रिडबर्ग परमाणु

रिडबर्ग परमाणु एक से अधिक इलेक्ट्रॉनों के साथ उत्तेजित परमाणु होता है जिसमें अधिक उच्च मुख्य क्वांटम संख्या, n होती है।[1][2] n का मान जितना अधिक होता है, इलेक्ट्रॉन नाभिक से औसतन उतना ही दूर होता है। रिडबर्ग परमाणुओं में विद्युत क्षेत्र और चुंबकीय क्षेत्र के लिए अत्युक्तिपूर्ण प्रतिक्रिया सहित अनेक अद्भुत गुण होते हैं,[3] लंबी क्षय अवधि और इलेक्ट्रॉन तरंग क्रियाएं, जो कुछ स्थितियों के अंतर्गत, परमाणु नाभिक के विषय में इलेक्ट्रॉनों की शास्त्रीय भौतिकी कक्षाओं का अनुमान लगाती हैं।[4] कोर इलेक्ट्रॉन बाहरी इलेक्ट्रॉन को नाभिक के विद्युत क्षेत्र से रासायनिक संयोजन इलेक्ट्रॉन को रूप देते हैं, जैसे कि दूर से, विद्युत क्षमता हाइड्रोजन परमाणु में इलेक्ट्रॉन द्वारा अनुभव किए गए समान दिखती है।[5]
इसकी क्षीणता के अतिरिक्त परमाणु का बोहर मॉडल इन गुणों की व्याख्या करने में उपयोगी है। शास्त्रीय रूप से, त्रिज्या r की गोलाकार कक्षा में इलेक्ट्रॉन, आवेश + प्राथमिक आवेश के हाइड्रोजन परमाणु नाभिक के विषय में, न्यूटन के दूसरे नियम का पालन करता है :
जहाँ k = 1/(4πε0)
कक्षीय संवेग को ħ इकाइयों में परिमाणित किया जाता है:
- .
इन दो समीकरणों के संयोजन से मुख्य क्वांटम संख्या, n के संदर्भ में कक्षीय त्रिज्या के लिए बोर की अभिव्यक्ति होती है:
अब यह स्पष्ट है कि रिडबर्ग परमाणुओं में ऐसे विशिष्ट गुण क्यों हैं: कक्षा की त्रिज्या n2 के रूप में मापी जाती है (हाइड्रोजन की n= 137 स्थिति में परमाणु त्रिज्या ~1 माइक्रोन है) और ज्यामितीय क्रॉस-सेक्शन n4 के रूप में होता है। इस प्रकार, रिडबर्ग परमाणु अधिक बड़े होते हैं, शिथिल रूप से बंधे वैलेंस इलेक्ट्रॉनों के साथ, विखंडन या बाहरी क्षेत्रों द्वारा सरलता से आयनित होते हैं।
क्योंकि रिडबर्ग इलेक्ट्रॉन की बंधन ऊर्जा 1/r के समानुपाती होती है और इसलिए 1/n2 के जैसे कम हो जाती है, ऊर्जा स्तर रिक्ति 1/n3 के जैसे कम हो जाती है जो पूर्व आयनीकरण ऊर्जा पर अभिसरण करने वाले पूर्व से अधिक निकट दूरी वाले स्तरों की ओर ले जाते है। ये निकट दूरी वाले रिडबर्ग स्थिति बनाते हैं जिसे सामान्यतः रिडबर्ग श्रृंखला के रूप में जाना जाता है। 'चित्र 2' लिथियम में कक्षीय कोणीय गति के निम्नतम तीन मानों के कुछ ऊर्जा स्तरों को दर्शाता है।
इतिहास
रिडबर्ग श्रृंखला के अस्तित्व को प्रथम बार 1885 में प्रदर्शित किया गया था जब जोहान बामर ने परमाणु हाइड्रोजन में संक्रमण से जुड़े प्रकाश की तरंग दैर्ध्य के लिए सरल अनुभवजन्य सूत्र का परीक्षण किया। तीन वर्ष पश्चात, स्वीडिश भौतिक विज्ञानी जोहान्स रिडबर्ग ने बाल्मर के सूत्र का सामान्यीकृत और अधिक सहज संस्करण प्रस्तुत किया जिसे रिडबर्ग सूत्र के रूप में जाना जाने लगा। इस सूत्र ने परिमित सीमा पर अभिसरण करने वाले अधिक निकट दूरी वाले असतत ऊर्जा स्तरों की अनंत श्रृंखला के अस्तित्व का संकेत दिया।[6]
इस श्रृंखला को 1913 में नील्स बोर द्वारा हाइड्रोजन परमाणु के अपने अर्ध-शास्त्रीय मॉडल के साथ गुणात्मक रूप से अध्ययन किया गया था जिसमें कोणीय गति के परिमाणित मान देखे गए जो असतत ऊर्जा स्तरों की ओर ले जाते हैं।[7][8] वर्नर हाइजेनबर्ग और अन्य द्वारा क्वांटम यांत्रिकी के विकास के पश्चात 1926 में वोल्फगैंग पाउली द्वारा देखे गए स्पेक्ट्रम की पूर्ण मात्रात्मक व्युत्पत्ति प्राप्त की गई थी।
उत्पादन की विधि
हाइड्रोजन जैसे परमाणु की एकमात्र उत्तम आशय में स्थिर स्थिति n = 1 के साथ भूमिगत अवस्था है। रिडबर्ग स्तिथियों के अध्ययन के लिए n के बड़े मान वाली स्थिति के लिए रोचक भूमिगत अवस्था परमाणुओं के लिए विश्वसनीय प्रौद्योगिकी की आवश्यकता है।
इलेक्ट्रॉन प्रभाव उत्तेजना
रिडबर्ग परमाणुओं पर अधिक प्रारंभिक प्रायोगिक कार्य भू-अवस्था वाले परमाणुओं पर आपतित तीव्र इलेक्ट्रॉनों के कोलिमेटेड बीम के उपयोग पर निर्भर था।[9] बेलोचदार प्रकीर्णन प्रक्रियाएं इलेक्ट्रॉन गतिज ऊर्जा का उपयोग परमाणुओं की आंतरिक ऊर्जा को बढ़ाने के लिए कर सकती हैं, जो विभिन्न अवस्था की विस्तृत श्रृंखला के लिए रोचक है, जिसमें कई उच्च-असत्य वाले रिडबर्ग अवस्था सम्मिलित हैं,
- .
