रफ़ सेट

From Vigyanwiki

कंप्यूटर विज्ञान में, रफ सेट, जिसे प्रथम बार पोलिश कंप्यूटर वैज्ञानिक ज़डज़िस्लाव आई. पावलक द्वारा वर्णित किया गया था, सेट की जोड़ी के संदर्भ में क्रिस्प सेट (अर्थात, पारंपरिक सेट) का ऐसा औपचारिक अनुमान है जो निचला एवं ऊपरी सन्निकटन देता है। मूल सेट रफ सेट थ्योरी (पावलक 1991) के मानक संस्करण में, निचले एवं ऊपरीसन्निकटन सेट क्रिस्प सेट होते हैं, किन्तु अन्य विविधताओं में, अनुमानित सेट अस्पष्ट सेट हो सकते हैं।

परिभाषाएँ

निम्नलिखित अनुभाग में कुछ प्रमुख परिभाषाओं के साथ, रफ सेट सिद्धांत के बुनियादी आकृति का अवलोकन सम्मिलित है, जैसा कि मूल रूप से ज़ेडज़िस्लाव आई. पावलक द्वारा प्रस्तावित किया गया हैं। रफ सेट के अधिक औपचारिक गुण एवं सीमाएँ पावलक (1991) एवं उद्धृत संदर्भों में प्राप्त सकती हैं। रफ सेट के प्रारंभिक एवं बुनियादी सिद्धांत को कभी-कभी पावलक रफ सेट या क्लासिकल रफ सेट के रूप में संदर्भित किया जाता है, जो कि वर्तमान के विस्तार एवं सामान्यीकरण से भिन्न करने का साधन है।

सूचना प्रणाली संरचना

सूचना प्रणाली (विशेषता-मूल्य प्रणाली) बनें, जहां वस्तुओं (ब्रह्मांड) का अन्य-रिक्त सीमित सेट है, ऐसी विशेषताओं का अन्य-रिक्त, सीमित सेट है प्रत्येक के लिए है। मानों का वह समूह है जो विशेषता देता है लग सकता है। सूचना तालिका मान से निर्दिष्ट करती है। प्रत्येक विशेषता के लिए एवं आपत्ति ब्रह्मांड में होता है। किसी के साथ संबद्ध तुल्यता संबंध है।

संबंध ए कहा जाता है - अविवेकपूर्ण संबंध. का विभाजन के सभी समतुल्य वर्गों का परिवार है, एवं द्वारा प्रदर्शित किया गया है (या ) द्वारा प्रदर्शित किया गया है।

यदि , तब एवं गुणों के आधार पर अप्रभेद्य (या अप्रभेद्य) हैं .

समतुल्य वर्ग अविवेकी संबंध निरूपित किया जाता है।

उदाहरण: तुल्यता-वर्ग संरचना

उदाहरण के लिए, निम्नलिखित सूचना तालिका पर विचार करें:

प्रतिरूप सूचना प्रणाली
वस्तु
1 2 0 1 1
1 2 0 1 1
2 0 0 1 0
0 0 1 2 1
2 1 0 2 1
0 0 1 2 2
2 0 0 1 0
0 1 2 2 1
2 1 0 2 2
2 0 0 1 0

जब गुणों का पूर्ण सेट विचार करने पर, हम देखते हैं कि हमारे पास निम्नलिखित सात समतुल्य वर्ग हैं:

इस प्रकार, प्रथम तुल्यता वर्ग के अंदर दो वस्तुएँ, , उपलब्ध विशेषताओं एवं दूसरे समतुल्य वर्ग के अंदर तीन वस्तुओं के आधार पर उन्हें भिन्न नहीं किया जा सकता है, शेष पाँच वस्तुएँ अन्य सभी वस्तुओं से भिन्न हैं।

यह स्पष्ट है कि भिन्न-भिन्न विशेषता उपसमुच्चय चयन सामान्यतः भिन्न-भिन्न अविवेकपूर्णता वर्गों को उत्पन करती है। उदाहरण के लिए, यदि विशेषता अकेले चयनित होने पर, हमें निम्नलिखित, अधिक मोटे, तुल्यता-वर्ग संरचना प्राप्त होती है:


रफ़ सेट की परिभाषा

लक्ष्य सेट हो जिसे हम विशेषता उपसमुच्चय का उपयोग करके प्रस्तुत करना चाहते हैं ; अर्थात्, हमें बताया गया है कि वस्तुओं का सेट इसमें एकल वर्ग सम्मिलित है, एवं हम विशेषता उपसमुच्चय द्वारा प्रेरित समतुल्य वर्गों का उपयोग करके इस वर्ग (अर्थात, इस उपसमुच्चय) को व्यक्त करना चाहते हैं . सामान्य रूप में, सटीक रूप से व्यक्त नहीं किया जा सकता है, क्योंकि सेट में उन वस्तुओं को सम्मिलित एवं बाहर किया जा सकता है जो विशेषताओं के आधार पर अप्रभेद्य हैं।

उदाहरण के लिए, निर्धारित लक्ष्य पर विचार करें , एवं विशेषता उपसमुच्चय दें , सुविधाओं का पूर्ण उपलब्ध सेट है। सेट सटीक रूप से व्यक्त नहीं किया जा सकता, क्योंकि में वस्तुएं अविवेकी हैं, इस प्रकार, किसी भी सेट का प्रतिनिधित्व करने की कोई विधि नहीं है, जिसमें सम्मिलित है किन्तु एवं वस्तुओं को छोड़ देता है।

चूँकि, लक्ष्य निर्धारित है केवल उसमें उपस्थित जानकारी का उपयोग करके अनुमान लगाया जा सकता है का निर्माण करके -निचला एवं ऊपरी सन्निकटन अनुमान लगाया जा सकता है,


निचला सन्निकटन एवं सकारात्मक क्षेत्र निचला सन्निकटन, या सकारात्मक क्षेत्र, सभी समतुल्य वर्गों का मिलन है जो लक्ष्य निर्धारित द्वारा समाहित हैं (अर्थात, इसके उपसमूह हैं), उदाहरण में, , दो समतुल्य वर्गों का मिलन जो निर्धारित लक्ष्य में समाहित है। निचला सन्निकटन वस्तुओं का पूर्ण सेट है, जिसे सकारात्मक रूप से (अर्थात, स्पष्ट रूप से) लक्ष्य निर्धारित से संबंधित रूप में वर्गीकृत किया जा सकता है।

