यादृच्छिक चरण सन्निकटन

From Vigyanwiki
बुलबुला आरेख, जिसका योग करने पर यादृच्छिक प्रावस्‍था सन्निकटन बनता है। ठोस रेखाएँ अंतःक्रियात्मक या गैर-अंतःक्रियात्मक ग्रीन-फलन के लिए स्थित होती हैं, दो-कण अंतःक्रियाओं के लिए असतत रेखाएँ।

यादृच्छिक प्रावस्‍था सन्निकटन (आरपीए) संघनित पदार्थ भौतिकी और परमाणु भौतिकी में एक सन्निकटन विधि है। 1952 और 1953 के मौलिक पत्रों की एक श्रृंखला में एक महत्वपूर्ण परिणाम के रूप में इसे पहली बार डेविड बोहम और डेविड पाइंस द्वारा प्रस्तुत किया गया था।[1][2] दशकों से भौतिक विज्ञानी पदार्थ के सिद्धांत में इलेक्ट्रॉनों के बीच अतिसूक्ष्मदर्शी क्वांटम यांत्रिक अंतःक्रियाओं के प्रभाव को प्रस्तुत करने के प्रयास कर रहे थे। बोहम और पाइंस का यादृच्छिक प्रावस्‍था सन्निकटन दुर्बल प्रतिच्छादित कूलम्ब पारस्परिक क्रिया के लिए है और सामान्य रूप से इलेक्ट्रॉन प्रणाली की गतिशील रैखिक इलेक्ट्रॉनिक प्रतिक्रिया का वर्णन करने के लिए उपयोग किया जाता है।

यादृच्छिक प्रावस्‍था सन्निकटन में, इलेक्ट्रॉनों को केवल कुल विद्युत विभव V(r) पर प्रतिक्रिया करने के लिए माना जाता है जो बाहरी विक्षोभकारी विभव Vext(r) और एक अनुवीक्षण विभव Vsc(r) का योग है। बाहरी विक्षोभकारी विभव को एक एकल आवृत्ति ω पर दोलन करने के लिए माना जाता है, ताकि मॉडल एक स्व-सुसंगत क्षेत्र (एससीएफ) विधि[3] के माध्यम से प्राप्त होता है, जिसे εRPA(k, ω) द्वारा दर्शाया गया एक गतिशील परावैद्युत फलन है।

कुल विद्युत विभव से परावैद्युत फलन में योगदान को औसत माना जाता है, ताकि तरंग वेक्टर k पर केवल विभव का योगदान हो। यादृच्छिक प्रावस्‍था सन्निकटन का यही अर्थ है। परिणामी परावैद्युत फलन, जिसे लिंडहार्ड परावैद्युत फलन भी कहा जाता है,[4][5] प्लाज्मॉन सहित इलेक्ट्रॉन गैस के कई गुणों की सही भविष्यवाणी करता है।[6]

1950 के दशक के अंत में यादृच्छिक प्रावस्‍था सन्निकटन की स्वतंत्रता की कोटि की अधिक गणना के लिए आलोचना की गई थी और औचित्य के लिए सैद्धांतिक भौतिकविदों के बीच गहन कार्य का नेतृत्व किया गया था। एक मौलिक पेपर में मुरे गेल-मैन और कीथ ब्रुकनर ने दिखाया कि यादृच्छिक प्रावस्‍था सन्निकटन को सघन इलेक्ट्रॉन गैस में अग्रणी-क्रम श्रृंखला फेनमैन आरेखों के योग से प्राप्त किया जा सकता है।[7]

इन परिणामों में निरंतरता एक महत्वपूर्ण औचित्य बन गया और 50 और 60 के दशक के अंत में सैद्धांतिक भौतिकी में बहुत प्रबल वृद्धि को प्रेरित किया।

अनुप्रयोग

अंतःक्रियात्मक बोसोनिक प्रणाली की निम्नतम स्थिति

यादृच्छिक प्रावस्‍था सन्निकटन निर्वात एक बोसोनिक प्रणाली के लिए को गैर-सहसंबद्ध बोसोनिक निर्वात के रूप मे और मूल बोसोन उत्तेजना के रूप में व्यक्त किया जा सकता है

जहाँ Z, और के साथ एक सममित आधात्री है, और

सामान्यीकरण द्वारा गणना की जा सकती है

जहाँ का अव्युत्क्रमणीय मान अपघटन . होता है

नए और पुराने उत्तेजनाओं के बीच संबंध द्वारा दिया जाता है

.

संदर्भ

  1. Pines, David; Bohm, David (15 January 1952). "A Collective Description of Electron Interactions: II. CollectivevsIndividual Particle Aspects of the Interactions". Physical Review. American Physical Society (APS). 85 (2): 338–353. Bibcode:1952PhRv...85..338P. doi:10.1103/physrev.85.338. ISSN 0031-899X.
  2. Bohm, David; Pines, David (1 October 1953). "A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas". Physical Review. American Physical Society (APS). 92 (3): 609–625. Bibcode:1953PhRv...92..609B. doi:10.1103/physrev.92.609. ISSN 0031-899X.
  3. Ehrenreich, H.; Cohen, M. H. (15 August 1959). "Self-Consistent Field Approach to the Many-Electron Problem". Physical Review. American Physical Society (APS). 115 (4): 786–790. Bibcode:1959PhRv..115..786E. doi:10.1103/physrev.115.786. ISSN 0031-899X.
  4. J. Lindhard (1954). "On the Properties of a Gas of Charged Particles" (PDF). Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser. 28 (8).
  5. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976)
  6. G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990)
  7. Gell-Mann, Murray; Brueckner, Keith A. (15 April 1957). "Correlation Energy of an Electron Gas at High Density" (PDF). Physical Review. American Physical Society (APS). 106 (2): 364–368. Bibcode:1957PhRv..106..364G. doi:10.1103/physrev.106.364. ISSN 0031-899X. S2CID 120701027.