क्योंकि इलेक्ट्रॉन अपनी प्रारंभिक गतिज ऊर्जा की किसी भी मात्रा को बनाए रख सकता है, इस प्रक्रिया के परिणामस्वरूप विभिन्न ऊर्जाओं का व्यापक प्रसार होता है।
प्रभार विनिमय उत्तेजना
प्रारंभिक रिडबर्ग परमाणु प्रयोगों का अन्य मुख्य आधार आयनों के बीम और अन्य प्रजातियों के तटस्थ परमाणुओं की आपश्चाती के मध्य आवेश विनिमय पर निर्भर करता है, जिसके परिणामस्वरूप अत्यधिक उत्तेजित परमाणुओं के बीम का निर्माण होता है,[10]
- .
पुनः, क्योंकि सम्बंधित गतिशील ऊर्जा घटकों की अंतिम आंतरिक ऊर्जा में योगदान दे सकती है, यह प्रौद्योगिकी ऊर्जा स्तरों की विस्तृत श्रृंखला को विस्तारित करती है।
ऑप्टिकल उत्तेजना
1970 के दशक में ट्यून करने योग्य डाई लेज़रों के आगमन ने उत्साहित परमाणुओं की आपश्चाती पर अधिक नियंत्रण की अनुमति दी। ऑप्टिकल उत्तेजना में, घटना फोटॉन को लक्ष्य परमाणु द्वारा अवशोषित किया जाता है, जिसके परिणामस्वरूप त्रुटिहीन अंतिम स्थिति ऊर्जा होती है। रिडबर्ग परमाणुओं की एकल अवस्था, मोनो-ऊर्जावान आपश्चाती के उत्पादन की समस्या इस प्रकार लेजर आउटपुट की आवृत्ति को ठीक से नियंत्रित करने की कुछ सरल समस्या बन जाती है,
प्रत्यक्ष ऑप्टिकल उत्तेजना का यह रूप सामान्यतः क्षार धातुओं के साथ प्रयोगों तक सीमित है, क्योंकि अन्य प्रजातियों में भू-अवस्था बाध्यकारी ऊर्जा सामान्यतः अधिकांश लेजर प्रणालियों के साथ सुलभ होने के लिए अधिक है।
बड़े वैलेंस इलेक्ट्रॉन बंधन ऊर्जा (बड़ी प्रथम आयनीकरण ऊर्जा के समान) वाले परमाणुओं के लिए, रिडबर्ग श्रृंखला के उत्तेजित अवस्था पारंपरिक लेजर प्रणाली के साथ दुर्गम हैं। प्रारंभिक संपार्श्विक उत्तेजना ऊर्जा की अल्पता को पूर्ण कर सकती है जिससे अंतिम स्थिति का चयन करने के लिए ऑप्टिकल उत्तेजना का उपयोग किया जा सके। यद्यपि प्रारंभिक चरण मध्यवर्ती अवस्था की विस्तृत श्रृंखला के लिए उत्साहित करता है, ऑप्टिकल उत्तेजना प्रक्रिया में निहित त्रुटिहीनता का अर्थ है कि लेजर प्रकाश केवल विशेष अवस्था में परमाणुओं के विशिष्ट उपसमुच्चय के साथ सम्बंधित है, जो चयन किये गए हुए अंतिम अवस्था के लिए रोचक है।
हाइड्रोजेनिक क्षमता
रिडबर्ग अवस्था में परमाणु में आयन कोर से दूर बड़ी कक्षा में वैलेंस इलेक्ट्रॉन होता है; इस प्रकार की कक्षा में, सबसे बाहरी इलेक्ट्रॉन कॉम्पैक्ट आयन कोर से लगभग हाइड्रोजनिक, कूलाम क्षमता, UC, ज्ञात करता है जिसमें Z प्रोटॉन के साथ नाभिक होता है I और Z-1 इलेक्ट्रॉनों से भरा निचला इलेक्ट्रॉन शेल होता है। गोलाकार रूप से सममित कूलाम क्षमता में इलेक्ट्रॉन में संभावित ऊर्जा होती है:
- .
हाइड्रोजन क्षमता के लिए बाहरी इलेक्ट्रॉन द्वारा देखी गई प्रभावी क्षमता की समानता रिडबर्ग अवस्था की परिभाषित विशेषता है और बताती है कि इलेक्ट्रॉन तरंग अनुरूपता सिद्धांत की सीमा में शास्त्रीय कक्षाओं के अनुमानित क्यों हैं।[11] दूसरे शब्दों में, इलेक्ट्रॉन की कक्षा सौर मंडल के अंदर ग्रहों की कक्षा के समान होती है, जैसा कि अप्रचलित किन्तु नेत्रहीन उपयोगी बोर और रदरफोर्ड मॉडल में देखा गया था।
तीन उल्लेखनीय अपवाद हैं जिन्हें संभावित ऊर्जा में जोड़े गए अतिरिक्त शब्द द्वारा वर्णित किया जा सकता है:
- तुलनीय कक्षीय त्रिज्या के साथ परमाणु में अत्यधिक उत्तेजित अवस्था में दो (या अधिक) इलेक्ट्रॉन हो सकते हैं। इस स्थिति में, इलेक्ट्रॉन अन्योन्य क्रिया हाइड्रोजन क्षमता से महत्वपूर्ण विचलन को उत्पन्न करती है।[12] बहु रिडबर्ग अवस्था में परमाणु के लिए, अतिरिक्त शब्द, Uee, में अत्यधिक उत्साहित इलेक्ट्रॉनों की प्रत्येक जोड़ी का योग सम्मिलित है:
- .
