शून्य-आधारित क्रमांकन

From Vigyanwiki

शून्य-आधारित नंबरिंग, नंबरिंग का विधि है जिसमें किसी अनुक्रम के प्रारंभिक अवयव को इंडेक्स 1 के अतिरिक्त अनुक्रमित वर्ग 0 सौंपा जाता है, जैसा कि दैनिक की गैर-गणितीय या गैर-प्रोग्रामिंग परिस्थितियों में होता है। शून्य-आधारित क्रमांकन के अंतर्गत, प्रारंभिक अवयव को कभी-कभी 0 अवयव कहा जाता है,[1] पहले अवयव के अतिरिक्त; ज़ीरोथ संख्या शून्य के अनुरूप शब्द सिक्का क्रमसूचक संख्या (भाषा विज्ञान) है। कुछ स्थिति में, कोई वस्तु या मान जो (मूल रूप से) किसी दिए गए अनुक्रम से संबंधित नहीं है, किंतु जिसे स्वाभाविक रूप से इसके प्रारंभिक अवयव से पहले रखा जा सकता है, उसे शून्य अवयव कहा जा सकता है। शून्य को क्रमिक के रूप में उपयोग करने की शुद्धता के संबंध में व्यापक सहमति नहीं है (न ही शून्य शब्द के उपयोग के संबंध में), क्योंकि यह संदर्भ के अभाव में अनुक्रम के सभी पश्चात के अवयव के लिए अस्पष्टता उत्पन्न करता है।

गणित नोटेशन में 0 से प्रारंभ होने वाला क्रमांकन क्रम अधिक सामान्य है, विशेष रूप से साहचर्य में चूँकि गणित के लिए प्रोग्रामिंग भाषाएं समान्यत: 1 से अनुक्रमित होती हैं।[2][3][4] कंप्यूटर विज्ञान में, आधुनिक प्रोग्रामिंग भाषाओं में ऐरे डेटा संरचना सूचकांक समान्यत: 0 से प्रारंभ होते हैं, इसलिए कंप्यूटर प्रोग्रामर उन स्थितियों में शून्य का उपयोग कर सकते हैं जहां अन्य लोग पहले उपयोग कर सकते हैं, इत्यादि। कुछ गणितीय संदर्भों में शून्य-आधारित नंबरिंग का उपयोग बिना किसी अव्यवस्था के किया जा सकता है, जब क्रमसूचक रूपों का अर्थ अच्छी तरह से स्थापित होता है और स्पष्ट उम्मीदवार पहले आता है; उदाहरण के लिए, किसी फलन का शून्यवां व्युत्पन्न फलन ही होता है, जो व्युत्पन्न शून्य बार द्वारा प्राप्त किया जाता है। इस तरह का उपयोग ऐसे अवयव के नामकरण से मेल खाता है जो अनुक्रम से ठीक से संबंधित नहीं है, किंतु उससे पहले है: शून्यवाँ व्युत्पन्न वास्तव में कोई व्युत्पन्न नहीं है। चूँकि जैसे पहला व्युत्पन्न दूसरे व्युत्पन्न से पहले आता है, वैसे ही शून्यवाँ व्युत्पन्न (या मूल फलन स्वयं) पहले व्युत्पन्न से पहले आता है।

कंप्यूटर प्रोग्रामिंग

उत्पत्ति

मार्टिन रिचर्ड्स (कंप्यूटर वैज्ञानिक), बीसीपीएल भाषा (सी (प्रोग्रामिंग भाषा) का पूर्ववर्ती) के निर्माता, ने पॉइंटर (कंप्यूटर) के मूल्य के पश्चात से, भाषा में सरणी सामग्री तक पहुंच प्रारंभ करने के लिए प्राकृतिक स्थिति के रूप में 0 पर प्रारंभ होने वाले सरणी को डिज़ाइन किया है प्रोग्रामिंग) p को पते के रूप में उपयोग किया जाता है जो स्थिति तक पहुंचता है p + 0 मेमोरी में[5][6] बीसीपीएल को सबसे पहले आईबीएम 7094 के लिए संकलित किया गया था; भाषा ने कोई रन टाइम (प्रोग्राम जीवनचक्र चरण) रन-टाइम अप्रत्यक्ष खोज प्रस्तुत नहीं किया था, इसलिए इन सरणियों द्वारा प्रदान किया गया इनडायरेक्शन अनुकूलन संकलन समय पर किया गया था।[6] अनुकूलन फिर भी महत्वपूर्ण था.[6][7]

