लेजेंड्रे फलन
भौतिक विज्ञान और गणित में, लेजेंड्रे फलन Pλ, Qλ और संबद्ध लिजेंड्रे फलन Pμ
λ, Qμ
λ, और द्वितीय प्रकार के लेजेंड्रे फलन, Qn, लेजेंड्रे के अवकल समीकरण के सभी हल हैं। लेजेंड्रे बहुपद और संबद्ध लेजेंड्रे बहुपद भी विशेष स्थितियों में अंतर समीकरण के हल हैं, जो बहुपद होने के कारण, बड़ी संख्या में अतिरिक्त गुण, गणितीय संरचना और अनुप्रयोग हैं। इन बहुपद हलों के लिए, अलग विकिपीडिया लेख देखें।
लेजेंड्रे का अवकल समीकरण
सामान्य लेजेंड्रे समीकरण
λ एक पूर्णांक(n निरूपित) है, और μ = m भी एक पूर्णांक है जिसके साथ |m| < n संबद्ध लेजेंड्रे बहुपद हैं। λ और μ के अन्य सभी स्थिति पर एक के रूप में चर्चा की जा सकती है, और हल Pμ
λ, Qμ
λ लिखे गए हैं। यदि μ = 0, मूर्धांक को छोड़ दिया जाता है, और मात्र Pλ, Qλ लिखता है। यद्यपि, हल Qλ जब λ एक पूर्णांक होता है, तो प्रायः अलग से चर्चा की जाती है जैसे कि लेजेंड्रे के द्वितीय प्रकार के फलन, और Qn को निरूपित किया जाता है।।
यह तीन नियमित विचित्र बिंदुओं(पर 1, −1, और ∞) के साथ द्वितीय क्रम का रैखिक समीकरण है। ऐसे सभी समीकरणों के जैसे, इसे चर के परिवर्तन से एक हाइपरज्यामितीय अवकल समीकरण में परिवर्तित किया जा सकता है, और इसके हल को हाइपरज्यामितीय फलनों का उपयोग करके व्यक्त किया जा सकता है।
अंतर समीकरण के हल
चूँकि अवकल समीकरण रैखिक, सजातीय(दाहिने हाथ की ओर = शून्य) है और द्वितीय क्रम का है, इसके दो रैखिक रूप से स्वतंत्र हल हैं, जो दोनों को हाइपरज्यामितीय फलन, के रूप में व्यक्त किया जा सकता है। गामा फलन होने के साथ, प्रथम हल
इन्हें सामान्यतः प्रथम और द्वितीय प्रकार के गैर-पूर्णांक घात के लेजेंड्रे फलनों के रूप में जाना जाता है, अतिरिक्त विशेषण 'संबद्ध' के साथ यदि μ शून्य नहीं है। P और Q हलों के मध्य एक उपयोगी संबंध व्हिपल का सूत्र है।
धनात्मक पूर्णांक क्रम
धनात्मक पूर्णांक के लिए उपरोक्त के मूल्यांकन में विचित्र शब्दों को प्रतिबंधों को निरस्त करना सम्मिलित है। हम के लिए[1]
द्वितीय प्रकार के लेजेंड्रे फलन(Qn)
पूर्णांक घात , और की विशेष स्थिति के लिए गैर-बहुपद हल, प्रायः अलग से चर्चा की जाती है। यह
यह हल अनिवार्य रूप से विलक्षणता(गणित) है जब ।
लेजेंड्रे के द्वितीय प्रकार के फलनों को भी बोनट का पुनरावर्तन सूत्र
के माध्यम से पुनरावर्ती रूप से परिभाषित किया जा सकता है।
द्वितीय प्रकार के संबद्ध लेजेंड्रे फलन
पूर्णांक घात , और की विशेष स्थिति के लिए गैर-बहुपद हल
द्वारा दिया गया है।
अभिन्न प्रतिनिधित्व
लेजेंड्रे फलनों को समोच्च समाकलन के रूप में लिखा जा सकता है। उदाहरण के लिए,
लेजेंड्रे फलन चर के रूप में
का वास्तविक अभिन्न प्रतिनिधित्व पर अनुरूप विश्लेषण के अध्ययन में बहुत उपयोगी हैं जहां का सजातीय स्थान है(आंचलिक गोलाकार फलन देखें)। वस्तुत: पर फूरियर परिवर्तन
यह भी देखें
संदर्भ
- ↑ Creasey, P. E.; Lang, A. (2018). Fast generation of isotropic Gaussian random fields on the sphereMonte Carlo Methods and Applications 24(1): 1-11.
- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 8". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 332. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
- Courant, Richard; Hilbert, David (1953), Methods of Mathematical Physics, Volume 1, New York: Interscience Publisher, Inc।
- Dunster, T. M. (2010), "Legendre and Related Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
- Ivanov, A.B. (2001) [1994], "लेजेंड्रे फलन", Encyclopedia of Mathematics, EMS Press
- Snow, Chester (1952) [1942], Hypergeometric and Legendre functions with applications to integral equations of potential theory, National Bureau of Standards Applied Mathematics Series, No. 19, Washington, D.C.: U. S. Government Printing Office, hdl:2027/mdp.39015011416826, MR 0048145
- Whittaker, E. T.; Watson, G. N. (1963), A Course in Modern Analysis, Cambridge University Press, ISBN 978-0-521-58807-2
बाहरी संबंध
- Legendre function P on the Wolfram functions site।
- Legendre function Q on the Wolfram functions site।
- Associated Legendre function P on the Wolfram functions site।
- Associated Legendre function Q on the Wolfram functions site।