- यदि संयोजी इलेक्ट्रॉन का कोणीय संवेग अधिक अल्प है (अत्यधिक विलक्षण दीर्घवृत्तीय कक्षा के रूप में शास्त्रीय रूप से व्याख्या की गई है), तो यह आयन कोर को ध्रुवीकृत करने के लिए पर्याप्त रूप से निकट हो सकता है, जिससे क्षमता में 1/r4 कोर ध्रुवीकरण शब्द उत्पन्न होता है।[13] प्रेरित द्विध्रुव और इसे उत्पन्न करने वाले आवेश के मध्य अन्योन्यक्रिया सदैव आकर्षक होती है इसलिए यह योगदान सदैव ऋणात्मक होता है,
- ,
- जहां αd द्विध्रुवीय ध्रुवीकरण है। चित्र 3 दिखाता है कि कैसे ध्रुवीकरण शब्द नाभिक के निकट संभावित को संशोधित करता है।
- यदि बाहरी इलेक्ट्रॉन आंतरिक इलेक्ट्रॉन के शेल में प्रवेश करता है, तो वह नाभिक के अधिक आवेश को "देखेगा" और इसलिए अधिक बल का अनुभव करेगा। सामान्यतः, संभावित ऊर्जा में संशोधन की गणना करना सरल नहीं है और यह आयन कोर की ज्यामिति के ज्ञान पर आधारित होना चाहिए।[14]
क्वांटम-यांत्रिक विवरण
क्वांटम-यांत्रिक, असामान्य रूप से उच्च n अवस्था परमाणु को संदर्भित करता है जिसमें उच्च ऊर्जा और अल्प बाध्यकारी ऊर्जा के साथ वैलेंस इलेक्ट्रॉन (s) को पूर्व में अलोकप्रिय इलेक्ट्रॉन कक्षीय में उत्तेजित किया गया है। हाइड्रोजन में बाध्यकारी ऊर्जा किसके द्वारा दी जाती है:
- ,
जहाँ Ry = 13.6 eV रिडबर्ग स्थिरांक है। n के उच्च मानों पर अल्प बाध्यकारी ऊर्जा बताती है कि रिडबर्ग अवस्था आयनीकरण के लिए अतिसंवेदनशील क्यों हैं।
रिडबर्ग अवस्था के लिए संभावित ऊर्जा अभिव्यक्ति में अतिरिक्त नियम, हाइड्रोजनिक कूलाम संभावित ऊर्जा के शीर्ष पर बाध्यकारी ऊर्जा के लिए अभिव्यक्ति में क्वांटम दोष δl के प्रारंभ की आवश्यकता होती है[5] :
- .
इलेक्ट्रॉन तरंग कार्य
उच्च कक्षीय कोणीय गति वाले रिडबर्ग अवस्था के लंबे जीवनकाल को तरंग क्रिया के अतिव्यापीकरण के संदर्भ में समझाया जा सकता है। उच्च l अवस्था (उच्च कोणीय गति, "परिपत्र कक्षा") में इलेक्ट्रॉन की तरंग का आंतरिक इलेक्ट्रॉनों के तरंग कार्यों के साथ अधिक कम ओवरलैप होता है और इसलिए अपेक्षाकृत अपरिवर्तित रहता है।
हाइड्रोजनिक क्षमता वाले परमाणु के रूप में रिडबर्ग परमाणु की परिभाषा के तीन अपवादों में वैकल्पिक, क्वांटम यांत्रिक विवरण है जिसे परमाणु हैमिल्टनियन (क्वांटम यांत्रिकी) में अतिरिक्त शब्द (s) द्वारा वर्णित किया जा सकता है:
- यदि दूसरा इलेक्ट्रॉन ni अवस्था में उत्तेजित होता है, जो बाहरी इलेक्ट्रॉन no संख्या की स्थिति के निकट होता है, तो इसकी तरंग क्रिया लगभग पूर्व (डबल रिडबर्ग अवस्था ) जितना बड़ा हो जाता है। यह तब होता है जब ni के निकट पहुंचता है और ऐसी स्थिति की ओर जाता है जहां दो इलेक्ट्रॉनों की कक्षाओं का आकार संबंधित होता है; स्थिति जिसे कभी-कभी रेडियल सहसंबंध कहा जाता है। इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण शब्द को परमाणु हैमिल्टन में सम्मिलित किया जाना चाहिए।[12][1]
- आयन कोर का ध्रुवीकरण एनिसोट्रॉपिक क्षमता उत्पन्न करता है जो दो सबसे बाहरी इलेक्ट्रॉनों की गति के मध्य कोणीय सहसंबंध का कारण बनता है।[1][15] गैर-गोलाकार सममित क्षमता के कारण इसे ज्वारीय लॉकिंग प्रभाव के रूप में माना जा सकता है। परमाणु हैमिल्टनियन में कोर ध्रुवीकरण शब्द सम्मिलित होना चाहिए।
- निम्न कक्षीय कोणीय संवेग l वाले अवस्था में बाहरी इलेक्ट्रॉन की तरंग क्रिया समय-समय पर आंतरिक इलेक्ट्रॉनों के गोले के भीतर स्थानीयकृत होती है और नाभिक के पूर्ण आवेश के साथ परस्पर क्रिया करती है।[14] चित्र 4 इलेक्ट्रॉन कक्षीय में कोणीय गति अवस्था की अर्ध-शास्त्रीय व्याख्या दिखाता है, यह दर्शाता है कि निम्न-l अवस्थाएँ नाभिक के निकट जाते हैं। परमाणु हैमिल्टनियन में कोर पैठ शब्द जोड़ा जाना चाहिए।
बाहरी क्षेत्रों में
रिडबर्ग परमाणु में इलेक्ट्रॉन और आयन-कोर के मध्य बड़ा भिन्नता अधिक बड़ा विद्युत द्विध्रुवीय क्षण, d संभव बनाता है। विद्युत क्षेत्र में विद्युत द्विध्रुव की उपस्थिति से जुड़ी ऊर्जा F है, जिसे परमाणु भौतिकी में स्टार्क प्रभाव के रूप में जाना जाता है,