ऊपरी सन्निकटन एवं ऋणात्मक क्षेत्र ऊपरी सन्निकटन सभी समतुल्य वर्गों का मिलन है, जिनका लक्ष्य निर्धारित के साथ अन्य रिक्त प्रतिच्छेदन है, उदाहरण में, , तीन समतुल्य वर्गों का मिलन जिनका निर्धारित लक्ष्य के साथ अन्य-रिक्त प्रतिच्छेदन है। ऊपरी सन्निकटन वस्तुओं का पूर्ण सेट है, जिसे सकारात्मक रूप से (अर्थात, स्पष्ट रूप से) पूरक के रूप में वर्गीकृत नहीं किया जा सकता, () निर्धारित लक्ष्य का है। दूसरे शब्दों में, ऊपरी सन्निकटन वस्तुओं का पूर्ण सेट है जो संभवतः लक्ष्य सेट के सदस्य हैं।

सेट इसलिए नकारात्मक क्षेत्र का प्रतिनिधित्व करता है, जिसमें वस्तुओं का समूह सम्मिलित है जिन्हें लक्ष्य सेट के सदस्यों के रूप में निश्चित रूप से अस्वीकार किया जा सकता है।

सीमा क्षेत्र

सीमा क्षेत्र, निर्धारित भिन्नता द्वारा दिया गया , इसमें वे वस्तुएं सम्मिलित हैं जिन्हें लक्ष्य निर्धारित के सदस्यों के रूप में न तो स्वीकार किया जा सकता है एवं न ही अस्वीकार किया जा सकता है।

संक्षेप में, लक्ष्य सेट का निचला सन्निकटन रूढ़िवादी सन्निकटन है जिसमें केवल वे वस्तुएं सम्मिलित होती हैं जिन्हें सकारात्मक रूप से सेट के सदस्यों के रूप में पहचाना जा सकता है। (इन वस्तुओं में कोई अदृश्य क्लोन नहीं है जिन्हें लक्ष्य सेट से बाहर रखा गया है।) ऊपरी सन्निकटन उदार सन्निकटन है जिसमें वे सभी वस्तुएँ सम्मिलित हैं जो लक्ष्य निर्धारित के सदस्य हो सकते हैं। ऊपरी सन्निकटन में कुछ वस्तुएं लक्ष्य निर्धारित की सदस्य नहीं हो सकती हैं। , के परिप्रेक्ष्य से निचले सन्निकटन में वे वस्तुएँ सम्मिलित हैं जो निश्चितता (संभावना = 1) के साथ निर्धारित लक्ष्य के सदस्य हैं, जबकि ऊपरी सन्निकटन में वे वस्तुएँ सम्मिलित हैं जो अन्य शून्य संभावना (संभावना> 0) के साथ निर्धारित लक्ष्य के सदस्य हैं।

रफ़ सेट

टुपल निचले एवं ऊपरी सन्निकटन से बना रफ सेट कहलाता है; इस प्रकार, रफ सेट दो क्रिस्प सेटों से बना होता है, जिनमें से लक्ष्य सेट की निचली सीमा का प्रतिनिधित्व करता है , एवं दूसरा लक्ष्य निर्धारित की ऊपरी सीमा का प्रतिनिधित्व करता है।.

सेट के रफ-सेट प्रतिनिधित्व की सटीकता निम्नलिखित द्वारा दिया जा सकता है (पावलक 1991):

किसी न किसी सेट प्रतिनिधित्व की सटीकता , , , उन वस्तुओं की संख्या का अनुपात है जिन्हें सकारात्मक रूप से रखा जा सकता है उन वस्तुओं की संख्या तक जिन्हें संभवतः रखा जा सकता है - यह इस बात का माप प्रदान करता है कि रफ सेट लक्ष्य सेट के कितनी करीब है। स्पष्ट रूप से, जब ऊपरी एवं निचले सन्निकटन समान होते हैं (अर्थात, सीमा क्षेत्र खाली होता है), तो , एवं सन्निकटन उचित है; दूसरे चरम पर, जब भी निचला सन्निकटन खाली होता है, सटीकता शून्य होती है (ऊपरी सन्निकटन के आकार की परवाह किए बिना) शून्य होती है।

उद्देश्य विश्लेषण

रफ सेट सिद्धांत उपाय है जिसे अनिश्चित (अस्पष्ट सहित) प्रणालियों का विश्लेषण करने के लिए नियोजित किया जा सकता है, चूँकि संभाव्यता, सांख्यिकी, एन्ट्रॉपी (सूचना सिद्धांत) एवं डेम्पस्टर-शेफ़र सिद्धांत के अधिक पारंपरिक उपायों की अपेक्षा में कम आम है। चूँकि, मौलिक रफ सेट सिद्धांत (पावलक एट अल। 1995) का उपयोग करने का महत्वपूर्ण भिन्नता एवं अद्वितीय ताकत यह है कि यह विश्लेषण का उद्देश्यपूर्ण रूप प्रदान करता है। अन्य उपायों के विपरीत, जैसा कि ऊपर दिया गया है, क्लासिकल रफ सेट विश्लेषण के लिए सेट सदस्यता निर्धारित करने के लिए किसी अतिरिक्त जानकारी, बाहरी पैरामीटर, मॉडल, फ़ंक्शन, ग्रेड या व्यक्तिपरक व्याख्याओं की आवश्यकता नहीं होती है, इसके अतिरिक्त यह केवल दिए गए डेटा (डंटश एवं गेडिगा 1995) के अंदर प्रस्तुत जानकारी का उपयोग करता है। रफ सेट सिद्धांत के वर्तमान अनुकूलन, जैसे कि प्रभुत्व-आधारित, निर्णय-सैद्धांतिक एवं फ़ज़ी रफ सेट, ने विश्लेषण में अधिक व्यक्तिपरकता ला दी है।

निश्चयता

सामान्यतः, ऊपरी एवं निचले सन्निकटन समान नहीं होते हैं; ऐसे विषयों में, हम कहते हैं कि लक्ष्य निर्धारित है जो विशेषता सेट पर परिभाषित नहीं है। जब ऊपरी एवं निचला सन्निकटन समान हो (अर्थात, सीमा खाली हो), , पुनः लक्ष्य निर्धारित किया गया , विशेषता सेट पर निश्चित है। अपरिभाषितता के निम्नलिखित विशेष विषयों को भिन्न कर सकते हैं:

  • यदि आंतरिक रूप से अपरिभाषित एवं है। इसका तात्पर्य है कि विशेषता सेट पर ऐसी कोई वस्तु नहीं है जिसके विषय में हम निश्चित हो सकें कि वह लक्ष्य निर्धारित से संबंधित है , किन्तु ऐसी वस्तुएं हैं जिन्हें हम निश्चित रूप से सेट से बाहर कर सकते हैं।
  • यदि बाह्य रूप से अपरिभाषित एवं है। इसका तात्पर्य है कि विशेषता सेट पर, ऐसी वस्तुएं हैं जिनके विषय में हम निश्चित हो सकते हैं कि वे लक्ष्य निर्धारित से संबंधित हैं , किन्तु ऐसी कोई वस्तु नहीं है जिसे हम निश्चित रूप से सेट से बाहर कर सकते हैं।
  • यदि पूर्ण तरह से अपरिभाषित एवं है। इसका तात्पर्य है कि विशेषता सेट पर, ऐसी कोई वस्तु नहीं है जिसके विषय में हम निश्चित हो सकें कि वह लक्ष्य निर्धारित से संबंधित है, एवं ऐसी कोई वस्तु नहीं है जिसे हम निश्चित रूप से सेट से बाहर कर सकते हैं। इस प्रकार, विशेषता सेट पर, हम यह तय नहीं कर सकते कि कोई वस्तु का सदस्य है या नहीं है।

रिडक्ट एवं कोर

रोचक सवाल यह है कि क्या सूचना प्रणाली (विशेषता-मूल्य तालिका) में ऐसी विशेषताएं हैं जो अन्य विशेषताओं की अपेक्षा में समतुल्य वर्ग संरचना में दर्शाए गए ज्ञान के लिए अधिक महत्वपूर्ण हैं। प्रायः, हमें आश्चर्य होता है कि क्या विशेषताओं का उपसमूह है, जो स्वयं में, डेटाबेस में ज्ञान को पूर्ण प्रकार से चित्रित कर सकता है; ऐसे विशेषता सेट को रिडक्ट कहा जाता है।

औपचारिक रूप से, रिडक्ट विशेषताओं का उपसमूह है, ऐसा है कि

  • = , अर्थात्, कम विशेषता सेट द्वारा प्रेरित समतुल्य वर्ग पूर्ण विशेषता सेट द्वारा प्रेरित समतुल्य वर्ग संरचना के समान हैं।
  • विशेषता सेट न्यूनतम है, इस अर्थ में किसी भी विशेषता के लिए ; दूसरे शब्दों में, किसी भी विशेषता को सेट से निकला नहीं जा सकता समतुल्य वर्गों को परिवर्तित किए बिना निकाला नहीं जा सकता है।

कमी को सुविधाओं के पर्याप्त सेट अर्थात श्रेणी संरचना का प्रतिनिधित्व करने के लिए विचार किया जा सकता है,। उपरोक्त उदाहरण तालिका में, विशेषता सेट कमी है, केवल इन विशेषताओं पर प्रक्षेपित सूचना प्रणाली में समान समतुल्य वर्ग संरचना होती है जो पूर्ण विशेषता सेट द्वारा व्यक्त की जाती है:

विशेषता सेट कमी है क्योंकि इनमें से किसी भी विशेषता को समाप्त करने से तुल्यता-वर्ग संरचना का पतन हो जाता है, जिसके परिणाम है।

किसी सूचना प्रणाली की कमी अद्वितीय नहीं है: विशेषताओं के कई उपसमूह हो सकते हैं जो सूचना प्रणाली में व्यक्त समतुल्य-वर्ग संरचना (अर्थात , ज्ञान) को संरक्षित करते हैं। उपरोक्त उदाहरण सूचना प्रणाली में, कमी है, समान तुल्यता-वर्ग संरचना का निर्माण करता है।

गुणों का वह सेट जो सभी रिडक्ट्स के लिए सामान्य है, कोर कहलाता है: कोर उन गुणों का सेट है जो हर रिडक्ट के पास होता है, एवं इसलिए इसमें ऐसे गुण होते हैं जिन्हें तुल्यता-वर्ग के पतन के बिना सूचना प्रणाली से निकला नहीं जा सकता है। कोर को आवश्यक अर्थात, श्रेणी संरचना का प्रतिनिधित्व करने के लिए आवश्यक विशेषताओं के सेट के रूप में सोचा जा सकता है। उदाहरण में, ऐसी एकमात्र विशेषता है; अन्य विशेषताओं में से किसी को समतुल्य-वर्ग संरचना को नुकसान पहुंचाए बिना अकेले निकला जा सकता है, एवं इसलिए ये सभी डिस्पेंसेबल हैं। चूँकि, हट रहा है, स्वयं में तुल्यता-वर्ग संरचना परिवर्तित हो जाती है, एवं इस प्रकार इस सूचना प्रणाली का अपरिहार्य गुण है, एवं इसका मूल है।

कोर का खाली होना संभव है, जिसका अर्थ है कि कोई अपरिहार्य विशेषता नहीं है: ऐसी सूचना प्रणाली में किसी भी विशेषता को समतुल्य-वर्ग संरचना में परिवर्तित किए बिना निकला जा सकता है। ऐसे विषयों में, कोई आवश्यक या आवश्यक विशेषता नहीं है जो वर्ग संरचना का प्रतिनिधित्व करने के लिए आवश्यक हो।

विशेषता निर्भरता

डेटाबेस विश्लेषण या डेटा अधिग्रहण के सबसे महत्वपूर्ण पहलुओं में से विशेषता निर्भरता की शोध है; अर्थात्, हम यह पता लगाना चाहते हैं कि कौन से चर किस अन्य चर से दृढ़ता से संबंधित हैं। सामान्यतः, यह ये स्थिर रिश्ते हैं जो परिक्षण का उत्तरदायित्व लेंगे, एवं जो अंततः भविष्य कहने वाला मॉडलिंग में उपयोगी होंगे।

रफ सेट सिद्धांत में, निर्भरता की धारणा को सरलता से परिभाषित किया गया है। आइए हम विशेषताओं के दो (असंबद्ध) सेट लें, सेट एवं सेट , एवं पूछताछ करें कि उनके मध्य किस स्तर की निर्भरता प्राप्त होती है। प्रत्येक विशेषता सेट (अविवेकी) तुल्यता वर्ग संरचना को प्रेरित करता है, तुल्यता वर्ग द्वारा दिए गए , एवं तुल्यता वर्ग द्वारा द्वारा दिए गए प्रेरित होते हैं।

, जहाँ विशेषता सेट द्वारा प्रेरित समतुल्य-वर्ग संरचना से दिया गया समतुल्य वर्ग है। पुनः, विशेषता सेट की निर्भरता विशेषता सेट पर , , द्वारा दिया गया है,