1982 में एड्सगर डब्लू. डिज्क्स्ट्रा ने अपने प्रासंगिक नोट व्हाई नंबरिंग शुड स्टार्ट शुड फ्रॉम जीरो[8] में तर्क दिया कि एरेज़ सबस्क्रिप्ट शून्य से प्रारंभ होनी चाहिए क्योंकि पश्चात वाला सबसे प्राकृतिक संख्या है। सरणी श्रेणियों के संभावित डिज़ाइनों पर चर्चा करते हुए उन्हें श्रृंखलाबद्ध असमानता में संलग्न करना तीव्र और मानक असमानताओं को चार संभावनाओं में संयोजित करना है, यह प्रदर्शित करना कि उनके दृढ़ विश्वास के अनुसार शून्य-आधारित सरणी गैर-अतिव्यापी सूचकांक श्रेणियों द्वारा सबसे अच्छी तरह से दर्शायी जाती हैं, जो शून्य से प्रारंभ होती हैं, अंतराल की ओर संकेत करते हुए (गणित) शब्दावली या वास्तविक संख्याओं की तरह खुला, आधा विवर्त और संवर्त अंतराल है इस सम्मेलन को प्राथमिकता देने के लिए दिज्क्स्ट्रा के मानदंड विस्तार से हैं कि यह अधिक प्राकृतिक विधि से खाली अनुक्रमों का प्रतिनिधित्व करता है (ai < a ?) संवर्त अंतराल से (ai ≤ (a − 1) ?), औरप्राकृतिक के विवर्त "अंतराल", उप-अनुक्रम की लंबाई ऊपरी शून्य निचली सीमा के समान होती है (ai < b a, b, i सभी पूर्णांकों के साथ i के लिए (ba) संभावित मान देता है)।

प्रोग्रामिंग भाषाओं में उपयोग

यह उपयोग सी (प्रोग्रामिंग भाषा), जावा (प्रोग्रामिंग भाषा), और लिस्प प्रोग्रामिंग भाषा सहित अनेक प्रभावशाली प्रोग्रामिंग भाषाओं में एम्बेडेड डिज़ाइन विकल्पों का अनुसरण करता है। इन तीनों में, अनुक्रम प्रकार (सी सरणियाँ, जावा सरणियाँ और सूचियाँ, और लिस्प सूचियाँ और सदिश) को शून्य सबस्क्रिप्ट से प्रारंभ करके अनुक्रमित किया जाता है। विशेष रूप से c में, जहां एरे पॉइंटर (कंप्यूटर प्रोग्रामिंग) अंकगणित से निकटता से बंधे होते हैं, यह सरल कार्यान्वयन के लिए बनाता है: सबस्क्रिप्ट एरे की प्रारंभिक स्थिति से ऑफसमूह को संदर्भित करता है, इसलिए पहले अवयव में शून्य का ऑफसमूह होता है।

एक पते और ऑफसमूह द्वारा मेमोरी को संदर्भित करना लगभग सभी कंप्यूटर आर्किटेक्चर पर कंप्यूटर हार्डवेयर में सीधे दर्शाया जाता है, इसलिए C में यह डिज़ाइन विवरण कुछ मानवीय कारकों की मूल्य पर संकलन को आसान बनाता है। इस संदर्भ में शून्य को क्रमसूचक के रूप में उपयोग करना पूरी तरह से सही नहीं है, किंतु इस व्यवसाय में व्यापक आदत है। अन्य प्रोग्रामिंग भाषाओं, जैसे कि फोरट्रान या कोबोल, में से प्रारंभ होने वाली सरणी सबस्क्रिप्ट होती हैं, क्योंकि उनका अर्थ उच्च-स्तरीय प्रोग्रामिंग भाषाओं के रूप में होता था, और इस तरह उन्हें सामान्य क्रमिक संख्या (भाषाविज्ञान) के अनुरूप होना पड़ता था जो 0 से लंबे समय पहले का होता था।