स्थानीय विद्युत क्षेत्र वेक्टर पर द्विध्रुवीय क्षण के प्रक्षेपण के संकेत के आधार पर, अवस्था में ऊर्जा हो सकती है जो क्षेत्र की शक्ति (क्रमशः निम्न-क्षेत्र और उच्च-क्षेत्र की आवश्यक अवस्था) के साथ बढ़ती या घटती है। रिडबर्ग श्रृंखला में आसन्न n-स्तरों के मध्य संकीर्ण रिक्ति का अर्थ है कि अवस्था अपेक्षाकृत साधारण क्षेत्र की शक्ति के लिए भी डीजेनरेट ऊर्जा स्तर तक पहुंच सकते हैं। इंग्लिस-टेलर सीमा द्वारा सैद्धांतिक क्षेत्र की शक्ति जिस पर अवस्था के मध्य कोई युग्मन नहीं माना जाता है,[17]
हाइड्रोजन परमाणु में, शुद्ध 1/r कूलाम विभव निकटवर्ती n-कई गुना से स्टार्क अवस्थाओं को युगल नहीं करती है, जिसके परिणामस्वरूप वास्तविक क्रॉसिंग होती है, जैसा कि 'चित्र 5' में दिखाया गया है। संभावित ऊर्जा में अतिरिक्त नियम की उपस्थिति युग्मन को उत्पन्न कर सकती है जिसके परिणामस्वरूप क्रॉसिंग से बचा जा सकता है जैसा कि 'चित्र 6' में लिथियम के लिए दिखाया गया है।
अनुप्रयोग और आगे का शोध
अमुक्त रिडबर्ग परमाणुओं का त्रुटिहीन माप
मेटास्टेबल अवस्था में भू-अवस्था में परमाणुओं के विकिरण संबंधी क्षय जीवनकाल मानक मॉडल के खगोल भौतिकी प्रेक्षणों और परीक्षणों को समझने के लिए महत्वपूर्ण हैं।[18]
प्रतिचुंबकीय प्रभावों का परीक्षण
रिडबर्ग परमाणुओं के बड़े आकार और अल्प बाध्यकारी ऊर्जा से उच्च चुंबकीय संवेदनशीलता होती है, प्रतिचुंबकीय प्रभाव कक्षा के क्षेत्रफल के साथ स्तर पर होता है और क्षेत्रफल त्रिज्या वर्ग (A ∝ n4) के समानुपाती होता है, भू- अवस्था के परमाणुओं में ज्ञात करने में असंभव प्रभाव रिडबर्ग परमाणुओं में स्पष्ट हो जाते हैं, जो अधिक बड़े प्रतिचुम्बकीय परिवर्तन को प्रदर्शित करते हैं।[19] रिडबर्ग परमाणु विद्युत चुम्बकीय क्षेत्रों में परमाणुओं के स्थिर विद्युत-द्विध्रुवीय युग्मन का प्रदर्शन करते हैं और इसका उपयोग रेडियो संचार को ज्ञात करने के लिए किया जाता है।[20][21]
प्लाज़्मा में
रिडबर्ग परमाणु सामान्यतः प्लाज्मा (भौतिकी) में इलेक्ट्रॉनों और सकारात्मक आयनों के पुनर्संयोजन के कारण बनते हैं; अल्प ऊर्जा पुनर्संयोजन का परिणाम अधिक स्थिर रिडबर्ग परमाणुओं में होता है, जबकि उच्च गतिज ऊर्जा वाले इलेक्ट्रॉनों और सकारात्मक आयनों का पुनर्संयोजन प्रायः स्व-आयनीकरण रिडबर्ग अवस्था का निर्माण करता है। रिडबर्ग परमाणुओं के बड़े आकार, विद्युत् और चुंबकीय क्षेत्रों द्वारा आयनीकरण की संवेदनशीलता, प्लाज़्मा के गुणों का निर्धारण करने वाले महत्वपूर्ण कारक हैं।[22]
रिडबर्ग परमाणुओं के संघनन से रिडबर्ग पदार्थ बनता है, जो प्रायः लंबे समय तक रहने वाले समूहों के रूप में देखा जाता है। सामूहिक वैलेंस इलेक्ट्रॉनों द्वारा संघनन पर गठित गैर-समान इलेक्ट्रॉन तरल में विनिमय-सहसंबंध प्रभाव द्वारा रिडबर्ग स्थिति में डी-उत्तेजना अधिक बाधित होती है, जो क्लस्टर के विस्तारित जीवनकाल का कारण बनती है।[23]
खगोल भौतिकी में
यह अध्ययन किया गया है[24] कि रिडबर्ग परमाणु इंटरस्टेलर स्पेस में सरल हैं और इन्हें पृथ्वी से देखा जा सकता है। चूंकि इंटरस्टेलर गैस पश्चातलों के भीतर घनत्व पृथ्वी पर प्राप्त होने वाले सर्वोत्तम प्रयोगशाला रिक्तियों की तुलना में कम परिमाण के कई आदेश हैं, इसलिए रिडबर्ग अवस्था विभक्तों से नष्ट हुए बिना लंबे समय तक बने रह सकते हैं।
स्थिर इंटरेक्टिंग प्रणाली
उनके बड़े आकार के कारण, रिडबर्ग परमाणु अधिक बड़े विद्युत द्विध्रुवीय क्षणों को प्रदर्शित कर सकते हैं। क्षोभ सिद्धांत (क्वांटम यांत्रिकी) का उपयोग करने वाली गणना दर्शाती है कि इसके परिणामस्वरूप दो निकट रिडबर्ग परमाणुओं के मध्य स्थिर अंतःक्रिया होती है। उनके अपेक्षाकृत लंबे जीवनकाल के साथ संयुक्त रूप से इन अंतःक्रियाओं का सुसंगत नियंत्रण उन्हें क्वांटम कंप्यूटर बनाने के लिए उपयुक्त उम्मीदवार बनाता है।[25] 2010 में प्रयोगात्मक रूप से दो-क्विबिट क्वांटम गेट प्राप्त किए गए थे।[26][27] रिडबर्ग परमाणुओं पर बलपूर्वक सम्बन्ध बनाने से क्वांटम महत्वपूर्ण बिंदु व्यवहार भी होता है, जो उन्हें अपने दम पर अध्ययन करने के लिए रोचक बनाता है।[28]
वर्तमान अनुसंधान निर्देश
