लाई अधि-बीजगणित
गणित में, लाई अधि-बीजगणित Z2‑श्रेणीबद्ध बीजगणित को सम्मिलित करने के लिए लाई बीजगणित का सामान्यीकरण है। सैद्धांतिक भौतिकी में अधि-बीजगणित महत्वपूर्ण हैं जहां उनका उपयोग अतिसममिति के गणित का वर्णन करने के लिए किया जाता है। इनमें से अधिकांश सिद्धांतों में, अधि-बीजगणित के सम अवयव बोसॉन के अनुरूप होते हैं और विषम अवयव फरमिओन्स के अनुरूप होते हैं (किन्तु यह सदैव सत्य नहीं होता है; उदाहरण के लिए, सर्वोत्तम अतिसममिति इसकी दूसरी विधि है)।
परिभाषा
औपचारिक रूप से, लाई अधि-बीजगणित गैर-सहयोगी Z2-श्रेणीबद्ध बीजगणित, या अधि-बीजगणित है, जो एक क्रमविनिमेय वलय (सामान्यतः 'R' या 'C') पर होता है, जिसका उत्पाद [···], जिसे 'लाइ सुपरब्रैकेट' या सुपरकम्यूटेटर कहा जाता है,दो स्थितियों (सामान्य के अनुरूप) को संतुष्ट करता है श्रेणीकरण के साथ बीजगणित स्वयंसिद्ध लाई):
सुपर परोक्ष-समरूपता:
सुपर जैकोबी पहचान:[1]
जहां 'Z'2-श्रेणीकरण में x, y, और z शुद्ध हैं। जहाँ, |x| x की डिग्री को दर्शाता है (या तो 0 या 1)। [x,y] की डिग्री x और y मापदंड 2 की डिग्री का योग है।
कोई कभी-कभी |x|= 0 के लिए स्वयंसिद्ध भी जोड़ता है (यदि 2 विपरीत है तो यह स्वचालित रूप से अनुसरण करता है) और |x|= 1 के लिए (यदि 3 विपरीत है तो यह स्वचालित रूप से अनुसरण करता है)। जब क्षेत्र वलय पूर्णांक होती है या लाई अधि-बीजगणित स्वतंत्र मापदंड होता है, तो ये स्थितियाँ उस स्थिति के समान होती हैं जो पोंकारे-बिरखॉफ़-विट प्रमेय रखती हैं (और, सामान्य रूप पर, वे प्रमेय को धारण करने के लिए आवश्यक नियम हैं)।
इस प्रकार से लाई बीजगणित की ही तरह, लाई अधि-बीजगणित के सार्वभौमिक आवरण बीजगणित को हॉपफ बीजगणित संरचना दी जा सकती है।
एक श्रेणीबद्ध लाई बीजगणित (मान लीजिए, 'Z' या 'N' द्वारा वर्गीकृत) जो कि प्रतिसंक्रामक है और श्रेणीबद्ध अर्थ में जैकोबी के पास भी है श्रेणीकरण (जिसे बीजगणित को विषम और सम भागों में "रोलिंग अप" कहा जाता है), किन्तु इसे "सुपर" नहीं कहा जाता है। किन्तु विचार के लिए श्रेणीबद्ध लाई बीजगणित पर नोट-0 देखें।
गुण
मान लीजिये लाई अधि-बीजगणित बनें। जैकोबी पहचान का निरीक्षण करने पर, कोई यह देख सकता है कि आठ स्तिथि हैं जो इस तथ्य पर निर्भर करते हैं कि तर्क सम या विषम हैं । ये चार वर्गों में आते हैं, जिन्हें विषम अवयवो की संख्या के आधार पर अनुक्रमित किया जाता है:[2]
- कोई विषम अवयव नहीं. कथन केवल इतना ही है कि एक सामान्य लाई बीजगणित है.
- एक विषम अवयव . तब क्रिया के लिए मापदंड है .
- द्वीय विषम अवयव . जैकोबी पहचान कहती है कि ब्रैकेट एक सममित -मानचित्र है।
- तृतीय विषम अवयव . सभी के लिए , .