पास्कल (प्रोग्रामिंग भाषा) किसी सरणी की सीमा को किसी भी क्रमिक प्रकार (प्रगणित प्रकार सहित) की अनुमति देता है। एपीएल_(प्रोग्रामिंग_भाषा) प्रोग्रामेटिक रूप से रनटाइम के समय इंडेक्स मूल को 0 या 1 पर समूह करने की अनुमति देता है।[9][10] कुछ आधुनिक भाषाओं, जैसे लुआ (प्रोग्रामिंग भाषा) और मूल दृश्य, ने इसी कारण से समान परंपरा को अपनाया है।

शून्य सबसे कम अहस्ताक्षरित पूर्णांक मान है, जो प्रोग्रामिंग और हार्डवेयर डिज़ाइन में सबसे मूलभूत प्रकारों में से है। कंप्यूटर विज्ञान में, 0 (संख्या) को अधिकांशतः अनेक प्रकार के संख्यात्मक पुनरावृत्ति के लिए आधार केस के रूप में उपयोग किया जाता है। कंप्यूटर विज्ञान में प्रमाण और अन्य प्रकार के गणितीय तर्क अधिकांशतः शून्य से प्रारंभ होते हैं। इन कारणों से, कंप्यूटर विज्ञान में के अतिरिक्त शून्य से संख्या देना असामान्य नहीं है।

वर्तमान के वर्षों में यह विशेषता अनेक शुद्ध गणित में भी देखी गई है, जहां अनेक निर्माणों को 0 से क्रमांकित किया गया है।

यदि किसी चक्र का प्रतिनिधित्व करने के लिए किसी सरणी का उपयोग किया जाता है, तो मॉड्यूलो ऑपरेटर के साथ सूचकांक प्राप्त करना सुविधाजनक होता है, जिसके परिणामस्वरूप शून्य हो सकता है।

संख्यात्मक गुण

शून्य-आधारित क्रमांकन के साथ, सीमा को संवर्त अंतराल, [1, n] के विपरीत, आधे विवर्त अंतराल, [0, n) के रूप में व्यक्त किया जा सकता है। खाली श्रेणियां, जो अधिकांशतः एल्गोरिदम में होती हैं, [1, 0] जैसे अस्पष्ट सम्मेलनों का सहारा लिए बिना संवर्त अंतराल के साथ व्यक्त करना कठिन होता है। इस गुण के कारण, शून्य-आधारित अनुक्रमण संभावित रूप से ऑफ-बाय-वन और फ़ेंसपोस्ट त्रुटियों को कम करता है।[8] दूसरी ओर, दोहराव गणना n की गणना पहले से की जाती है, जिससे 0 से n − 1 (समावेशी) तक की गिनती का उपयोग कम सहज हो जाता है। कुछ लेखक एक-आधारित अनुक्रमण को प्राथमिकता देते हैं, क्योंकि यह अन्य संदर्भों में संस्थाओं को अनुक्रमित करने के विधि से अधिक निकटता से मेल खाता है।[11]

इस सम्मेलन की अन्य गुण आधुनिक कंप्यूटरों में प्रयुक्त मॉड्यूलर अंकगणित का उपयोग है। समान्यत: मॉड्यूलो फलन किसी भी पूर्णांक मॉड्यूलो एन को 0, 1, 2, ..., N − 1, जहां N ≥ 1 में से किसी संख्या में मैप करता है। इस वजह से, एल्गोरिदम में अनेक सूत्र (जैसे कि हैश तालिका की गणना के लिए) सूचकांक) को मॉड्यूलो ऑपरेशन का उपयोग करके कोड में सुरुचिपूर्ण रूप से व्यक्त किया जा सकता है जब सरणी सूचकांक शून्य से प्रारंभ होते हैं।

