सम्मिश्र मैनिफोल्ड
अवकल ज्यामिति और समष्टि ज्यामिति में, सम्मिश्र मैनिफोल्ड विवृत इकाई डिस्क के लिए चार्ट (टोपोलॉजी) के एटलस (टोपोलॉजी) के साथ मैनिफोल्ड होता है।[1] जिसमे , जैसे कि संक्रमण मानचित्र आप्रतिबिम्बी फलन होते हैं।
सम्मिश्र मैनिफोल्ड शब्द का प्रयोग होता है उपरोक्त अर्थ में लगभग समष्टि विविधता (जिसे अंकीत सम्मिश्र मैनिफोल्ड के रूप में निर्दिष्ट किया जा सकता है) और लगभग सम्मिश्र मैनिफोल्ड के अर्थ में किया जाता है।
समष्टि संरचना के निहितार्थ
चूँकि आप्रतिबिम्बी फलन सुचारु फलनों की समानता में बहुत अधिक कठोर होते हैं, स्मूथ और सम्मिश्र मैनिफोल्ड के सिद्धांतों में बहुत अलग स्वाद होते हैं: कॉम्पैक्ट सम्मिश्र मैनिफोल्ड अलग-अलग मैनिफोल्ड की समानता में बीजगणितीय विविधता के बहुत निकट होते हैं।
उदाहरण के लिए, व्हिटनी एम्बेडिंग प्रमेय हमें बताता है कि प्रत्येक स्मूथ N-आयामी मैनिफोल्ड को 'R2n' की स्मूथ सबमैनिफोल्ड के रूप में एंबेडिंग सम्मिलित किया जा सकता है। जबकि किसी सम्मिश्र मैनिफोल्ड के लिए ' Cn ' में आप्रतिबिम्बी एम्बेडिंग होना दुर्लभ होता है।. उदाहरण के लिए सम्मिश्र मैनिफोल्ड M से जुड़े किसी भी सघन समष्टि पर विचार करें: इस पर कोई भी आप्रतिबिम्बी फलन अधिकतम मापांक सिद्धांत द्वारा स्थिर किया गया होता है। अब यदि हमारे पास ' Cn' में M का आप्रतिबिम्बी एम्बेडिंग होता है, तो 'Cn के समन्वय कार्य M पर गैर-स्थिर आप्रतिबिम्बी फ़ंक्शंस तक सीमित होगा, जो संपीड़नता का खंडन करता है, सिवाय इस स्थितियों के कि M सिर्फ बिंदु है। सम्मिश्र मैनिफोल्ड जिन्हें 'Cn में एम्बेड किया जा सकता है को स्टीन मैनिफोल्ड कहा जाता है और यह मैनिफोल्ड्स का बहुत ही विशेष वर्ग बनाता है, उदाहरण के लिए, स्मूथ समष्टि एफ़िन बीजगणितीय किस्में होती है ।
सम्मिश्र मैनिफोल्ड्स का वर्गीकरण भिन्न-भिन्न मैनिफोल्ड्स की समानता में कहीं अधिक सूक्ष्म है। उदाहरण के लिए, जबकि चार के अतिरिक्त अन्य आयामों में, दिए गए टोपोलॉजिकल मैनिफोल्ड में अधिकतम सीमित रूप से कई स्मूथ संरचनाएं होती हैं, समष्टि संरचना का समर्थन करने वाला टोपोलॉजिकल मैनिफोल्ड अनगिनत समष्टि संरचनाओं का समर्थन कर सकता है और अधिकांशतः करता है। रीमैन सतह, समष्टि संरचना से सुसज्जित दो आयामी मैनिफोल्ड्स, जिन्हें टोपोलॉजिकल रूप से जीनस (गणित) द्वारा वर्गीकृत किया गया है, इस घटना का महत्वपूर्ण उदाहरण हैं। किसी दी गई उन्मुख सतह पर समष्टि संरचनाओं का सेट, मॉड्यूलो द्विप्रतिद्वन्द्वी तुल्यता, स्वयं समष्टि बीजगणितीय विविधता बनाता है जिसे मॉड्यूलि समष्टि कहा जाता है, जिसकी संरचना सक्रिय अनुसंधान का क्षेत्र बनी हुई है।
चूँकि चार्ट के बीच संक्रमण मानचित्र द्विप्रतिबिम्बी होते हैं, सम्मिश्र मैनिफोल्ड, विशेष रूप से, चिकने और विहित रूप से उन्मुख होते हैं (सिर्फ उन्मुख नहीं: 'Cn के लिए जीव-रूपीय मानचित्र (का उपसमूह) अभिविन्यास देता है, क्योंकि जीव-रूपीय मानचित्र अभिविन्यास-संरक्षित होते हैं)।
सम्मिश्र मैनिफोल्ड्स के उदाहरण
- रीमैन सतहें।
- कैलाबी-यॉ कई गुना।
- दो सम्मिश्र मैनिफोल्ड्स का कार्टेशियन उत्पाद।
- आप्रतिबिम्बी मानचित्र के किसी भी गैर-महत्वपूर्ण मूल्य की व्युत्क्रम छवि।
स्मूथ समष्टि बीजगणितीय किस्में
स्मूथ समष्टि बीजगणितीय किस्में समष्टि विविधताएं हैं, जिनमें सम्मलित हैं:
- समष्टि सदिश समष्टि।
- समष्टि प्रक्षेप्य समष्टि,[2] Pn('Cn).