अर्थात् प्रत्येक समतुल्य वर्ग के लिए में , हम इसके निचले सन्निकटन के आकार को विशेषताओं द्वारा जोड़ते हैं। यह सन्निकटन (जैसा कि ऊपर है, सेट के लिए ) उन वस्तुओं की संख्या है जो विशेषता सेट पर हैं, लक्ष्य निर्धारित से संबंधित के रूप में सकारात्मक रूप से पहचाना जा सकता है। सभी समतुल्य वर्गों में जोड़ा गया , उपरोक्त अंश वस्तुओं की कुल संख्या का प्रतिनिधित्व करता है जो विशेषता सेट पर आधारित है, विशेषताओं द्वारा प्रेरित वर्गीकरण के अनुसार सकारात्मक रूप से वर्गीकृत किया जा सकता है, इसलिए निर्भरता अनुपात ऐसी वर्गीकृत वस्तुओं के अनुपात (संपूर्ण ब्रह्मांड के अंदर) को व्यक्त करता है। निर्भरता सूचना प्रणाली में ऐसी वस्तुओं के अनुपात के रूप में व्याख्या की जा सकती है जिसके लिए विशेषताओं के में विशेषताओं के मान निर्धारित करने के लिए मूल्यों को जानना पर्याप्त है।

निर्भरता पर विचार करने का सहज, विधिप्रेरित विभाजन को लेना है, लक्ष्य वर्ग के रूप में , एवं विचार करें लक्ष्य वर्ग के पुनर्निर्माण के लिए हम जिस विशेषता सेट का उपयोग करना चाहते हैं, यदि पूर्णतः पुनर्निर्माण कर सकता है , तब पूर्णतः निर्भर पर करता है; यदि इसका परिणाम व्यर्थ एवं संभवतः यादृच्छिक पुनर्निर्माण होता है, तब पर निर्भर नहीं होता है।

इस प्रकार, निर्भरता का यह माप विशेषता सेट की कार्यात्मक निर्भरता विशेषता सेट पर की डिग्री को व्यक्त करता है। विशेषता निर्भरता की इस धारणा का विशेषता निर्भरता की अधिक पारंपरिक सूचना-सैद्धांतिक (अर्थात, एंट्रोपिक) धारणाओं के संबंध पर कई स्रोतों (उदाहरण के लिए, पावलक, वोंग, एवं ज़िआर्को 1988; याओ एवं याओ 2002; वोंग, ज़िआर्को) , एवं ये 1986, क्वाफाफौ एवं बौसौफ 2000) में विचार की गई है ।

नियम निष्कर्षण

ऊपर जिन श्रेणी निरूपणों की विचार की गई है वे सभी प्रकृति में विस्तारित हैं; अर्थात्, श्रेणी या जटिल वर्ग अपने सभी सदस्यों का योग मात्र है। किसी श्रेणी का प्रतिनिधित्व करने का तात्पर्य उस श्रेणी से संबंधित सभी वस्तुओं को सूचीबद्ध करने या पहचानने में सक्षम होना है। चूँकि, विस्तारित श्रेणी प्रतिनिधित्व का व्यावहारिक उपयोग बहुत सीमित है, क्योंकि वे यह तय करने के लिए कोई भिन्नता्दृष्टि प्रदान नहीं करते हैं कि नई (प्राथमिककभी नहीं देखी गई) वस्तुएँ श्रेणी की सदस्य हैं या नहीं हैं।

सामान्यतः जो वांछित होता है वह श्रेणी का विवरण होता है, नियमों के सेट के आधार पर श्रेणी का प्रतिनिधित्व जो श्रेणी के सीमाओं का वर्णन करता है। ऐसे नियमों का चयन अद्वितीय नहीं है, एवं इसमें आगमनात्मक पूर्वाग्रह का मुद्दा निहित है। इस समस्या के विषय में अधिक जानकारी के लिए संस्करण स्थान एवं मॉडल चयन देखें।

कुछ नियम-निष्कर्षण विधियाँ हैं। हम ज़िआर्को एवं शान (1995) पर आधारित नियम-निष्कर्षण प्रक्रिया से शुरुआत करेंगे।

निर्णय मैट्रिक्स

यदि हम सुसंगत नियमों (तार्किक निहितार्थ) का न्यूनतम सेट ढूंढना चाहते हैं जो हमारी प्रतिरूप प्रणाली की विशेषता बताते हैं। शर्त विशेषताओं के सेट के लिए एवं निर्णय विशेषता , इन नियमों का स्वरूप , या, वर्तनी में,

होना चाहिए,

जहाँ उनकी संबंधित विशेषताओं के डोमेन से वैध मान हैं। यह एसोसिएशन नियमों का विशिष्ट रूप है, एवं इसमें मदों की संख्या है जो स्थिति/पूर्ववृत्त से मेल खाता हो, उसे नियम का समर्थन कहा जाता है। ऐसे नियम निकालने की विधि ज़ियार्को & शान (1995) इसमें दी गई है। प्रत्येक व्यक्तिगत मूल्य के अनुरूप , मूल्य के लिए निर्णय मैट्रिक्स निर्णय विशेषता का सभी विशेषता-मूल्य युग्मों को सूचीबद्ध करता है जो वस्तुओं के मध्य भिन्न होते हैं एवं होते हैं।

इसे उदाहरण द्वारा सबसे उचित प्रकार से समझाया गया है (जो बहुत सारे नोटेशन से भी बचाता है)। ऊपर दी गई तालिका पर विचार करें, एवं आइए निर्णय परिवर्तनशील बनें (अर्थात, निहितार्थ के दाईं ओर चर) एवं रहने दें स्थिति चर बनें (निहितार्थ के बाईं ओर)। हम ध्यान दें कि निर्णय परिवर्तनशील है अर्थात् दो भिन्न मान ग्रहण करता है . हम प्रत्येक विषयों को भिन्न से देखते हैं।

विषय को देखते हैं , एवं हम विभाजित हो जाते हैं उन वस्तुओं में जिनके पास है एवं जिनके पास है। (ध्यान दें कि ऑब्जेक्ट के साथ इस विषयों में केवल वे वस्तुएं हैं जो हैं, किन्तु सामान्य रूप में, इसमें वे सभी वस्तुएँ सम्मिलित होंगी जिनके लिए कोई मूल्य हो के अतिरिक्त अन्य , एवं वस्तुओं के ऐसे कई वर्ग हो सकते हैं (उदाहरण के लिए, जिनके पास ), इस विषयों में, वस्तुओं का होना हैं, जबकि जो वस्तुएं हैं। निर्णय मैट्रिक्स वस्तुओं के मध्य सभी भिन्नताओं को सूचीबद्ध करता है एवं जिनके पास है ; अर्थात्, निर्णय मैट्रिक्स मध्य के सभी भिन्नताओं को एवं सूचीबद्ध करता है, सकारात्मक वस्तुएँ () पंक्तियों एवं नकारात्मक वस्तुओं के रूप में स्तंभों के रूप में हैं।

