान के संपर्क में आएगी, और इसलिए गर्मी प्रतिरोधी सामग्री का निर्वाचन महत्वपूर्ण हो जाता है।

एक चैनल में उच्च गति का प्रवाह

जैसे ही एक चैनल में प्रवाह पराध्वनिक हो जाता है, एक महत्वपूर्ण परिवर्तन होता है। द्रव्यमान प्रवाह दर के संरक्षण से यह अपेक्षा की जाती है कि प्रवाह चैनल को अनुबंधित करने से प्रवाह की गति में वृद्धि होगी (अर्थात तेज वायु प्रवाह में चैनल को संकरा बना देगा) और अवध्वानिक गति पर यह सच है। चूंकि, एक बार जब प्रवाह पराध्वनिक हो जाता है, तो प्रवाह क्षेत्र और गति का संबंध उलट जाता है: चैनल का विस्तार करने से वास्तव में गति बढ़ जाती है।

स्पष्ट परिणाम यह है कि पराध्वनिक के प्रवाह में तेजी लाने के लिए, एक अभिसारी-अपसारी नोजल की आवश्यकता होती है, जहां अभिसरण खंड ध्वनि गति के प्रवाह को तेज करता है, और अपसारी खंड त्वरण जारी रखता है। इस तरह के नोज़ल को डी लवल नोजल कहा जाता है और अत्यधिक स्थितियों में वे अतिपराध्वनिक गति (Mach 13 (15,900 km/h; 9,900 mph) 20 डिग्री सेल्सियस पर) तक पहुंचने में सक्षम हैं।

एक विमान मैकमीटर या इलेक्ट्रॉनिक उड़ान सूचना प्रणाली (ईएफआईएस ) ठहराव दबाव (पिटोट पाइप ) और स्थिर दबाव से प्राप्त मैक संख्या प्रदर्शित कर सकता है।

गणना

जब ध्वनि की गति ज्ञात हो जाती है, तो उस मैक संख्या की गणना की जा सकती है जिस पर एक विमान उड़ रहा है

जहां:

M मैक संख्या है
u गतिमान वायुयान का वेग है और
c दी गई ऊंचाई पर ध्वनि की गति है (अधिक उचित तापमान)

और ध्वनि की गति उष्मागतिकी तापमान के साथ भिन्न होती है:

जहां:

स्थिर दाब पर गैस की विशिष्ट ऊष्मा और स्थिर आयतन (हवा के लिए 1.4) पर ताप क्षमता का अनुपात है
हवा के लिए विशिष्ट गैस स्थिरांक है।
स्थिर हवा का तापमान है।


यदि ध्वनि की गति ज्ञात नहीं है, तो मैक संख्या को विभिन्न वायु दाबों (स्थैतिक और गतिशील) को मापकर और निम्नलिखित सूत्र का उपयोग करके निर्धारित किया जा सकता है जो 1.0 से कम मैक संख्या के लिए बर्नौली के समीकरण से प्राप्त होता है। हवा को एक आदर्श गैस मानते हुए, अवध्वानिक गैस संपीडक प्रवाह में मैक संख्या की गणना करने का सूत्र है:[9]

जहां:

क्यूc प्रभाव दबाव (गतिशील दबाव) है और
p स्थिर दाब है
स्थिर दाब पर गैस की विशिष्ट ऊष्मा और स्थिर आयतन (हवा के लिए 1.4) पर ताप क्षमता का अनुपात है
हवा के लिए विशिष्ट गैस स्थिरांक है।

पराध्वनिक संपीड़ित प्रवाह में मैक संख्या की गणना करने का सूत्र रेले संख्या पराध्वनिक पिटोट समीकरण से लिया गया है:


=== पिटोट ट्यूब प्रेशर === से मैक संख्या की गणना करना मैक संख्या तापमान और वास्तविक वायुगति का फलन है। विमान उड़ान उपकरण, चूंकि, मैक संख्या की गणना करने के लिए दबाव अंतर का उपयोग करते हैं, तापमान नहीं।