- समष्टि ग्रासमैनियन।
- समष्टि लाई समूह जैसे GL(n, C) or Sp(n, C)।
इसी तरह, इनके चतुर्भुज एनालॉग भी सम्मिश्र मैनिफोल्ड हैं।
संबद्ध
सरलता से जुड़े हुए 1-आयामी सम्मिश्र मैनिफोल्ड या तो समरूपी हैं:
- Δ, C में इकाई डिस्क (गणित)।
- C, समष्टि तल
- Ĉ, रीमैन क्षेत्र
ध्यान दें कि इनके बीच कुछ समावेशन भी हैं Δ ⊆ C ⊆ Ĉ, किन्तु दूसरी दिशा में कोई गैर-स्थिर मानचित्र नहीं हैं, द्वारा लिउविले का प्रमेय (समष्टि विश्लेषण) लिउविले का प्रमेय।
डिस्क बनाम समष्टि बनाम पॉलीडिस्क
निम्नलिखित समष्टि सम्मिश्र मैनिफोल्ड के रूप में भिन्न हैं, जो सम्मिश्र मैनिफोल्ड के अधिक कठोर ज्यामितीय चरित्र को प्रदर्शित करते हैं (चिकने मैनिफोल्ड की समानता में):
- समष्टि समष्टि .
- यूनिट डिस्क या विवृत गेंद
लगभग समष्टि संरचनाएँ
वास्तविक 2n-मैनिफोल्ड पर लगभग समष्टि संरचना GL(n, 'C')-संरचना है (G-संरचनाओं के अर्थ में) - अर्थात, स्पर्शरेखा बंडल रैखिक समष्टि संरचना से सुसज्जित है।
सीधे तौर पर, यह स्पर्शरेखा बंडल का अंतःसमरूपिक है जिसका वर्ग −I है; यह एंडोमोर्फिज्म काल्पनिक संख्या i द्वारा गुणन के अनुरूप है, और इसे J (पहचान मैट्रिक्स I के साथ भ्रम से बचने के लिए) दर्शाया गया है। लगभग सम्मिश्र मैनिफोल्ड आवश्यक रूप से सम-आयामी होता है।
लगभग समष्टि संरचना समष्टि संरचना से कमजोर होती है: किसी भी सम्मिश्र मैनिफोल्ड में लगभग समष्टि संरचना होती है, किन्तु हर लगभग समष्टि संरचना समष्टि संरचना से नहीं आती है। ध्यान दें कि प्रत्येक सम-आयामी वास्तविक मैनिफोल्ड में समष्टिीय समन्वय चार्ट से समष्टिीय रूप से परिभाषित लगभग समष्टि संरचना होती है। सवाल यह है कि क्या इस लगभग समष्टि संरचना को विश्व स्तर पर परिभाषित किया जा सकता है। समष्टि संरचना से आने वाली लगभग समष्टि संरचना को फ्रोबेनियस_थियोरेम_(समरेखीय_प्रांगणिकी) कहा जाता है, और जब कोई लगभग समष्टि संरचना के विपरीत समष्टि संरचना को निर्दिष्ट करना चाहता है, तो वह पूर्णांकीय समष्टि संरचना कहता है। एकीकृत समष्टि संरचनाओं के लिए तथाकथित निजेनहुइस टेंसर लुप्त हो जाता है। इस टेंसर को सदिश फ़ील्ड, X, Y के जोड़े पर परिभाषित किया गया है
उदाहरण के लिए, 6-आयामी अति क्षेत्र S6 में प्राकृतिक लगभग समष्टि संरचना है जो इस तथ्य से उत्पन्न होती है कि यह ऑक्टोनियन के इकाई क्षेत्र में i का ऑर्थोगोनल पूरक है, किन्तु यह समष्टि संरचना नहीं है। (यह सवाल कि क्या इसकी संरचना समष्टि है, हेंज हॉफ के नाम पर होपफ समस्या के रूप में जाना जाता है।[3]) लगभग समष्टि संरचना का उपयोग करके हम आप्रतिबिम्बी मानचित्रों को समझ सकते हैं और मैनिफोल्ड पर आप्रतिबिम्बी निर्देशांक के अस्तित्व के बारे में पूछ सकते हैं। आप्रतिबिम्बी निर्देशांक का अस्तित्व यह कहने के बराबर है कि मैनिफोल्ड समष्टि है (चार्ट परिभाषा यही कहती है)।