निर्णय मैट्रिक्स for
Object

इस निर्णय मैट्रिक्स को पढ़ने के लिए, उदाहरण के लिए, पंक्ति के प्रतिच्छेदन को एवं स्तंभ देखें, दिखा रहा है कोशिका में. इसका तात्पर्य यह है कि निर्णय मूल्य के संबंध में , वस्तु वस्तु से भिन्न है गुणों पर एवं , एवं सकारात्मक वस्तु के लिए इन विशेषताओं पर विशेष मान हैं एवं है।यह हमें बताता है कि इसका उचित वर्गीकरण क्या है, निर्णय वर्ग से संबंधित होने के नाते गुणों पर एवं ;निर्भर है, चूँकि इनमें से कोई अपरिहार्य हो सकता है, हम जानते हैं कि इनमें से कम से कम विशेषता अपरिहार्य है।

इसके पश्चात, प्रत्येक निर्णय मैट्रिक्स से हम बूलियन तर्क अभिव्यक्तियों का सेट बनाते हैं, मैट्रिक्स की प्रत्येक पंक्ति के लिए अभिव्यक्ति है। प्रत्येक कोशिका के अंदर की वस्तुओं को संयोजनात्मक रूप से एकत्रित किया जाता है। इस प्रकार, उपरोक्त तालिका के लिए हमारे पास निम्नलिखित पाँच बूलियन अभिव्यक्तियाँ हैं:

यहां प्रत्येक कथन अनिवार्य रूप से कक्षा में सदस्यता को नियंत्रित करने वाला अत्यधिक विशिष्ट (संभवतः बहुत विशिष्ट) नियम है, उदाहरण के लिए, वस्तु के अनुरूप अंतिम कथन , बताता है कि निम्नलिखित सभी संतुष्ट होने चाहिए:

  1. दोनों में से मान 2 होना चाहिए, या मान 0 या दोनों होना चाहिए.
  2. मान 0 होना चाहिए.
  3. दोनों में से मान 2 होना चाहिए, या मान 0 या दोनों होना चाहिए.
  4. दोनों में से मान 2 होना चाहिए, या मान 0 होना चाहिए, या इसका मान 0 या उसका कोई संयोजन होना चाहिए।
  5. मान 0 होना चाहिए.

यह स्पष्ट है कि यहां बड़ी मात्रा में अतिरेक है, एवं आगामी चरण पारंपरिक बूलियन बीजगणित (तर्क) का उपयोग करके सरल बनाना है। कथन वस्तुओं के अनुरूप को सरल बनाता है , जिससे निहितार्थ निकलता है

इसी प्रकार, कथन वस्तुओं के अनुरूप को सरल बनाता है . इससे हमें निहितार्थ मिलता है

उपरोक्त निहितार्थों को निम्नलिखित नियम सेट के रूप में भी लिखा जा सकता है:

यह ध्यान दिया जा सकता है कि प्राथमिक दो नियमों में से प्रत्येक को 1 का समर्थन प्राप्त है (अर्थात्, पूर्ववर्ती दो वस्तुओं से मेल खाता है), जबकि अंतिम दो नियमों में से प्रत्येक को 2 का समर्थन प्राप्त है। इस ज्ञान प्रणाली के लिए निर्धारित नियम को लिखना समाप्त करने के लिए, के विषयों के लिए ऊपर दी गई समान प्रक्रिया ( नया निर्णय मैट्रिक्स लिखने से प्रारंभ) का पालन किया जाना चाहिए, इस प्रकार उस निर्णय मूल्य के लिए निहितार्थों का नया सेट (अर्थात , निहितार्थों का सेट) परिणाम के रूप में) सेट उत्पन्न होता है । सामान्यतः, निर्णय चर के प्रत्येक संभावित मान के लिए प्रक्रिया दोहराई जाएगी।

एलईआरएस नियम प्रेरण प्रणाली

डेटा प्रणाली एलईआरएस (रफ सेट्स पर आधारित उदाहरणों से सीखना) ग्राज़ीमाला-बुसे (1997) असंगत डेटा अर्थात, परस्पर विरोधी वस्तुओं वाला डेटा से नियम उत्पन्न कर सकता है। दो वस्तुएँ परस्पर विरोधी होती हैं जब वे सभी विशेषताओं के समान मूल्यों की विशेषता रखती हैं, किन्तु वे विभिन्न अवधारणाओं (वर्गों) से संबंधित होती हैं। एलईआरएस अन्य अवधारणाओं के साथ विवधा में सम्मिलित अवधारणाओं के लिए निचले एवं ऊपरी अनुमानों की गणना करने के लिए रफ सेट सिद्धांत का उपयोग करता है।

अवधारणा के निचले सन्निकटन से प्रेरित नियम निश्चित रूप से अवधारणा का वर्णन करते हैं, इसलिए ऐसे नियमों को निश्चित कहा जाता है। दूसरी ओर, अवधारणा के ऊपरी सन्निकटन से प्रेरित नियम संभवतः अवधारणा का वर्णन करते हैं, इसलिए इन नियमों को संभव कहा जाता है। नियम प्रेरण के लिए एलईआरएस तीन एल्गोरिदम एलईएम1, एलईएम2, एवं आईआरआईएम का उपयोग करता है।

एलईआरएस का एलईएम2 एल्गोरिदम प्रायः नियम प्रेरण के लिए उपयोग किया जाता है एवं इसका उपयोग न केवल एलईआरएस में अपितु अन्य प्रणालियों में भी किया जाता है, उदाहरण के लिए, आरएसईएस (बज़ान एट अल (2004) में किया जाता है। एलईएम2 विशेषता-मूल्य जोड़े के शोध स्थान की शोध करता है। इसका इनपुट डेटा सेट अवधारणा का निचला या ऊपरी सन्निकटन है, इसलिए इसका इनपुट डेटा सेट सदैव सुसंगत होता है। सामान्यतः, एलईएम2 स्थानीय कवरिंग की गणना करता है एवं पुनः इसे नियम सेट में परिवर्तित करता है। हम एलईएम2 एल्गोरिथ्म का वर्णन करने के लिए कुछ परिभाषाएँ उद्धृत करेंगे।

एलईएम2 एल्गोरिथ्म विशेषता मूल्य जोड़ी ब्लॉक के विचार पर आधारित है। होने देना निर्णय-मूल्य जोड़ी द्वारा दर्शाई गई अवधारणा का अन्य-रिक्त निचला या ऊपरी सन्निकटन हो . तय करना सेट पर निर्भर करता है, विशेषता-मूल्य जोड़े का यदि केवल

