सकारात्मक वास्तविक संख्याएँ

From Vigyanwiki

गणित में, धनात्मक वास्तविक संख्याओं का समुच्चय, उन वास्तविक संख्याओं का उपसमुच्चय है जो शून्य से बड़ी हैं। गैर-ऋणात्मक वास्तविक संख्याएँ, शून्य भी सम्मिलित है। यद्यपि प्रतीक और इनमें से किसी एक के लिए अस्पष्ट रूप से उपयोग किया जाता है, संकेतन या के लिए और या के लिए इसे भी व्यापक रूप से नियोजित किया गया है, यह बीजगणित में एक तारक के साथ शून्य तत्व के बहिष्कार को दर्शाने के अभ्यास के साथ जुड़ा हुआ है, और इसे अधिकांश अभ्यास करने वाले गणितज्ञों के लिए समझा जाना चाहिए। [1]

एक जटिल तल में, धनात्मक वास्तविक अक्ष के साथ पहचाना जाता है, और सामान्यतः इसे क्षैतिज किरण (ज्यामिति) के रूप में खींचा जाता है। इस किरण का उपयोग ध्रुवीय रूप में संदर्भ के रूप में किया जाता है। वास्तविक धनात्मक अक्ष सम्मिश्र संख्याओं से तर्क के साथ (जटिल विश्लेषण) मेल खाता है।


गुण

सम्मुच्चय जोड़, गुणा और भाग के अंतर्गत संकीर्ण (गणित) है। यह वास्तविक रेखा से एक सांस्थिति प्राप्त करता है और इस प्रकार, इसमें एक गुणक सांस्थितिक समूह या एक योगात्मक सांस्थितिक सेमीग्रुप की संरचना होती है।

किसी दिए गए धनात्मक वास्तविक संख्या के लिए क्रम इसकी अभिन्न शक्तियों के तीन अलग-अलग परिणाम हैं: जब सीमा (गणित) शून्य है; जब क्रम स्थिर है; और जब अनुक्रम असीमित सम्मुच्चय है।

और गुणक व्युत्क्रम फलन अंतरालों का आदान-प्रदान करता है। फ़्लोर फलन, और सॉटूथ फलन, किसी तत्व का वर्णन करने के लिए एक सतत अंश के रूप में उपयोग किया गया है जो कि आधिक्य के पारस्परिक होने के बाद फ़्लोर फलन से प्राप्त पूर्णांकों का एक क्रम है। परिमेय x के लिए, अनुक्रम x की सटीक भिन्नात्मक अभिव्यक्ति के साथ समाप्त होता है, और द्विघात अपरिमेय x के लिए, अनुक्रम एक आवधिक निरंतर भिन्न बन जाता है।

क्रमबद्ध किया गया सम्मुच्चय कुल अनुक्रम बनता है लेकिन not एक सुव्यवस्थित सम्मुच्चय है। दोगुनी अनंत ज्यामितीय प्रगति जहाँ एक पूर्णांक है जो पूरी तरह से निहित है और पहुंच के लिए इसे खंडित करने का कार्य करता है। एक अनुपात मापक्रम बनाता है, जो माप का उच्चतम स्तर है। तत्वों को वैज्ञानिक संकेतन में इस प्रकार लिखा जा सकता है कि जहाँ और दोगुनी अनंत प्रगति में पूर्णांक है, और इसे दशक (लॉग स्केल) कहा जाता है। भौतिक परिमाणों के अध्ययन में, दशकों का क्रम अनुपात मापक्रम में निहित क्रमिक मापक्रम का संदर्भ देते हुए धनात्मक और ऋणात्मक क्रमसूचक प्रदान करता है।

पारम्परिक समूह के अध्ययन में, प्रत्येक के लिए निर्धारक से एक मानचित्र देता है वास्तविक से वास्तविक संख्याओं पर आव्यूह: है। व्युत्क्रमणीय आव्यूहों तक सीमित करने से सामान्य रैखिक समूह से गैर-शून्य वास्तविक संख्याओं तक का मानचित्र मिलता है। धनात्मक निर्धारक वाले आव्यूहों तक सीमित करने से मानचित्र मिलता है; सामान्य उपसमूह द्वारा छवि को भागफल समूह के रूप में व्याख्या करना जिसे विशेष रैखिक समूह कहा जाता है, धनात्मक वास्तविकताओं को लाइ समूह के रूप में व्यक्त करता है।