2000 के रिडबर्ग परमाणु अनुसंधान के पश्चात से सामान्यतः पाँच दिशाएँ सम्मिलित हैं: संवेदन, क्वांटम प्रकाशिकी,[29][30][31][32][33][34] क्वांटम संगणना,[35][36][37][38] क्वांटम सिमुलेशन[39][2][40][41] और क्वांटम महत्वपूर्ण है।[42][43] रिडबर्ग परमाणु अवस्था के मध्य उच्च विद्युत द्विध्रुवीय क्षणों का उपयोग रेडियो आवृत्ति और टेराहर्ट्ज़ विकिरण संवेदन और इमेजिंग के लिए किया जाता है,[44][45] जिसमें व्यक्तिगत माइक्रोवेव फोटॉन माप के गैर-विघटन माप सम्मिलित हैं।[46] रिडबर्ग अवस्था में उत्साहित दो परमाणुओं के मध्य स्थिर अंतःक्रियाओं के साथ संयोजन में विद्युत चुम्बकीय रूप से प्रेरित पारदर्शिता का उपयोग किया गया था जिससे कि ऐसा माध्यम प्रदान किया जा सके जो व्यक्तिगत ऑप्टिकल फोटॉनों के स्तर पर दृढ़ता से अरैखिक व्यवहार प्रदर्शित करता है।[47][48] रिडबर्ग अवस्था के मध्य ट्यून करने योग्य सम्बन्ध, प्रथम क्वांटम सिमुलेशन प्रयोगों को भी सक्षम किया।[49][50]
अक्टूबर 2018 में, यूनाइटेड स्टेट्स आर्मी रिसर्च प्रयोगशाला ने रिडबर्ग परमाणुओं का उपयोग करके सुपर वाइडबैंड रेडियो रिसीवर विकसित करने के प्रयासों पर सार्वजनिक रूप से वर्णन किया।[51] मार्च 2020 में, प्रयोगशाला ने घोषणा की- कि उसके वैज्ञानिकों ने 0 से 1012 हर्ट्ज़ (स्पेक्ट्रम से 0.3 मिमी तरंग दैर्ध्य) की विशाल श्रेणी पर विद्युत क्षेत्रों को दोलन करने के लिए रिडबर्ग सेंसर की संवेदनशीलता का विश्लेषण किया। रिडबर्ग सेंसर पूर्ण स्पेक्ट्रम पर संकेतों का विश्वसनीय रूप से ज्ञात कर सकता है और अन्य स्थापित विद्युत क्षेत्र सेंसर प्रौद्योगिकियों, जैसे इलेक्ट्रो-ऑप्टिक क्रिस्टल और द्विध्रुवीय एंटीना-युग्मित निष्क्रिय इलेक्ट्रॉनिक्स के साथ अनुकूल तुलना कर सकता है[52][53]
शास्त्रीय अनुकरण
संवृत केप्लरियन दीर्घवृत्तीय कक्षा में साधारण 1/r संभावित परिणाम बाहरी विद्युत क्षेत्र की उपस्थिति में रिडबर्ग परमाणु अधिक बड़े विद्युत द्विध्रुवीय क्षण प्राप्त कर सकते हैं जिससे वे क्षेत्र द्वारा कुप्रबंध के लिए अतिसंवेदनशील हो जाते हैं। 'चित्र 7' दिखाता है कि कैसे बाहरी विद्युत क्षेत्र (परमाणु भौतिकी में स्टार्क प्रभाव क्षेत्र के रूप में जाना जाता है) के अनुप्रयोग से क्षमता की ज्यामिति परिवर्तित हो जाती है, नाटकीय रूप से इलेक्ट्रॉन का व्यवहार परिवर्तित हो जाता है। कूलम्बिक क्षमता किसी भी टार्क को प्रारम्भ नहीं करती है क्योंकि बल सदैव स्थिति सदिश के समानांतर (गणित) होता है (सदैव इलेक्ट्रॉन और नाभिक के मध्य चलने वाली रेखा के साथ प्रदर्शित करता है):
- ,
- .
स्थिर विद्युत क्षेत्र के अनुप्रयोग के साथ, इलेक्ट्रॉन निरंतर परिवर्तित टार्क को ज्ञात करता है। परिणामी प्रक्षेपवक्र समय के साथ उत्तरोत्तर अधिक विकृत होता जाता है, अंततः L = LMAX से सीधी रेखा L=0, तक कोणीय गति की पूर्ण श्रृंखला से होकर विपरीत दिशा में प्रारंभिक कक्षा में L = -LMAX जाता है। [54]
यह भी देखें
- भारी रिडबर्ग प्रणाली
- प्राचीन क्वांटम सिद्धांत
- क्वांटम अराजकता
- रिडबर्ग अणु
- रिडबर्ग पोलरॉन
संदर्भ

- ↑ 1.0 1.1 1.2 Gallagher, Thomas F. (1994). रिडबर्ग परमाणु. Cambridge University Press. ISBN 978-0-521-02166-1.
- ↑ 2.0 2.1 Šibalić, Nikola; S Adams, Charles (2018). रिडबर्ग भौतिकी (in English). IOP Publishing. Bibcode:2018ryph.book.....S. doi:10.1088/978-0-7503-1635-4. ISBN 9780750316354.
- ↑ Metcalf Research Group (2004-11-08). "रिडबर्ग एटम ऑप्टिक्स". Stony Brook University. Archived from the original on August 26, 2005. Retrieved 2008-07-30.
- ↑ J. Murray-Krezan (2008). "गति अंतरिक्ष में रिडबर्ग स्टार्क परमाणुओं की शास्त्रीय गतिशीलता". American Journal of Physics. 76 (11): 1007–1011. Bibcode:2008AmJPh..76.1007M. doi:10.1119/1.2961081.
- ↑ 5.0 5.1 Nolan, James (2005-05-31). "रिडबर्ग परमाणु और क्वांटम दोष". Davidson College. Retrieved 2008-07-30.
- ↑ I. Martinson; et al. (2005). "Janne Rydberg – his life and work". Nuclear Instruments and Methods in Physics Research Section B. 235 (1–4): 17–22. Bibcode:2005NIMPB.235...17M. doi:10.1016/j.nimb.2005.03.137.
- ↑ "बोह्र मॉडल". University of Tennessee, Knoxville. 2000-08-10. Retrieved 2009-11-25.
- ↑ Niels Bohr (1922-12-11). "परमाणु की संरचना" (PDF). Nobel Lecture. Retrieved 2018-11-16.