इस प्रकार एक लाई अधि-बीजगणित का सम उपबीजगणित एक (सामान्य) लाई बीजगणित बनाता है क्योंकि सभी चिह्न विलुप्त हो जाते हैं, और सुपरब्रैकेट एक सामान्य लाई ब्रैकेट बन जाता है, जबकि , का एक रैखिक प्रतिनिधित्व है और एक सममित -समतुल्य रेखीय मानचित्र उपस्तिथ है। वह,
स्थितियाँ (1)-(3) रैखिक हैं और सभी को सामान्य लाई बीजगणित के संदर्भ में समझा जा सकता है। नियम (4) अरैखिक है, और सामान्य लाई बीजगणित () और प्रतिनिधित्व () से प्रारंभ करके लाई अधि-बीजगणित का निर्माण करते समय इसे सत्यापित करना सबसे कठिन है।
आक्रमण
A∗ लाई अधि-बीजगणित सम्मिश्र लाई अधि-बीजगणित है जो अपने आप में प्रत्यावर्तन (गणित) प्रतिरेखीय मानचित्र से सुसज्जित है जो Z2 श्रेणीकरण का सम्मान करता है और लाई अधि-बीजगणित में सभी x और y के लिए [x,y]* = [y*,x*] को संतुष्ट करता है। (कुछ लेखक सम्मेलन को प्राथमिकता देते हैं [x,y]*=(−1)|x||y|[y*,x*]; परिवर्तन * को −* दो सम्मेलनों के बीच स्विच करता है।) इसका सार्वभौमिक आवरण बीजगणित एक साधारण *-बीजगणित होगा।
उदाहरण
इस प्रकार से किसी भी सहयोगी अधि-बीजगणित को देखते हुए कोई सजातीय अवयवो के सुपर कंप्यूटर को परिभाषित कर सकता है
और फिर सभी अवयवो तक रैखिकता द्वारा विस्तार करना। बीजगणित सुपरकम्यूटेटर के साथ मिलकर यह लाई अधि-बीजगणित बन जाता है। इस प्रक्रिया का सबसे सरल उदाहरण कदाचित तब है जब अपने आप में एक सुपर सदिश स्थान के सभी रैखिक कार्यों का स्थान है। जब होता है तो इस स्थान को या द्वारा दर्शाया जाता है,[3] ऊपर दिए गए लाई ब्रैकेट के साथ, स्थान को दर्शाया जाता है[4]
होमोटॉपी समूहों पर व्हाइटहेड उत्पाद पूर्णांकों पर लाई अधि-बीजगणित के कई उदाहरण देता है।
सुपर-पोंकारे बीजगणित समतल सुपरस्पेस की सममिति उत्पन्न करता है।
वर्गीकरण
सरल सम्मिश्र परिमित-आयामी लाई अधि-बीजगणित को विक्टर काक द्वारा वर्गीकृत किया गया था।
वे (लाई बीजगणित को छोड़कर) हैं:[5]
विशेष रैखिक लाई अधि-बीजगणित .
लाई अधि-बीजगणित का उपबीजगणित है सुपर ट्रेस शून्य के साथ आव्यूह से मिलकर। यह सरल है जब . यदि , फिर पहचान आव्यूह एक आदर्श उत्पन्न करता है. इस आदर्श को उद्धृत करने से पता चलता है जो के लिए सरल है .
ऑर्थोसिम्पलेक्टिक लाई अधि-बीजगणित .
एक सम, गैर-पतित, अतिसममितीय बिलिनियर रूप , पर विचार करें फिर ऑर्थोसिम्पलेक्टिक लाई अधि-बीजगणित का उपबीजगणित है जो की ऐसे आव्यूह से मिलकर जो इस रूप को अपरिवर्तनीय छोड़ देते हैं:
असाधारण लाई अधि-बीजगणित .
एक पैरामीटर के आधार पर (9∣8)-आयामी लाई अधि-बीजगणित का वर्ग है . ये की विकृतियाँ हैं . यदि और , तो D(2,1,α) सरल है। इसके अतिरिक्त यदि मानचित्र और के अंतर्गत और एक ही कक्षा में हैं
असाधारण लाई अधि-बीजगणित .
इसका आयाम (24|16) है। इसका सम भाग किसके द्वारा दिया गया है? .
असाधारण लाई अधि-बीजगणित .
इसका आयाम (17|14) है। इसका सम भाग किसके द्वारा दिया गया है? .
जहाँ और नाम की दो तथाकथित विषम श्रृंखला कहलाती है.