हवा को एक आदर्श गैस मानते हुए, अवध्वानिक संपीड़ित प्रवाह में मैक संख्या की गणना करने के लिए बर्नौली के समीकरण से मिलता है:[9]: पराध्वनिक संपीड़ित प्रवाह में मैक संख्या की गणना करने का सूत्र रेले पराध्वनिक पिटोट समीकरण (ऊपर) से हवा के लिए मापदंडों का उपयोग करके पाया जा सकता है:

जहां:

क्यूcएक सामान्य झटके से पीछे का मापा गया गतिशील दबाव है।

जैसा कि देखा जा सकता है, एम समीकरण के दोनों किनारों पर प्रकट होता है, और व्यावहारिक उद्देश्यों के लिए एक संख्यात्मक समाधान के लिए रूट-खोज कलन विधि का उपयोग किया जाना चाहिए (समीकरण का समाधान एम में 7-क्रम बहुपद की जड़ है2 और, चूंकि इनमें से कुछ को स्पष्ट रूप से हल किया जा सकता है, एबेल-रफिनी प्रमेय गारंटी देता है कि इन बहुपदों की जड़ों के लिए कोई सामान्य रूप मौजूद नहीं है)। यह पहले निर्धारित किया जाता है कि क्या एम वास्तव में अवध्वानिक समीकरण से एम की गणना करके 1.0 से अधिक है। यदि एम उस बिंदु पर 1.0 से अधिक है, तो अवध्वानिक समीकरण से एम का मूल्य पराध्वनिक समीकरण के निश्चित बिंदु पुनरावृत्ति के लिए प्रारंभिक स्थिति के रूप में उपयोग किया जाता है, जो सामान्यतः बहुत तेजी से अभिसरण करता है।[9]वैकल्पिक रूप से, न्यूटन की विधि का भी उपयोग किया जा सकता है।

यह भी देखें

|सही एयरस्पीड ]]


टिप्पणियाँ

  1. Jump up to: 1.0 1.1 Young, Donald F.; Munson, Bruce R.; Okiishi, Theodore H.; Huebsch, Wade W. (21 December 2010). द्रव यांत्रिकी का संक्षिप्त परिचय (5th ed.). John Wiley & Sons. p. 95. ISBN 978-0-470-59679-1. LCCN 2010038482. OCLC 667210577. OL 24479108M.
  2. Jump up to: 2.0 2.1 Graebel, William P. (19 January 2001). Engineering Fluid Mechanics (1st ed.). CRC Press. p. 16. ISBN 978-1-56032-733-2. OCLC 1034989004. OL 9794889M.
  3. "Ernst Mach". Encyclopædia Britannica. 2016. Retrieved January 6, 2016.
  4. Jakob Ackeret: Der Luftwiderstand bei sehr großen Geschwindigkeiten. Schweizerische Bauzeitung 94 (Oktober 1929), pp. 179–183. See also: N. Rott: Jakob Ackert and the History of the Mach Number. Annual Review of Fluid Mechanics 17 (1985), pp. 1–9.
  5. Bodie, Warren M., The Lockheed P-38 Lightning, Widewing Publications ISBN 0-9629359-0-5.
  6. Nancy Hall (ed.). "Mach Number". NASA.
  7. Clancy, L.J. (1975), Aerodynamics, Table 1, Pitman Publishing London, ISBN 0-273-01120-0
  8. Kundu, P.J.; Cohen, I.M.; Dowling, D.R. (2012). Fluid Mechanics (5th ed.). Academic Press. pp. 148–149. ISBN 978-0-12-382100-3.
  9. Jump up to: 9.0 9.1 9.2 Olson, Wayne M. (2002). "AFFTC-TIH-99-02, Aircraft Performance Flight Testing." (PDF). Air Force Flight Test Center, Edwards AFB, CA, United States Air Force. Archived September 4, 2011, at the Wayback Machine


बाहरी कड़ियाँ