- ↑ J. Olmsted (1967). "इलेक्ट्रॉन प्रभाव द्वारा नाइट्रोजन त्रिक अवस्थाओं का उत्तेजन". Radiation Research. 31 (2): 191–200. Bibcode:1967RadR...31..191O. doi:10.2307/3572319. JSTOR 3572319. PMID 6025857.
- ↑ M. Haugh, et al. (1966). "चार्ज एक्सचेंज के साथ इलेक्ट्रॉनिक उत्तेजना". Journal of Chemical Physics. 44 (2): 837–839. Bibcode:1966JChPh..44..837H. doi:10.1063/1.1726773.
- ↑ T. P. Hezel, et al. (1992). "Classical view of the properties of Rydberg atoms: Application of the correspondence principle". American Journal of Physics. 60 (4): 329–335. Bibcode:1992AmJPh..60..329H. doi:10.1119/1.16876.
- ↑ 12.0 12.1 I. K. Dmitrieva; et al. (1993). "दोगुनी उत्साहित राज्यों की ऊर्जा। डबल रिडबर्ग फॉर्मूला". Journal of Applied Spectroscopy. 59 (1–2): 466–470. Bibcode:1993JApSp..59..466D. doi:10.1007/BF00663353. S2CID 96628309.
- ↑ L. Neale; et al. (1995). "Kr VIII में कोर ध्रुवीकरण". Physical Review A. 51 (5): 4272–4275. Bibcode:1995PhRvA..51.4272N. doi:10.1103/PhysRevA.51.4272. PMID 9912104.
- ↑ 14.0 14.1 C. E. Theodosiou (1983). "उच्च-l Rydberg राज्यों में पैठ प्रभाव का मूल्यांकन". Physical Review A. 28 (5): 3098–3101. Bibcode:1983PhRvA..28.3098T. doi:10.1103/PhysRevA.28.3098.
- ↑ T. A. Heim; et al. (1995). "हाई-लेइंग पेयर-रिडबर्ग स्टेट्स का एक्साइटमेंट". Journal of Physics B. 28 (24): 5309–5315. Bibcode:1995JPhB...28.5309H. doi:10.1088/0953-4075/28/24/015. S2CID 250862926.
- ↑ 16.0 16.1 M. Courtney, et al. (1995). "एक विद्युत क्षेत्र में लिथियम की शास्त्रीय, अर्धशास्त्रीय और क्वांटम गतिकी". Physical Review A. 51 (5): 3604–3620. Bibcode:1995PhRvA..51.3604C. doi:10.1103/PhysRevA.51.3604. PMID 9912027.
- ↑ D.R. Inglis; et al. (1939). "एक-इलेक्ट्रॉन स्पेक्ट्रा में श्रृंखला सीमा का आयनिक अवनमन". Astrophysical Journal. 90: 439. Bibcode:1939ApJ....90..439I. doi:10.1086/144118.
- ↑ Nicholas D. Guise; et al. (Apr 24, 2014). "Measurement of the Kr xviii 3d 2D5/2 lifetime at low energy in a unitary Penning trap". Physical Review A. 89 (4): 040502. arXiv:1404.6181. Bibcode:2014PhRvA..89d0502G. doi:10.1103/PhysRevA.89.040502. S2CID 54090132.
- ↑ J. Neukammer, et al. (1984). "Diamagnetic shift and singlet-triplet mixing of 6snp Yb Rydberg states with large radial extent". Physical Review A. 30 (2): 1142–1144. Bibcode:1984PhRvA..30.1142N. doi:10.1103/PhysRevA.30.1142.
- ↑ Anderson, David A.; et al. (2021). "एएम और एफएम रेडियो संचार के लिए एक परमाणु रिसीवर". IEEE Transactions on Antennas and Propagation. 69 (5): 2455–2462. arXiv:1808.08589. Bibcode:2021ITAP...69.2455A. doi:10.1109/TAP.2020.2987112. S2CID 118828101.
- ↑ Oullette, Jennifer (19 September 2018). "एकल परमाणुओं का उपयोग करने वाला एक नया एंटीना परमाणु रेडियो के युग की शुरुआत कर सकता है". Ars Technica. Retrieved 19 September 2018.
- ↑ G. Vitrant, et al. (1982). "Rydberg बहुत उत्साहित परमाणुओं की एक घने गैस में प्लाज्मा विकास के लिए". Journal of Physics B. 15 (2): L49–L55. Bibcode:1982JPhB...15L..49V. doi:10.1088/0022-3700/15/2/004.
- ↑ E. A. Manykin, et al. (2006). "Rydberg matter: properties and decay". Proceedings of the SPIE. SPIE Proceedings. 6181 (5): 618105–618105–9. Bibcode:2006SPIE.6181E..05M. doi:10.1117/12.675004. S2CID 96732651.
- ↑ Y. N. Gnedin, et al. (2009). "Rydberg खगोल भौतिकी में परमाणु". New Astronomy Reviews. 53 (7–10): 259–265. arXiv:1208.2516. Bibcode:2009NewAR..53..259G. doi:10.1016/j.newar.2009.07.003. S2CID 119276100.
- ↑ D. Jaksch, et al. (2000). "तटस्थ परमाणुओं के लिए फास्ट क्वांटम गेट्स". Physical Review Letters. 85 (10): 2208–11. arXiv:quant-ph/0004038. Bibcode:2000PhRvL..85.2208J. doi:10.1103/PhysRevLett.85.2208. PMID 10970499. S2CID 16713798.
- ↑ T. Wilk, et al. (2010). "Rydberg नाकाबंदी का उपयोग करके दो अलग-अलग तटस्थ परमाणुओं का उलझाव". Physical Review Letters. 104 (1): 010502. arXiv:0908.0454. Bibcode:2010PhRvL.104a0502W. doi:10.1103/PhysRevLett.104.010502. PMID 20366354. S2CID 16384272.
- ↑ L. Isenhower, et al. (2010). "एक तटस्थ परमाणु नियंत्रित-नॉट क्वांटम गेट का प्रदर्शन". Physical Review Letters. 104 (1): 010503. arXiv:0907.5552. Bibcode:2010PhRvL.104a0503I. doi:10.1103/PhysRevLett.104.010503. PMID 20366355. S2CID 2091127.