कार्टन प्रकार. इन्हें चार वर्गों में विभाजित किया जा सकता है: , , और . कार्टन प्रकार के सरल लाई अधि-बीजगणित के लिए, विषम भाग अब सम भाग की क्रिया के अधीन पूर्ण रूप से कम करने योग्य नहीं है।
अनंत-आयामी सरल रैखिक रूप से सघन लाई अधि-बीजगणित का वर्गीकरण
वर्गीकरण में 10 श्रृंखलाएँ सम्मिलित हैं W(m, n), S(m, n) ((m, n) ≠ (1, 1)), H(2m, n), K(2m + 1, n), HO(m, m) (m ≥ 2), SHO(m, m) (m ≥ 3), KO(m, m + 1), SKO(m, m + 1; β) (m ≥ 2), SHO ∼ (2m, 2m), SKO ∼ (2m + 1, 2m + 3) और पांच असाधारण बीजगणित:
- E(1, 6), E(5, 10), E(4, 4), E(3, 6), E(3, 8)
अंतिम दो विशेष रूप से रोचक हैं (केएसी के अनुसार) क्योंकि उनके पास मानक मॉडल गेज समूह SU(3)×SU(2)×U(1) उनके शून्य स्तर बीजगणित के रूप में है। सुपरस्ट्रिंग सिद्धांत में अनंत-आयामी (एफ़िन) लाई अधि-बीजगणित महत्वपूर्ण समरूपताएं हैं। विशेष रूप से, समानताएं वाले विरासोरो बीजगणित होते हैं जिनका केवल केंद्रीय विस्तार होता है।[6]
श्रेणी-सैद्धांतिक परिभाषा
श्रेणी सिद्धांत में, लाई अधि-बीजगणित को गैर-सहयोगी अधि-बीजगणित के रूप में परिभाषित किया जा सकता है जिसका उत्पाद संतुष्ट करता है
जहां σ चक्रीय क्रमपरिवर्तन ब्रेडिंग है . आरेखीय रूप में:
यह भी देखें
- गेरस्टेनहाबर बीजगणित
- एनीओनिक लाई बीजगणित
- ग्रासमैन बीजगणित
- एक लाई अधि-बीजगणित का प्रतिनिधित्व
- सुपरस्पेस
- सुपरग्रुप (भौतिकी)
- सार्वभौमिक आवरण बीजगणित
टिप्पणियाँ
- ↑ Freund 1983, p. 8
- ↑ Varadarajan 2004, p. 89
- ↑ Varadarajan 2004, p. 87
- ↑ Varadarajan 2004, p. 90
- ↑ Cheng S.-J. ;Wang W. (2012). लाई सुपरबीजगणित के द्वंद्व और निरूपण. Providence, Rhode Island. p. 12. ISBN 978-0-8218-9118-6. OCLC 809925982.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) - ↑ Kac 2010
संदर्भ
- Cheng, S.-J.; Wang, W. (2012). Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics. Vol. 144. pp. 302pp. ISBN 978-0-8218-9118-6.
- Freund, P. G. O. (1983). Introduction to supersymmetry. Cambridge Monographs on Mathematical Physics. Cambridge University Press. doi:10.1017/CBO9780511564017. ISBN 978-0521-356-756.
- Grozman, P.; Leites, D.; Shchepochkina, I. (2005). "Lie Superalgebras of String Theories". Acta Mathematica Vietnamica. 26 (2005): 27–63. arXiv:hep-th/9702120. Bibcode:1997hep.th....2120G.
- Kac, V. G. (1977). "Lie superalgebras". Advances in Mathematics. 26 (1): 8–96. doi:10.1016/0001-8708(77)90017-2.
- Kac, V. G. (2010). "Classification of Infinite-Dimensional Simple Groups of Supersymmetries and Quantum Field Theory". Visions in Mathematics. pp. 162–183. arXiv:math/9912235. doi:10.1007/978-3-0346-0422-2_6. ISBN 978-3-0346-0421-5. S2CID 15597378.
- Manin, Y. I. (1997). Gauge Field Theory and Complex Geometry ((2nd ed.) ed.). Berlin: Springer. ISBN 978-3-540-61378-7.
- Musson, I. M. (2012). Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics. Vol. 131. pp. 488 pp. ISBN 978-0-8218-6867-6.
- Varadarajan, V. S. (2004). Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Mathematics. Vol. 11. American Mathematical Society. ISBN 978-0-8218-3574-6.
ऐतिहासिक
- Frölicher, A.; Nijenhuis, A. (1956). "वेक्टर मूल्यवान विभेदक रूपों का सिद्धांत। भाग I". Indagationes Mathematicae. 59: 338–350. doi:10.1016/S1385-7258(56)50046-7..
- Gerstenhaber, M. (1963). "एक साहचर्य वलय की सहसंरचना संरचना". Annals of Mathematics. 78 (2): 267–288. doi:10.2307/1970343. JSTOR 1970343.
- Gerstenhaber, M. (1964). "वलयों और बीजगणित की विकृति पर". Annals of Mathematics. 79 (1): 59–103. doi:10.2307/1970484. JSTOR 1970484.
- Milnor, J. W.; Moore, J. C. (1965). "हॉपफ बीजगणित की संरचना पर". Annals of Mathematics. 81 (2): 211–264. doi:10.2307/1970615. JSTOR 1970615.