है।

का न्यूनतम परिसर है यदि केवल यदि पर निर्भर करता है एवं कोई उचित उपसमुच्चय नहीं का ऐसा उपस्थित है पर निर्भर करता है . होने देना विशेषता-मूल्य युग्मों के अन्य-रिक्त सेटों का अन्य-रिक्त संग्रह बनें। तब का स्थानीय आवरण है यदि एवं केवल यदि निम्नलिखित तीन शर्तें पूर्ण होती हैं:

प्रत्येक सदस्य का का न्यूनतम परिसर है ,

न्यूनतम है, अर्थात , सदस्यों की संभावित संख्या सबसे कम है।

प्रतिरूप सूचना प्रणाली के लिए, एलईएम2 निम्नलिखित नियमों को प्रेरित करेगा:

अन्य नियम-सीखने के उपाय पाए जा सकते हैं, उदाहरण के लिए, पावलक (1991), स्टेफानोव्स्की (1998), बाज़न एट अल में (2004), आदि।

अपूर्ण डेटा

अपूर्ण डेटा सेट से नियम प्रेरण के लिए रफ सेट सिद्धांत उपयोगी है। इस दृष्टिकोण का उपयोग करके हम तीन प्रकार के लुप्त विशेषता मानों के मध्य भिन्नता कर सकते हैं: लुप्त हुए मान (वे मान जो रिकॉर्ड किए गए थे किन्तु वर्तमान में अनुपलब्ध हैं), विशेषता-अवधारणा मान (इन लुप्त विशेषता मानों को उसी अवधारणा तक सीमित किसी भी विशेषता मान द्वारा प्रतिस्थापित किया जा सकता है) , एवं शर्तों की परवाह न करें (मूल अप्रासंगिक थे)। अवधारणा (वर्ग) से वर्गीकृत (या निदान) की गई सभी वस्तुओं का समूह है।

लुप्त विशेषता मानों वाले दो विशेष डेटा सेटों का बड़े स्तर पर अध्ययन किया गया: प्राथमिक विषयों में, सभी विशेषता मान खो गए थे (स्टेफ़ानोव्स्की एवं त्सुकियास, 2001), दूसरे विषयों क्रिस्ज़किविज़, 1999) में, सभी लुप्त विशेषता मान परवाह नहीं करने वाली स्थिति में थे।

किसी लुप्त विशेषता मान की विशेषता-अवधारणा मान व्याख्या में, लुप्त विशेषता मान को उस अवधारणा तक सीमित विशेषता डोमेन के किसी भी मान से प्रतिस्थापित किया जा सकता है, जिसमें लुप्त विशेषता मान वाली वस्तु संबंधित है (ग्रज़िमाला-बुसे एवं ग्रिज़िमाला-बुस्से, 2007), उदाहरण के लिए, यदि किसी मरीज के लिए किसी विशेषता तापमान का मान गायब है, तो यह मरीज फ्लू से बीमार है, एवं फ्लू से बीमार बाकी सभी मरीजों के लिए तापमान का मान उच्च या बहुत अधिक है, जब लुप्त विशेषता मान की व्याख्या का उपयोग किया जाता है विशेषता-अवधारणा मान, हम लुप्त विशेषता मान को उच्च एवं बहुत-उच्च से परिवर्तित हो देंगे। इसके अतिरिक्त, विशेषता संबंध, (उदाहरण के लिए, ग्राज़ीमाला-बुसे एवं ग्राज़ीमाला-बुसे, 2007 देखें) ही समय में सभी तीन प्रकार के लुप्त विशेषता मानों के साथ डेटा सेट को संसाधित करने में सक्षम बनाता है।

अनुप्रयोग

रफ सेट विधियों को यंत्र अधिगम एवं डेटा खनन में हाइब्रिड समाधान के घटक के रूप में प्रस्तुत किया जा सकता है। उन्हें नियम प्रेरण एवं सुविधा चयन (शब्दार्थ-संरक्षण आयामीता में कमी) के लिए विशेष रूप से उपयोगी पाया गया है। रफ सेट-आधारित डेटा विश्लेषण विधियों को जैव सूचना विज्ञान, अर्थशास्त्र एवं वित्त, चिकित्सा, मल्टीमीडिया, वेब एवं टेक्स्ट खनन , सिग्नल एवं इमेज प्रोसेसिंग, सॉफ्टवेयर इंजीनियरिंग, रोबोटिक्स एवं इंजीनियरिंग (जैसे पावर प्रणाली एवं नियंत्रण इंजीनियरिंग) में सफलतापूर्वक प्रस्तुत किया गया है। हाल ही में रफ सेट के तीन क्षेत्रों की व्याख्या स्वीकृति, अस्वीकृति एवं स्थगन के क्षेत्रों के रूप में की गई है। इससे मॉडल के साथ तीन-तरफा निर्णय लेने का दृष्टिकोण बनता है जो संभावित रूप से रोचक भविष्य के अनुप्रयोगों को उत्पन कर सकता है।

इतिहास

रफ सेट का विचार ज़ेडज़िस्लाव पावलक (1981) द्वारा अस्पष्ट अवधारणाओं से निपटने के लिए नए गणितीय उपकरण के रूप में प्रस्तावित किया गया था। कॉमर, ग्रज़ीमाला-बुस्से, इविंस्की, निमिनेन, नोवोटनी, पावलक, ओबटुलोविज़ एवं पोमाइकला ने रफ सेट के बीजगणितीय गुणों का अध्ययन किया है। विभिन्न बीजगणितीय शब्दार्थ पी. पगलिअर्थात , आई. डंटश, एम. के. चक्रवर्ती, एम. बनर्जी एवं ए. मणि द्वारा विकसित किए गए हैं; इन्हें विशेष रूप से डी. कट्टानेओ एवं ए. मणि द्वारा अधिक सामान्यीकृत रफ सेटों तक विस्तारित किया गया है। अस्पष्टता, एवं सामान्य [[अनिश्चितता]] का प्रतिनिधित्व करने के लिए रफ सेट का उपयोग किया जा सकता है।

विस्तार एवं सामान्यीकरण

रफ सेट के विकास के पश्चात से, विस्तार एवं सामान्यीकरण का विकास जारी रहा है। आरंभिक विकास संबंधों पर केंद्रित था, समानताएं एवं भिन्नता दोनों अस्पष्ट सेटों के साथहै। जबकि कुछ साहित्य का तर्क है कि ये अवधारणाएँ भिन्न हैं, अन्य साहित्य का मानना ​​​​है कि रफ सेट फजी सेट का सामान्यीकरण है, जैसा कि फ़ज़ी रफ सेट या रफ फ़ज़ी सेट के माध्यम से प्रदर्शित किया गया है। पावलक (1995) ने माना कि अनिश्चितता एवं अस्पष्टता के विभिन्न पहलुओं को संबोधित करते हुए अस्पष्ट एवं खुरदुरे सेटों को एक-दूसरे का पूरक माना जाना चाहिए।