अनुपात मापक्रम

माप के स्तर में अनुपात मापक्रम सर्वोत्तम विवरण प्रदान करता है। अंश और हर बराबर होने पर विभाजन (गणित) फलन एक का मान लेता है। अन्य अनुपातों की तुलना लघुगणक द्वारा की जाती है, प्रायः आधार 10 का उपयोग करते हुए सामान्य लघुगणक होता है। फिर अनुपात मापक्रम को माप की विभिन्न इकाइयों में व्यक्त विज्ञान और प्रौद्योगिकी में उपयोग किए जाने वाले परिमाण के आदेशों के अनुसार खंडित किया जाता है।

अनुपात मापक्रम की प्रारंभिक अभिव्यक्ति को कनिडस के यूडोक्सस द्वारा ज्यामितीय रूप से व्यक्त किया गया था: यह ... ज्यामितीय भाषा में था कि यूडोक्सस के आनुपात (गणित) का सामान्य सिद्धांत विकसित किया गया था, जो धनात्मक वास्तविक संख्याओं के सिद्धांत के बराबर है। [2]


लघुगणकीय माप

अगर एक अंतराल (गणित) है तो फिर, के कुछ उपसमूहों पर एक माप (गणित) निर्धारित करता है। लघुगणक के अंतर्गत वास्तविक संख्याओं पर सामान्य लेब्सेग माप के पुलबैक के अनुरूप: यह लघुगणकीय मापक्रम पर लंबाई है। वास्तव में, यह गुणन के संबंध में एक अपरिवर्तनीय माप A द्वारा है। जिस प्रकार जोड़ के अंतर्गत लेबेस्ग माप अपरिवर्तनीय है। सांस्थितिक समूहों के संदर्भ में, यह माप हार माप का एक उदाहरण है।

इस माप की उपयोगिता लघुगणक मापक्रम के अन्य अनुप्रयोगों के बीच, डेसिबल में तारकीय परिमाण और शोर के स्तर का वर्णन करने के लिए इसके उपयोग में दिखाई गई है। अंतरराष्ट्रीय मानकों आईएसओ 80000-3 के प्रयोजनों के लिए, आयामहीन मात्राओं को स्तर (लघुगणकीय मात्रा) के रूप में जाना जाता है।

अनुप्रयोग

गैर-ऋणात्मक वास्तविकताएं गणित में मापीय (गणित), नॉर्म (गणित) और माप (गणित) के लिए एक फलन की छवि के रूप में कार्य करती हैं।

0 सहित, सम्मुच्चय इसकी एक अंशपरिष्कृत संरचना है (0 योगात्मक पहचान है), जिसे संभाव्यता सेमीरिंग के रूप में जाना जाता है; लघुगणक लेने (एक लघुगणकीय इकाई देने वाले आधार के विकल्प के साथ) लॉग सेमीरिंग के साथ एक समरूपता देता है (0 के अनुरूप) ), और इसकी इकाइयाँ (परिमित संख्याओं को छोड़कर)। ) धनात्मक वास्तविक संख्याओं के अनुरूप है।

वर्ग

मान लीजिये कार्तीय तल का पहला चतुर्थांश। चतुर्भुज और मानक अतिपरवलय को रेखा द्वारा ही चार भागों में विभाजित किया गया है

एक त्रिशूल बनाता है जबकि केंद्रीय बिंदु है। यह दो एक-पैरामीटर समूहों का पहचान तत्व है जो वहां प्रतिच्छेद करते हैं:

तब से एक समूह है (गणित), समूहों का प्रत्यक्ष उत्पाद है। Q में एक-मापदण्ड उपसमूह एल और एच उत्पाद में गतिविधि को प्रोफाइल करते हैं, और समूह कार्रवाई के प्रकारों का एक समाधान है।

व्यवसाय और विज्ञान के क्षेत्र अनुपातों में प्रचुर मात्रा में हैं, और अनुपातों में कोई भी परिवर्तन ध्यान आकर्षित करता है। अध्ययन Q में अतिपरवलयिक निर्देशांक को संदर्भित करता है। L अक्ष के विरुद्ध गति ज्यामितीय माध्य में परिवर्तन का संकेत देती है। जबकि H के अनुदिश परिवर्तन एक नए अतिपरवलयिक कोण को इंगित करता है।

यह भी देखें

संदर्भ

  1. "nLab में सकारात्मक संख्या". ncatlab.org. Retrieved 2020-08-11.
  2. E. J. Dijksterhuis (1961) Mechanization of the World-Picture, page 51, via Internet Archive


ग्रन्थसूची