समष्टि संख्याओं के साथ स्पर्शरेखा बंडल को टेंसर करने से हमें समष्टि स्पर्शरेखा बंडल मिलता है, जिस पर समष्टि संख्याओं से गुणा करना समझ में आता है (भले ही हमने वास्तविक मैनिफोल्ड के साथ प्रारंभ की हो)। लगभग समष्टि संरचना के eigenvalues ±i हैं और eigenspaces T0,1M द्वारा दर्शाए गए उप-बंडल बनाते हैं और T1,0M. न्यूलैंडर-निरेनबर्ग प्रमेय से पता चलता है कि लगभग समष्टि संरचना वास्तव में समष्टि संरचना होती है, जब ये सबबंडल अव्यवस्थित होते हैं, अर्थात , सदिश फ़ील्ड के लाई ब्रैकेट के अनुसार बंद होते हैं, और ऐसी लगभग समष्टि संरचना को फ्रोबेनियस_थियोरेम_(समरेखीय_प्रांगणिकी) कहा जाता है।
काहलर और कैलाबी-याउ मैनिफोल्ड्स
कोई सम्मिश्र मैनिफोल्ड्स के लिए रीमैनियन मीट्रिक के एनालॉग को परिभाषित कर सकता है, जिसे हर्मिटियन मीट्रिक कहा जाता है। रीमानियन मीट्रिक की तरह, हर्मिटियन मीट्रिक में स्पर्शरेखा बंडल पर सुचारु रूप से भिन्न, सकारात्मक निश्चित आंतरिक उत्पाद होता है, जो प्रत्येक बिंदु पर स्पर्शरेखा समष्टि पर समष्टि संरचना के संबंध में हर्मिटियन होता है। रीमैनियन स्थितियों की तरह, ऐसे मेट्रिक्स हमेशा किसी भी सम्मिश्र मैनिफोल्ड पर प्रचुर मात्रा में उपस्थित होते हैं। यदि ऐसे मीट्रिक का तिरछा सममित भाग संरेखित ज्यामिति है, अर्थात बंद और गैर-अपक्षयी, तो मीट्रिक को काहलर मैनिफोल्ड काहलर कहा जाता है। काहलर संरचनाओं को प्राप्त करना अधिक कठिन है और वे अधिक कठोर हैं।
काहलर मैनिफोल्ड के उदाहरणों में स्मूथ प्रक्षेप्य किस्में और सामान्यतः काहलर मैनिफोल्ड के किसी भी समष्टि सबमैनिफोल्ड सम्मलित हैं। हॉपफ मैनिफोल्ड सम्मिश्र मैनिफोल्ड्स के उदाहरण हैं जो काहलर नहीं हैं। का निर्माण करने के लिए, मूल को घटाकर समष्टि सदिश समष्टि लें और exp(n) से गुणा करके इस समष्टि पर पूर्णांकों के समूह की क्रिया पर विचार करें। भागफल सम्मिश्र मैनिफोल्ड है जिसका पहला बेटी नंबर है, इसलिए हॉज सिद्धांत के अनुसार, यह काहलर नहीं हो सकता है।
कैलाबी-यॉ मैनिफोल्ड को कॉम्पैक्ट रिक्की-फ्लैट मैनिफोल्ड के रूप में परिभाषित किया जा सकता है। रिक्की-फ्लैट काहलर मैनिफोल्ड या समकक्ष जिसका पहला चेर्न वर्ग लुप्त हो जाता है।
यह भी देखें
- समष्टि आयाम
- समष्टि विश्लेषणात्मक विविधता
- चतुर्धातुक मैनिफोल्ड
- वास्तविक-समष्टि कई गुना
फ़ुटनोट
- ↑ One must use the open unit disc in as the model space instead of because these are not isomorphic, unlike for real manifolds.
- ↑ This means that all complex projective spaces are orientable, in contrast to the real case
- ↑ Agricola, Ilka; Bazzoni, Giovanni; Goertsches, Oliver; Konstantis, Panagiotis; Rollenske, Sönke (2018). "हॉपफ समस्या के इतिहास पर". Differential Geometry and Its Applications. 57: 1–9. arXiv:1708.01068. doi:10.1016/j.difgeo.2017.10.014. S2CID 119297359.
संदर्भ
- Kodaira, Kunihiko (17 November 2004). Complex Manifolds and Deformation of Complex Structures. Classics in Mathematics. Springer. ISBN 3-540-22614-1.