क्लासिकल रफ सेट के तीन उल्लेखनीय विस्तार हैं:

  • प्रभुत्व-आधारित रफ सेट दृष्टिकोण (डीआरएसए) मल्टी-मानदंड निर्णय विश्लेषण (एमसीडीए) के लिए रफ सेट सिद्धांत का विस्तार है, जिसे ग्रीको, मातरज्जो एवं स्लोविंस्की (2001) द्वारा प्रस्तुत किया गया था। मौलिक रफ सेटों के इस विस्तार में मुख्य परिवर्तन प्रभुत्व संबंध द्वारा अविवेकपूर्ण संबंध का प्रतिस्थापन है, जो मानदंडों एवं वरीयता-आदेशित निर्णय वर्गों के विचार में विशिष्ट विसंगतियों से निपटने के लिए औपचारिकता की अनुमति देता है।
  • निर्णय-सैद्धांतिक रफ सेट (डीटीआरएस) याओ, वोंग एवं लिंग्रास (1990) द्वारा प्रस्तुत रफ सेट सिद्धांत का संभाव्य विस्तार है। यह न्यूनतम जोखिम वाले निर्णय लेने के लिए बायेसियन निर्णय प्रक्रिया का उपयोग करता है। तत्वों को निचले एवं ऊपरी सन्निकटन में इस आधार पर सम्मिलित किया जाता है कि उनकी सशर्त संभावना सीमा एवं से ऊपर है या नहीं है। ये ऊपरी एवं निचली सीमाएँ तत्वों के लिए क्षेत्र समावेशन निर्धारित करती हैं। यह मॉडल अद्वितीय एवं शक्तिशाली है क्योंकि सीमा की गणना वर्गीकरण जोखिमों का प्रतिनिधित्व करने वाले छह हानि कार्यों के सेट से की जाती है।
  • गेम-सैद्धांतिक रफ सेट (जीटीआरएस) रफ सेट का गेम थ्योरी-आधारित विस्तार है जिसे हर्बर्ट एवं याओ (2011) द्वारा प्रस्तुत किया गया था। यह प्रभावी क्षेत्र आकार प्राप्त करने के लिए रफ सेट आधारित वर्गीकरण या निर्णय लेने के कुछ मानदंडों को अनुकूलित करने के लिए गेम-सैद्धांतिक वातावरण का उपयोग करता है।

रफ़ सदस्यता

वस्तुनिष्ठ सन्निकटन के अतिरिक्त रफ सदस्यता फ़ंक्शन को नियोजित करके, रफ सेट को सामान्यीकरण के रूप में भी परिभाषित किया जा सकता है। रफ सदस्यता फ़ंक्शन सशर्त संभावना व्यक्त करता है जो से संबंधित दिया गया है। इसे डिग्री के रूप में समझा जा सकता है से संबंधित के विषय में जानकारी के संदर्भ में द्वारा व्यक्त किया गया है।

रफ सदस्यता मुख्य रूप से फ़ज़ी सदस्यता से भिन्न होती है, जिसमें यूनियन की सदस्यता एवं सेटों के प्रतिच्छेदन की गणना, सामान्यतः, उनकी घटक सदस्यता से नहीं की जा सकती है, जैसा कि फ़ज़ी सेट के विषयों में होता है। इसमें रफ मेंबरशिप फजी मेंबरशिप का सामान्यीकरण है। इसके अतिरिक्त, रफ सदस्यता फ़ंक्शन को फ़ज़ी सदस्यता फ़ंक्शन की पारंपरिक रूप से आयोजित अवधारणाओं की अपेक्षा में अधिक संभावना पर आधारित किया गया है।

अन्य सामान्यीकरण

समस्याओं का समाधान करने के लिए रफ सेट के कई सामान्यीकरण प्रस्तुत किए गए, अध्ययन किए गए एवं प्रस्तुत किए गए। इनमें से कुछ सामान्यीकरण यहां दिए गए हैं:

  • रफ़ मल्टीसेट्स (ग्रज़ीमाला-बुस्से, 1987)
  • फ़ज़ी रफ सेट फ़ज़ी समतुल्य वर्गों के उपयोग के माध्यम से रफ सेट अवधारणा का विस्तार करते हैं।(नाकामुरा, 1988)
  • अल्फा रफ सेट थ्योरी (α-आरएसटी) - रफ सेट सिद्धांत का सामान्यीकरण जो फजी अवधारणाओं का उपयोग करके अनुमान लगाने की अनुमति देता है। (क्वाफाफौ, 2000)
  • भिन्नता्ज्ञानवादी फजी रफ सेट (कॉर्नेलिस, डी कॉक एवं केरे, 2003)
  • सामान्यीकृत रफ फजी सेट (फेंग, 2010)
  • रफ़ भिन्नता्ज्ञानवादी फ़ज़ी सेट (थॉमस एवं नायर, 2011)
  • सॉफ्ट रफ फजी सेट एवं सॉफ्ट फजी रफ सेट (मेंग, झांग एवं किन, 2011)
  • कम्पोजिट रफ सेट (झांग, ली एवं चेन, 2014)