ऊपर उल्लिखित अंतर्निहित पते/ऑफ़समूह तर्क के कारण सूचक संचालन को शून्य-आधारित सूचकांक पर अधिक सुरुचिपूर्ण रूप से व्यक्त किया जा सकता है। उदाहरण के लिए, मान लीजिए a किसी सरणी के पहले अवयव का मेमोरी पता है, और i वांछित अवयव का सूचकांक है। वांछित अवयव के पते की गणना करने के लिए, यदि सूचकांक संख्या 1 से गिनती है, तो वांछित पते की गणना इस अभिव्यक्ति द्वारा की जाती है:

जहाँ s प्रत्येक अवयव का आकार है। इसके विपरीत, यदि सूचकांक संख्याओं की गणना 0 से की जाती है, तो अभिव्यक्ति बन जाती है

यह सरल अभिव्यक्ति रन टाइम (प्रोग्राम जीवनचक्र चरण) पर गणना करने के लिए अधिक कुशल है।

चूँकि , 1 से सरणियों को अनुक्रमित करने की इच्छुक भाषा उस परंपरा को अपना सकती है जिसके द्वारा प्रत्येक सरणी पते का प्रतिनिधित्व किया जाता है a′ = as; अर्थात्, पहले सरणी अवयव के पते का उपयोग करने के अतिरिक्त ऐसी भाषा पहले वास्तविक अवयव से ठीक पहले स्थित काल्पनिक अवयव के पते का उपयोग करेगी। 1-आधारित सूचकांक के लिए अनुक्रमण अभिव्यक्ति तब होगी जब

इसलिए, शून्य-आधारित अनुक्रमण के रन टाइम पर दक्षता लाभ अंतर्निहित नहीं है, किंतु काल्पनिक शून्य अवयव के पते के अतिरिक्त इसके पहले अवयव के पते के साथ सरणी का प्रतिनिधित्व करने के निर्णय की कलाकृति है। चूँकि उस काल्पनिक अवयव का पता मेमोरी में किसी अन्य आइटम का पता हो सकता है जो सरणी से संबंधित नहीं है।

सतही रूप पर, काल्पनिक अवयव बहुआयामी सरणियों के लिए अच्छी तरह से स्केल नहीं करता है। शून्य से बहुआयामी सरणियों को अनुक्रमित करने से रैखिक पता स्थान में सहज (सन्निहित) रूपांतरण होता है (एक सूचकांक को दूसरे के पश्चात व्यवस्थित रूप से बदलना) इससे अनुक्रमणित करने की तुलना में सरल दिखता है। उदाहरण के लिए, त्रि-आयामी सरणी को मैप करते समय A[P][N][M] रैखिक सरणी के लिए L[M⋅N⋅P], दोनों के साथ M ⋅ N ⋅ P अवयव , सूचकांक r विशिष्ट अवयव तक पहुंचने के लिए रैखिक सरणी में L[r] = A[z][y][x] शून्य-आधारित अनुक्रमण में, अर्थात [0 ≤ x < P], [0 ≤ y < N], [0 ≤ z < M], और [0 ≤ r < M ⋅ N ⋅ P], द्वारा गणना की जाती है

सभी सरणियों को 1-आधारित सूचकांकों के साथ व्यवस्थित करना ([1 ≤ x′P], [1 ≤ y′N], [1 ≤ z′M], [1 ≤ r′M ⋅ N ⋅ P]), और अवयव की समान व्यवस्था मानकर देता है

उसी अवयव तक पहुँचने के लिए, जो अवश्य ही अधिक सम्मिश्र दिखता है। जो पूर्ण रूप से , r′ = r + 1, तब से [z = z′ – 1], [y = y′ – 1], और [x = x′ – 1]. सरल और दैनिक जिंदगी का उदाहरण स्थितीय संकेतन है, जिसे शून्य के आविष्कार ने संभव बनाया। स्थितीय संकेतन में, दहाई, सैकड़ा, हज़ार और अन्य सभी अंक शून्य से प्रारंभ होते हैं, केवल इकाइयाँ से प्रारंभ होती हैं।[12]