- ↑ H. Weimer, et al. (2008). "रिडबर्ग गैसों के साथ अत्यधिक पारस्परिक क्रिया में क्वांटम क्रिटिकल बिहेवियर". Physical Review Letters. 101 (25): 250601. arXiv:0806.3754. Bibcode:2008PhRvL.101y0601W. doi:10.1103/PhysRevLett.101.250601. PMID 19113686. S2CID 28636728.
- ↑ Tiarks, Daniel; Schmidt-Eberle, Steffen; Stolz, Thomas; Rempe, Gerhard; Dürr, Stephan (February 2019). "A photon–photon quantum gate based on Rydberg interactions". Nature Physics (in English). 15 (2): 124–126. arXiv:1807.05795. doi:10.1038/s41567-018-0313-7. ISSN 1745-2473. S2CID 54072181.
- ↑ Khazali, Mohammadsadegh; Murray, Callum R.; Pohl, Thomas (2019-09-13). "मल्टीचैनल ऑप्टिकल नेटवर्क में पोलारिटॉन एक्सचेंज इंटरैक्शन". Physical Review Letters (in English). 123 (11): 113605. arXiv:1903.12442. Bibcode:2019PhRvL.123k3605K. doi:10.1103/PhysRevLett.123.113605. ISSN 0031-9007. PMID 31573258. S2CID 202577976.
- ↑ Gorshkov, Alexey V.; Otterbach, Johannes; Fleischhauer, Michael; Pohl, Thomas; Lukin, Mikhail D. (2011-09-22). "Rydberg नाकाबंदी के माध्यम से फोटॉन-फोटॉन इंटरैक्शन". Physical Review Letters. 107 (13): 133602. arXiv:1103.3700. Bibcode:2011PhRvL.107m3602G. doi:10.1103/physrevlett.107.133602. ISSN 0031-9007. PMID 22026852. S2CID 11681713.
- ↑ Khazali, Mohammadsadegh; Heshami, Khabat; Simon, Christoph (2015-03-17). "फोटॉन-फोटॉन गेट दो सामूहिक रिडबर्ग उत्तेजनाओं के बीच बातचीत के माध्यम से". Physical Review A. 91 (3): 030301. arXiv:1407.7510. Bibcode:2015PhRvA..91c0301K. doi:10.1103/physreva.91.030301. ISSN 1050-2947. S2CID 118859994.
- ↑ Friedler, Inbal; Petrosyan, David; Fleischhauer, Michael; Kurizki, Gershon (2005-10-05). "लंबी दूरी की बातचीत और धीमी सिंगल-फोटॉन दालों का उलझाव". Physical Review A. 72 (4): 043803. arXiv:quant-ph/0503071. Bibcode:2005PhRvA..72d3803F. doi:10.1103/physreva.72.043803. ISSN 1050-2947. S2CID 30993913.
- ↑ Paredes-Barato, D.; Adams, C. S. (2014-01-28). "रिडबर्ग गेट्स का उपयोग करके ऑल-ऑप्टिकल क्वांटम सूचना प्रसंस्करण". Physical Review Letters. 112 (4): 040501. arXiv:1309.7933. Bibcode:2014PhRvL.112d0501P. doi:10.1103/physrevlett.112.040501. ISSN 0031-9007. PMID 24580425. S2CID 19020862.
- ↑ Lukin, M. D.; Fleischhauer, M.; Cote, R.; Duan, L. M.; Jaksch, D.; Cirac, J. I.; Zoller, P. (2001-06-26). "मेसोस्कोपिक एटॉमिक एन्सेम्बल में डिपोल नाकाबंदी और क्वांटम सूचना प्रसंस्करण". Physical Review Letters. 87 (3): 037901. arXiv:quant-ph/0011028. Bibcode:2001PhRvL..87c7901L. doi:10.1103/physrevlett.87.037901. ISSN 0031-9007. PMID 11461592. S2CID 13452668.
- ↑ Jaksch, D.; Cirac, J. I.; Zoller, P.; Rolston, S. L.; Côté, R.; Lukin, M. D. (2000-09-04). "तटस्थ परमाणुओं के लिए फास्ट क्वांटम गेट्स". Physical Review Letters. 85 (10): 2208–2211. arXiv:quant-ph/0004038. Bibcode:2000PhRvL..85.2208J. doi:10.1103/physrevlett.85.2208. ISSN 0031-9007. PMID 10970499. S2CID 16713798.
- ↑ Saffman, M.; Walker, T. G.; Mølmer, K. (2010-08-18). "रिडबर्ग परमाणुओं के साथ क्वांटम जानकारी". Reviews of Modern Physics. 82 (3): 2313–2363. arXiv:0909.4777. Bibcode:2010RvMP...82.2313S. doi:10.1103/revmodphys.82.2313. ISSN 0034-6861. S2CID 14285764.
- ↑ Khazali, Mohammadsadegh; Mølmer, Klaus (2020-06-11). "Rydberg परमाणुओं और सुपरकंडक्टिंग सर्किट के इंटरएक्टिव एक्साइटेड-स्टेट मैनिफोल्ड्स में एडियाबेटिक इवोल्यूशन द्वारा फास्ट मल्टीक्यूबिट गेट्स". Physical Review X. 10 (2): 021054. arXiv:2006.07035. Bibcode:2020PhRvX..10b1054K. doi:10.1103/physrevx.10.021054. ISSN 2160-3308.
- ↑ Weimer, Hendrik; Müller, Markus; Lesanovsky, Igor; Zoller, Peter; Büchler, Hans Peter (2010-03-14). "एक रिडबर्ग क्वांटम सिम्युलेटर". Nature Physics. 6 (5): 382–388. arXiv:0907.1657. Bibcode:2010NatPh...6..382W. doi:10.1038/nphys1614. ISSN 1745-2473. S2CID 54710282.
- ↑ Khazali, Mohammadsadegh (2022-03-03). "डिसक्रीट-टाइम क्वांटम-वॉक एंड फ्लॉकेट टोपोलॉजिकल इंसुलेटर वाया डिस्टेंस-सिलेक्टिव रिडबर्ग-इंटरेक्शन". Quantum (in British English). 6: 664. arXiv:2101.11412. Bibcode:2022Quant...6..664K. doi:10.22331/q-2022-03-03-664. S2CID 246635019.