यह भी देखें

संदर्भ

  • Pawlak, Zdzisław (1982). "Rough sets". International Journal of Parallel Programming. 11 (5): 341–356. doi:10.1007/BF01001956. S2CID 9240608.
  • Bazan, Jan; Szczuka, Marcin; Wojna, Arkadiusz; Wojnarski, Marcin (2004). On the evolution of rough set exploration system. pp. 592–601. CiteSeerX 10.1.1.60.3957. doi:10.1007/978-3-540-25929-9_73. ISBN 978-3-540-22117-3. {{cite book}}: |journal= ignored (help)
  • Dubois, D.; Prade, H. (1990). "Rough fuzzy sets and fuzzy rough sets". International Journal of General Systems. 17 (2–3): 191–209. doi:10.1080/03081079008935107.
  • Herbert, J. P.; Yao, J. T. (2011). "Game-theoretic Rough Sets". Fundamenta Informaticae. 108 (3–4): 267–286. doi:10.3233/FI-2011-423.
  • Greco, Salvatore; Matarazzo, Benedetto; Słowiński, Roman (2001). "Rough sets theory for multicriteria decision analysis". European Journal of Operational Research. 129 (1): 1–47. doi:10.1016/S0377-2217(00)00167-3.
  • Grzymala-Busse, Jerzy (1997). "A new version of the rule induction system LERS". Fundamenta Informaticae. 31: 27–39. doi:10.3233/FI-1997-3113.
  • Grzymala-Busse, Jerzy; Grzymala-Busse, Witold (2007). An experimental comparison of three rough set approaches to missing attribute values. pp. 31–50. doi:10.1007/978-3-540-71200-8_3. ISBN 978-3-540-71198-8. {{cite book}}: |journal= ignored (help)
  • Kryszkiewicz, Marzena (1999). "Rules in incomplete systems". Information Sciences. 113 (3–4): 271–292. doi:10.1016/S0020-0255(98)10065-8.
  • Pawlak, Zdzisław Rough Sets Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences (1981)
  • Pawlak, Zdzisław; Wong, S. K. M.; Ziarko, Wojciech (1988). "Rough sets: Probabilistic versus deterministic approach". International Journal of Man-Machine Studies. 29: 81–95. doi:10.1016/S0020-7373(88)80032-4.
  • Pawlak, Zdzisław (1991). Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishing. ISBN 978-0-7923-1472-1.
  • Slezak, Dominik; Wroblewski, Jakub; Eastwood, Victoria; Synak, Piotr (2008). "Brighthouse: an analytic data warehouse for ad-hoc queries" (PDF). Proceedings of the VLDB Endowment. 1 (2): 1337–1345. doi:10.14778/1454159.1454174.
  • Stefanowski, Jerzy (1998). "On rough set based approaches to induction of decision rules". In Polkowski, Lech; Skowron, Andrzej (eds.). Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg: Physica-Verlag. pp. 500–529.
  • Stefanowski, Jerzy; Tsoukias, Alexis (2001). "Incomplete information tables and rough classification". Computational Intelligence. 17 (3): 545–566. doi:10.1111/0824-7935.00162. S2CID 22795201.
  • Wong, S. K. M.; Ziarko, Wojciech; Ye, R. Li (1986). "Comparison of rough-set and statistical methods in inductive learning". International Journal of Man-Machine Studies. 24: 53–72. doi:10.1016/S0020-7373(86)80033-5.
  • Yao, J. T.; Yao, Y. Y. (2002). "Induction of classification rules by granular computing". Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing (TSCTC'02). London, UK: Springer-Verlag. pp. 331–338.
  • Ziarko, Wojciech (1998). "Rough sets as a methodology for data mining". Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg: Physica-Verlag. pp. 554–576.
  • Ziarko, Wojciech; Shan, Ning (1995). "Discovering attribute relationships, dependencies and rules by using rough sets". Proceedings of the 28th Annual Hawaii International Conference on System Sciences (HICSS'95). Hawaii. pp. 293–299.
  • Pawlak, Zdzisław (1999). "Decision rules, Bayes' rule and rough sets". New Direction in Rough Sets, Data Mining, and Granular-soft Computing: 1–9.
  • Pawlak, Zdzisław. "Rough relations, reports". 435. Institute of Computer Science. {{cite journal}}: Cite journal requires |journal= (help)
  • Orlowska, E. (1987). "Reasoning about vague concepts". Bulletin of the Polish Academy of Sciences. 35: 643–652.
  • Polkowski, L. (2002). "Rough sets: Mathematical foundations". Advances in Soft Computing.
  • Skowron, A. (1996). "Rough sets and vague concepts". Fundamenta Informaticae: 417–431.
  • Burgin M. (1990). Theory of Named Sets as a Foundational Basis for Mathematics, In Structures in mathematical theories: Reports of the San Sebastian international symposium, September 25–29, 1990 (http://www.blogg.org/blog-30140-date-2005-10-26.html)
  • Burgin, M. (2004). Unified Foundations of Mathematics, Preprint Mathematics LO/0403186, p39. (electronic edition: https://arxiv.org/ftp/math/papers/0403/0403186.pdf)
  • Burgin, M. (2011), Theory of Named Sets, Mathematics Research Developments, Nova Science Pub Inc, ISBN 978-1-61122-788-8
  • Cornelis, C., De Cock, M. and Kerre, E. (2003) Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Systems, 20:5, pp260–270
  • Düntsch, I. and Gediga, G. (1995) Rough Set Dependency Analysis in Evaluation Studies – An Application in the Study of Repeated Heart Attacks. University of Ulster, Informatics Research Reports No. 10
  • Feng F. (2010). Generalized Rough Fuzzy Sets Based on Soft Sets, Soft Computing, 14:9, pp 899–911
  • Grzymala-Busse, J. (1987). Learning from examples based on rough multisets, in Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems, pp. 325–332. Charlotte, NC, USA
  • Meng, D., Zhang, X. and Qin, K. (2011). Soft rough fuzzy sets and soft fuzzy rough sets, Computers & Mathematics with Applications, 62:12, pp4635–4645
  • Quafafou M. (2000). α-आरएसटी: a generalization of rough set theory, Information Sciences, 124:1–4, pp301–316.
  • Quafafou M. and Boussouf M. (2000). Generalized rough sets based feature selection. Journal Intelligent Data Analysis, 4:1 pp3 – 17
  • Nakamura, A. (1988) Fuzzy rough sets, ‘Notes on Multiple-valued Logic in Japan’, 9:1, pp1–8
  • Pawlak, Z., Grzymala-Busse, J., Slowinski, R. Ziarko, W. (1995). Rough Sets. Communications of the ACM, 38:11, pp88–95
  • Thomas, K. and Nair, L. (2011). Rough intuitionistic fuzzy sets in a lattice, International Mathematical Forum, 6:27, pp1327–1335
  • Zhang J., Li T., Chen H. (2014). Composite rough sets for dynamic data mining, Information Sciences, 257, pp81–100
  • Zhang J., Wong J-S, Pan Y, Li T. (2015). A parallel matrix-based method for computing approximations in incomplete information systems, IEEE Transactions on Knowledge and Data Engineering, 27(2): 326-339
  • Chen H., Li T., Luo C., Horng S-J., Wang G. (2015). A decision-theoretic rough set approach for dynamic data mining. IEEE Transactions on Fuzzy Systems, 23(6): 1958-1970
  • Chen H., Li T., Luo C., Horng S-J., Wang G. (2014). A rough set-based method for updating decision rules on attribute values' coarsening and refining, IEEE Transactions on Knowledge and Data Engineering, 26(12): 2886-2899
  • Chen H., Li T., Ruan D., Lin J., Hu C, (2013) A rough-set based incremental approach for updating approximations under dynamic maintenance environments. IEEE Transactions on Knowledge and Data Engineering, 25(2): 274-284


अग्रिम पठन

  • Gianpiero Cattaneo and Davide Ciucci, "Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets" in J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 77–84, 2002. doi:10.1007/3-540-45813-1_10


बाहरी संबंध