  • शून्य-आधारित सूचकांक
    x
    y
    0 1 2 .. .. 8 9
    0 00 01 02 08 09
    1 10 11 12 18 19
    2 20 21 22 28 29
    ..
    ..
    8 80 81 82 88 89
    9 90 91 92 98 99
    तालिका सामग्री सूचकांक r का प्रतिनिधित्व करती है।
  • एक आधारित सूचकांक
    x'
    y'
    1 2 3 .. .. 9 10
    1 01 02 03 09 10
    2 11 12 13 19 20
    3 21 22 23 29 30
    ..
    ..
    9 81 82 83 89 90
    10 91 92 93 99 100
    तालिका सामग्री सूचकांक r′ का प्रतिनिधित्व करती है।

यह स्थिति शब्दावली में कुछ अव्यवस्था उत्पन्न कर सकती है। शून्य-आधारित अनुक्रमण योजना में, पहला अवयव अवयव संख्या शून्य है; इसी प्रकार बारहवाँ अवयव अवयव क्रमांक ग्यारह है। इसलिए, क्रमिक संख्याओं से लेकर क्रमांकित वस्तुओं की मात्रा तक सादृश्य दिखाई देता है; का उच्चतम सूचकांक n वस्तुएं होंगी n − 1, और यह nवाँ संदर्भित करता है अवयव . इस कारण से, अव्यवस्था से बचने के प्रयास में, पहले अवयव को कभी-कभी सरणी डेटा संरचना अवयव के रूप में संदर्भित किया जाता है।

विज्ञान

गणित में, संख्याओं या बहुपदों के अनेक अनुक्रमों को गैर-ऋणात्मक पूर्णांकों द्वारा अनुक्रमित किया जाता है, उदाहरण के लिए, बर्नौली संख्याएं और बेल संख्याएं है ।

यांत्रिकी और सांख्यिकी दोनों में, शून्यवें क्षण (गणित) को परिभाषित किया गया है, जो भौतिक घनत्व के स्थिति में कुल द्रव्यमान या संभाव्यता वितरण के लिए कुल संभाव्यता अथार्त एकका प्रतिनिधित्व करता है

ऊष्मागतिकी का शून्यवाँ नियम पहले, दूसरे और तीसरे नियम के पश्चात तैयार किया गया था, किंतु इसे अधिक मौलिक माना गया, इसलिए इसका नाम रखा गया था।

जीव विज्ञान में, किसी जीव को शून्य-क्रम आशय वाला कहा जाता है यदि वह किसी भी चीज़ का कोई आशय नहीं दिखाता है। इसमें ऐसी स्थिति सम्मिलित होगी जहां जीव के आनुवंशिक रूप से पूर्व निर्धारित फेनोटाइप के परिणामस्वरूप स्वयं को फिटनेस लाभ होता है, क्योंकि इसका अपने जीन को व्यक्त करने का आशय नहीं था।[13] समान अर्थ में, कंप्यूटर को इस परिप्रेक्ष्य से शून्य-क्रम जानबूझकर इकाई माना जा सकता है, क्योंकि यह अपने द्वारा चलाए जाने वाले कार्यक्रमों के कोड को व्यक्त करने का आशय नहीं रखता है।[14]

जैविक या चिकित्सा प्रयोगों में, किसी भी प्रयोगात्मक समय बीतने से पहले किए गए प्रारंभिक माप को प्रयोग के 0 दिन कहा जाता है।

जीनोमिक्स में, जीनोम निर्देशांक के लिए 0-आधारित और 1-आधारित दोनों प्रणालियों का उपयोग किया जाता है।

रोगी शून्य (या सूचकांक स्थिति) महामारी विज्ञान जांच के नमूने (सांख्यिकी) में प्रारंभिक रोगी है।