- ↑ Dauphin, A.; Müller, M.; Martin-Delgado, M. A. (2012-11-20). "रिडबर्ग-एटम क्वांटम सिमुलेशन और एक टोपोलॉजिकल मॉट इंसुलेटर का चेर्न-नंबर लक्षण वर्णन". Physical Review A. 86 (5): 053618. arXiv:1207.6373. Bibcode:2012PhRvA..86e3618D. doi:10.1103/physreva.86.053618. ISSN 1050-2947. S2CID 55200016.
- ↑ Khazali, Mohammadsadegh (2021-08-05). "Rydberg शोर ड्रेसिंग और सॉलिटॉन अणु और बूंद क्वासिक क्रिस्टल बनाने में अनुप्रयोग". Physical Review Research (in English). 3 (3): L032033. arXiv:2007.01039. Bibcode:2021PhRvR...3c2033K. doi:10.1103/PhysRevResearch.3.L032033. ISSN 2643-1564. S2CID 220301701.
- ↑ Henkel, N.; Cinti, F.; Jain, P.; Pupillo, G.; Pohl, T. (2012-06-26). "रिडबर्ग-ड्रेस्ड बोस-आइंस्टीन कंडेनसेट्स में सुपरसॉलिड वोर्टेक्स क्रिस्टल". Physical Review Letters. 108 (26): 265301. arXiv:1111.5761. Bibcode:2012PhRvL.108z5301H. doi:10.1103/physrevlett.108.265301. ISSN 0031-9007. PMID 23004994. S2CID 1782501.
- ↑ Sedlacek, Jonathon A.; Schwettmann, Arne; Kübler, Harald; Löw, Robert; Pfau, Tilman; Shaffer, James P. (2012-09-16). "चमकीले परमाणु अनुनादों का उपयोग करके वाष्प सेल में Rydberg परमाणुओं के साथ माइक्रोवेव इलेक्ट्रोमेट्री". Nature Physics (in English). 8 (11): 819–824. Bibcode:2012NatPh...8..819S. doi:10.1038/nphys2423. ISSN 1745-2473. S2CID 121120666.
- ↑ Wade, C. G.; Šibalić, N.; de Melo, N. R.; Kondo, J. M.; Adams, C. S.; Weatherill, K. J. (2016-11-07). "परमाणु ऑप्टिकल प्रतिदीप्ति के साथ रीयल-टाइम नियर-फ़ील्ड टेराहर्ट्ज़ इमेजिंग". Nature Photonics (in English). 11 (1): 40–43. arXiv:1603.07107. doi:10.1038/nphoton.2016.214. ISSN 1749-4885. S2CID 119212524.
- ↑ Nogues, G.; Rauschenbeutel, A.; Osnaghi, S.; Brune, M.; Raimond, J. M.; Haroche, S. (1999). "एक फोटॉन को नष्ट किए बिना देखना". Nature (in English). 400 (6741): 239–242. Bibcode:1999Natur.400..239N. doi:10.1038/22275. ISSN 0028-0836. S2CID 4367650.
- ↑ Pritchard, J. D.; Maxwell, D.; Gauguet, A.; Weatherill, K. J.; Jones, M. P. A.; Adams, C. S. (2010-11-05). "अवरोधित रिडबर्ग एनसेंबल में सहकारी परमाणु-लाइट इंटरेक्शन". Physical Review Letters (in English). 105 (19): 193603. arXiv:0911.3523. Bibcode:2010PhRvL.105s3603P. doi:10.1103/physrevlett.105.193603. ISSN 0031-9007. PMID 21231168. S2CID 12217031.
- ↑ Firstenberg, Ofer; Peyronel, Thibault; Liang, Qi-Yu; Gorshkov, Alexey V.; Lukin, Mikhail D.; Vuletić, Vladan (2013-09-25). "क्वांटम नॉनलाइनियर माध्यम में आकर्षक फोटॉन" (PDF). Nature (in English). 502 (7469): 71–75. Bibcode:2013Natur.502...71F. doi:10.1038/nature12512. hdl:1721.1/91605. ISSN 0028-0836. PMID 24067613. S2CID 1699899.
- ↑ Schauß, P.; Zeiher, J.; Fukuhara, T.; Hild, S.; Cheneau, M.; Macrì, T.; Pohl, T.; Bloch, I.; Gross, C. (2015-03-27). "आइसिंग क्वांटम मैग्नेट में क्रिस्टलीकरण". Science (in English). 347 (6229): 1455–1458. arXiv:1404.0980. Bibcode:2015Sci...347.1455S. doi:10.1126/science.1258351. ISSN 0036-8075. PMID 25814579. S2CID 28102735.
- ↑ Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine (2016). "क्वांटम ईज़िंग मॉडल को साकार करने के लिए एकल रिडबर्ग परमाणुओं के ट्यून करने योग्य द्वि-आयामी सरणियाँ". Nature (in English). 534 (7609): 667–670. arXiv:1509.04543. Bibcode:2016Natur.534..667L. doi:10.1038/nature18274. ISSN 0028-0836. PMID 27281203. S2CID 4461633.
- ↑ सेना के शोधकर्ताओं ने क्वांटम सेंसिंग में बड़ी छलांग लगाई, यूनाइटेड स्टेट्स आर्मी रिसर्च लेबोरेटरी, 2018-10-25
- ↑ वैज्ञानिक क्वांटम सेंसर बनाते हैं जो पूरे रेडियो फ्रीक्वेंसी स्पेक्ट्रम को कवर करता है, Phys.org/United States Army Research Laboratory, 2020- 03-19
- ↑ Meyer, David H.; Kunz, Paul D.; Cox, Kevin C. (2021). "Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz". Physical Review Applied. 15 (1): 014053. arXiv:2009.14383. Bibcode:2021PhRvP..15a4053M. doi:10.1103/PhysRevApplied.15.014053. S2CID 222067191.
- ↑ T. P. Hezel, et al. (1992). "हाइड्रोजन परमाणुओं में स्टार्क प्रभाव का शास्त्रीय दृश्य". American Journal of Physics. 60 (4): 324–328. Bibcode:1992AmJPh..60..324H. doi:10.1119/1.16875.