अन्य फ़ील्ड

व्यापक रूप से उपयोग किए जाने वाले जॉर्जियाई कैलेंडर या उसके पूर्ववर्ती जूलियन कैलेंडर में वर्ष शून्य उपस्थित नहीं है। उन प्रणालियों के तहत, वर्ष 1 बीसी के पश्चात एडी 1 आता है। चूँकि खगोलीय वर्ष क्रमांकन में (जहाँ यह जूलियन वर्ष 1 बीसी के साथ मेल खाता है) और आईएसओ 8601 या आईएसओ 8601:2004 (जहाँ यह मेल खाता है) में वर्ष शून्य है ग्रेगोरियन वर्ष 1 ईसा पूर्व), साथ ही सभी बौद्ध कैलेंडर और हिंदू कैलेंडर में है।

अनेक देशों में, इमारतों में स्टोरी या यूरोपीय योजना 2 को पहली मंजिल के अतिरिक्त मंजिल संख्या 0 के रूप में माना जाता है, नामकरण परंपरा समान्यत: संयुक्त राज्य अमेरिका में पाई जाती है। यह ऋणात्मक संख्याओं से चिह्नित भूमिगत फर्शों के साथ सुसंगत समूह बनाता है।

जबकि 0 का क्रमसूचक अधिकतर गणित, भौतिकी और कंप्यूटर विज्ञान से सीधे जुड़े समुदायों में उपयोग किया जाता है, मौलिक संगीत में भी इसके उदाहरण हैं। संगीतकार एंटोन ब्रुकनर ने डी माइनर में अपनी प्रारंभिक सिम्फनी को अपने कार्यों के कैनन में सम्मिलित करने के योग्य नहीं माना जाता है, और उन्होंने लिखा गिल्ट निक्ट (गिनती नहीं है) स्कोर पर और क्रॉसबार के साथ सर्कल, इसका अर्थ अमान्य है। किंतु मरणोपरांत, इस काम को डी माइनर में सिम्फनी नंबर 0 (ब्रुकनर) सिम्फनी नंबर 0 के रूप में जाना जाने लगा, यथार्त यह वास्तव में c माइनर में सिम्फनी नंबर 1 (ब्रुकनर) सिम्फनी नंबर 1 के पश्चात लिखा गया था। ब्रुकनर के एफ माइनर में इससे भी पहले की सिम्फनी है, जिसे कभी-कभी सिम्फनी नंबर 00 (ब्रुकनर) नंबर भी कहा जाता है। 00. रूसी संगीतकार अल्फ्रेड श्नीट्के ने सिम्फनी नंबर 0 (श्निटके) सिम्फनी नंबर 0 भी लिखा था।

ऑक्सफ़ोर्ड और कैम्ब्रिज सहित कुछ विश्वविद्यालयों में, सप्ताह 0 या कभी-कभी नौवां सप्ताह शब्द में व्याख्यान के पहले सप्ताह से पहले के सप्ताह को संदर्भित करता है। ऑस्ट्रेलिया में, कुछ विश्वविद्यालय इसे ओ सप्ताह के रूप में संदर्भित करते हैं, जो ओरिएंटेशन सप्ताह पर वाक्य के रूप में कार्य करता है। इसके समानांतर, स्वीडन में विश्वविद्यालय शिक्षा में परिचयात्मक सप्ताह समान्यता: नोलनिंग (शून्य करना) कहा जाता है।

संयुक्त राज्य वायु सेना प्रत्येक बुधवार को मूलभूत प्रशिक्षण प्रारंभ करती है, और पहला सप्ताह (आठ में से) अगले रविवार से प्रारंभ माना जाता है। उस रविवार से पहले के चार दिनों को अधिकांशतः शून्य सप्ताह कहा जाता है।

24 घंटे की घड़ियाँ और अंतर्राष्ट्रीय मानक आईएसओ 8601 दिन के पहले (शून्य) घंटे को दर्शाने के लिए 0 का उपयोग करते हैं, जो घंटे के पहले (शून्य) मिनट और मिनट के पहले (शून्य) सेकंड को दर्शाने के लिए 0 का उपयोग करने के अनुरूप है। . इसके अतिरिक्त जापान में दिनांक और समय नोटेशन में उपयोग की जाने वाली 12-घंटे की घड़ियाँ, मध्यरात्रि और दोपहर के तुरंत पश्चात के घंटे को दर्शाने के लिए 0 का उपयोग करती हैं, जबकि अन्यत्र 12 का उपयोग किया जाता है, अव्यवस्था से बचने के लिए 12-घंटे की घड़ी या पहर और आधी रात को अस्पष्ट चाहे सुबह 12 बजे और दोपहर 12 बजे दोपहर या आधी रात का प्रतिनिधित्व करें।

लंदन किंग्स क्रॉस रेलवे स्टेशन|लंदन में किंग्स क्रॉस स्टेशन, हेमार्केट रेलवे स्टेशन, और अपसला, योनागो, स्टॉकपोर्ट रेलवे स्टेशन और कार्डिफ़ सेंट्रल रेलवे स्टेशन के स्टेशनों पर प्लेटफ़ॉर्म 0 है।

जैप कॉमिक्स के पहले अंक के लिए रॉबर्ट क्रम्ब के चित्र चोरी हो गए थे, इसलिए उन्होंने बिल्कुल नया अंक बनाया, जिसे अंक 1 के रूप में प्रकाशित किया गया था। पश्चात में उन्होंने चुराई गई कलाकृति की अपनी फोटोकॉपी को फिर से अंकित किया और इसे अंक 0 के रूप में प्रकाशित किया था।

बेल्जियम में ब्रुसेल्स रिंग रोड का क्रमांक R0 है। इसे एंटवर्प के आसपास रिंग रोड के पश्चात बनाया गया था, किंतु ब्रुसेल्स (राजधानी शहर होने के नाते) को अधिक मूलभूत संख्या के योग्य माना गया था। इसी प्रकार हंगरी में बुडापेस्ट के चारों ओर (अधूरे) कक्षीय मोटरमार्ग को M0 मोटरमार्ग कहा जाता है।

शून्य का उपयोग कभी-कभी मकान नंबरिंग के लिए किया जाता है, खासकर उन योजनाओं में जहां सड़क के तरफ सम संख्याएं होती हैं और दूसरी तरफ विषम संख्याएं होती हैं। स्थिति हार्वर्ड स्क्वायर पर क्राइस्ट चर्च (कैम्ब्रिज, मैसाचु समूह) का है, जिसका पता 0 गार्डन स्ट्रीट है।

पूर्व में फार्मूला वन में, जब कोई वर्तमान विश्व चैंपियन अगले सीज़न में प्रतिस्पर्धा नहीं करता था, तो नंबर 1 किसी भी ड्राइवर को नहीं सौंपा जाता था, किंतु विश्व चैंपियन टीम का ड्राइवर नंबर 0 रखता था, और दूसरा, नंबर 2 रखता था। यह 1993 और 1994 दोनों में ऐसा हुआ, जिसमें डेमन हिल दोनों सीज़न में नंबर 0 पर था, क्योंकि डिफेंडिंग चैंपियन निगेल मैन्सेल ने 1992 के पश्चात पद छोड़ दिया और डिफेंडिंग चैंपियन अलाइन प्रोस्ट ने 1993 के पश्चात पद छोड़ दिया। चूँकि 2014 में यह श्रृंखला करियर-लंबे वैयक्तिकृत ड्राइवरों के पास चली गई संख्याएँ, टीम-आवंटित संख्याओं के अतिरिक्त गत चैंपियन के पास अभी भी संख्या 1 रखने का विकल्प है। इसलिए इस परिदृश्य में अब 0 का उपयोग नहीं किया जाता है। यह स्पष्ट नहीं है कि क्या यह ड्राइवर के चुने हुए नंबर के रूप में उपलब्ध है, या क्या उन्हें 2 और 99 के बीच होना चाहिए, किंतु इस प्रणाली के तहत आज तक इसका उपयोग नहीं किया गया है।

कुछ टीम खेल 0 को खिलाड़ी की वर्दी संख्या के रूप में चुनने की अनुमति देते हैं (1-99 की विशिष्ट सीमा के अतिरिक्त)। एनएफएल ने 2023 से इसकी अनुमति देने के लिए मतदान किया जाता है।

किसी श्रृंखला के कालानुक्रमिक प्रीक्वल को 0 के रूप में क्रमांकित किया जा सकता है, जैसे रिंग 0: बर्थडे या ज़ोर्क ज़ीरो है।

SBB-CFF-FFS Re 460|Re 460 000 से 118।

स्विस फेडरल रेलवे में रोलिंग स्टॉक की कुछ श्रेणियों की संख्या शून्य से लेकर 460 000 से 118 तक है।

कल्पना के क्षेत्र में, इसहाक असिमोव ने अंततः अपने रोबोटिक्स के तीन नियमों में ज़ीरोथ नियम जोड़ा जाता है, जिससे वे अनिवार्य रूप से चार नियम बन गए।

मानक रूलेट व्हील में संख्या 0 के साथ-साथ 1-36 भी होती है। यह हरे रंग में दिखाई देता है, इसलिए बेटिंग के प्रयोजनों के लिए इसे न तो "लाल" और न ही "काला" नंबर के रूप में वर्गीकृत किया गया है। कार्ड गेम यूनो (कार्ड गेम) में प्रत्येक रंगीन सूट के अंदर विशेष कार्ड के साथ 0 से 9 तक चलने वाले नंबर कार्ड होते हैं।

यह भी देखें

संदर्भ

उद्धरण

  1. M. Seed, Graham (1965). कंप्यूटर ग्राफ़िक्स में अनुप्रयोगों के साथ C++ में ऑब्जेक्ट-ओरिएंटेड प्रोग्रामिंग का परिचय (2nd ed.). British Library: Springer. p. 391. ISBN 1852334509. Retrieved 11 February 2020.
  2. Steve Eddins and Loren Shure. "MATLAB में मैट्रिक्स अनुक्रमण". Retrieved 23 February 2021.
  3. "How to : Get Elements of Lists". Wolfram. Retrieved 23 February 2021.
  4. "अनुक्रमण सारणी, मैट्रिक्स और वेक्टर". Maplesoft. Retrieved 23 February 2021.
  5. Martin Richards (1967). बीसीपीएल संदर्भ मैनुअल (PDF). Massachusetts Institute of Technology. p. 11.
  6. 6.0 6.1 6.2 Mike Hoye. "Citation Needed". Retrieved 28 January 2014.
  7. Tom Van Vleck (1995). "The IBM 7094 and CTSS". Retrieved 28 January 2014.
  8. 8.0 8.1 Dijkstra, Edsger Wybe (May 2, 2008). "Why numbering should start at zero (EWD 831)". E. W. Dijkstra Archive. University of Texas at Austin. Retrieved 2011-03-16.
  9. Brown, Jim (December 1978). "सूचकांक उत्पत्ति 0 के बचाव में". ACM SIGAPL APL Quote Quad. 9 (2): 7. doi:10.1145/586050.586053. S2CID 40187000.
  10. Hui, Roger. "Is Index Origin 0 a Hindrance?". jsoftware.com. JSoftware. Retrieved 19 January 2015.
  11. Programming Microsoft® Visual C# 2005 by Donis Marshall.
  12. Sal Khan. Math 1st Grade / Place Value / Number grid. Khan Academy. Retrieved July 28, 2018. Youtube title: Number grid / Counting / Early Math / Khan Academy.
  13. Byrne, Richard W. "The Thinking Ape: Evolutionary Origins of Intelligence". Retrieved 2010-05-18.
  14. Dunbar, Robin. "The Human Story – A new history of mankind's Evolution". Retrieved 2010-05-18.


स्रोत

श्रेणी:क्रमिक संख्याएँ श्रेणी:0 (संख्या)