सरफेस प्लास्मोन पोलरिटोन
सतह समतल पोलरिटोन (एसपीपी) विद्युत चुम्बकीय तरंगें हैं जो धातु- डाइलेक्ट्रिक या धातु-वायु इंटरफ़ेस के साथ यात्रा करती हैं, व्यावहारिक रूप से अवरक्त या दृश्यमान स्पेक्ट्रम-आवृत्ति में शब्द "सरफेस प्लास्मोन पोलरिटोन" बताता है कि तरंग में धातु में आवेश गति ("सतह प्लास्मोन") में आवेश गति और हवा में विद्युत चुम्बकीय तरंगें या डाइइलेक्ट्रिक ("पोलरिटोन") दोनों सम्मिलित हैं।[1]
वे प्रकार की सतह तरंग हैं, जो इंटरफ़ेस के साथ उसी तरह निर्देशित होती हैं जिस तरह प्रकाश को ऑप्टिकल फाइबर द्वारा निर्देशित किया जा सकता है। एसपीपी में ही आवृत्ति (फोटॉन) पर निर्वात में प्रकाश की तुलना में कम तरंग दैर्ध्य होता है।[2] इसलिए, एसपीपी में उच्च गति और स्थानीय क्षेत्र की तीव्रता हो सकती है।[2] इंटरफ़ेस के लंबवत, उनके पास उप तरंग दैर्ध्य-स्केल बंधक है। एसपीपी इंटरफ़ेस के साथ तब तक प्रचार करेगा जब तक कि इसकी ऊर्जा या तो धातु में अवशोषण या अन्य दिशाओं में प्रकीर्णन लिए खो जाती है (जैसे मुक्त स्थान में)।
एसपीपी का अनुप्रयोग विवर्तन सीमा से परे माइक्रोस्कोपी और फोटोलिथोग्राफी में उप तरंग दैर्ध्य ऑप्टिक्स को सक्षम बनाता है। यह प्रकाश की मौलिक संपत्ति के पहले स्थिर-अवस्था सूक्ष्म-यांत्रिक माप को भी सक्षम बनाता है: डाइलेक्ट्रिक माध्यम में फोटॉन की गति अन्य अनुप्रयोग फोटोनिक डेटा संचयन, प्रकाश जेनरेशन और बायो-फोटोनिक्स हैं।[2][3][4][5]
उत्साह
एसपीपी इलेक्ट्रॉनों और फोटॉन दोनों से उत्तेजित हो सकते हैं। इलेक्ट्रॉनों द्वारा उत्तेजना धातु के थोक में इलेक्ट्रॉनों को फायर करके बनाई जाती है।[6] जैसे ही इलेक्ट्रॉन बिखरते हैं, ऊर्जा थोक प्लाज्मा में स्थानांतरित हो जाती है। सतह के समानांतर प्रकीर्णन सदिश का घटक सतह प्लास्मोन पोलरिटोन के निर्माण में परिणत होता है।[7]
एसपीपी को उत्तेजित करने के लिए फोटॉन के लिए, दोनों की आवृत्ति और गति समान होनी चाहिए। चूंकि किसी दी गई आवृत्ति के लिए, फ्री-स्पेस फोटॉन की एसपीपी की तुलना में कम गति होती है क्योंकि दोनों के अलग-अलग फैलाव संबंध होते हैं (नीचे देखें)। यह संवेग बेमेल कारण है कि हवा से मुक्त-स्थान फोटॉन सीधे एसपीपी से जोड़ा नहीं जा सकता है। इसी कारण से, चिकनी धातु की सतह पर एसपीपी डाइलेक्ट्रिक (यदि डाइलेक्ट्रिक समान है) में फ्री-स्पेस फोटॉन के रूप में ऊर्जा का उत्सर्जन नहीं कर सकता है। यह असंगति संचरण की कमी के अनुरूप है जो कुल आंतरिक प्रतिबिंब के समय होती है।
फिर भी, एसपीपी में फोटॉन के युग्मन को कपलिंग माध्यम जैसे प्रिज्म (ऑप्टिक्स) या फोटॉन और एसपीपी तरंग सदिश से मिलान करने के लिए ग्राटिंग (और इस प्रकार उनके संवेग से मेल खाते हैं) का उपयोग करके प्राप्त किया जा सकता है। प्रिज्म को क्रेट्चमान कॉन्फ़िगरेशन में पतली धातु की फिल्म के विरुद या ओटो कॉन्फ़िगरेशन (चित्रा 1) में धातु की सतह के बहुत समीप रखा जा सकता है। ग्राटिंग अवधि (चित्र 2) से संबंधित राशि द्वारा समानांतर तरंग सदिश घटक को बढ़ाकर ग्राटिंग युग्मक तरंग सदिश से मेल खाता है। यह विधि, जबकि कम बार उपयोग की जाती है, सतह की सतह खुरदरापन के प्रभाव की सैद्धांतिक समझ के लिए महत्वपूर्ण है। इसके अतिरिक्त सरल पृथक सतह दोष जैसे कि खांचे, भट्ठा या अन्यथा समतल सतह पर गलियारा तंत्र प्रदान करता है जिसके द्वारा मुक्त-स्थान विकिरण और एसपी ऊर्जा का आदान-प्रदान और इसलिए युगल कर सकते है ।
क्षेत्र और फैलाव संबंध
एसपीपी के गुण मैक्सवेल के समीकरणों से प्राप्त किए जा सकते हैं। हम समन्वय प्रणाली का उपयोग करते हैं जहां धातु- डाइलेक्ट्रिक इंटरफ़ेस स्थान है, जिसमें धातु और डाइलेक्ट्रिक है। स्थिति और समय t के फलन के रूप में विद्युत क्षेत्र और चुंबकीय क्षेत्र इस प्रकार हैं:[8][9]
जहाँ
- n पदार्थ को इंगित करता है (1 धातु के लिए या 2 पर डाइलेक्ट्रिक के लिए );
- ω तरंगों की कोणीय आवृत्ति है;
- धातु के लिए +, परावैद्युत के लिए - है।
- विद्युत क्षेत्र सदिश के एक्स- और जेड-घटक हैं, चुंबकीय क्षेत्र सदिश का y-घटक है, और अन्य घटक () शून्य हैं। दूसरे शब्दों में, एसपीपी सदैव अनुप्रस्थ विधा टीएम (अनुप्रस्थ चुंबकीय) तरंगें होती हैं।
- k तरंग सदिश है; यह जटिल सदिश है, और दोषरहित एसपीपी के स्थितियों में, यह पता चला है कि x घटक वास्तविक हैं और z घटक काल्पनिक हैं - तरंग x दिशा के साथ दोलन करती है और z दिशा के साथ घातीय रूप से क्षय होती है। दोनों पदार्थो के लिए सदैव समान होता है, किन्तु से सामान्यत: से भिन्न है
- , जहाँ पदार्थ 1 (धातु) की पारगम्यता है, और c प्रकाश की गति है। जैसा कि नीचे चर्चा की गई है, इसे भी लिखा जा सकता है.
इस रूप की तरंग मैक्सवेल के समीकरणों को केवल इस नियम पर संतुष्ट करती है कि निम्नलिखित समीकरण भी प्रयुक्त होते हैं:
और
इन दोनों समीकरणों को हल करने पर सतह पर संचरित होने वाली तरंग के लिए फैलाव संबंध है

मुक्त इलेक्ट्रॉन मॉडल में या इलेक्ट्रॉन गैस का डाइलेक्ट्रिक कार्य जो क्षीणन की उपेक्षा करता है, धात्विक डाइलेक्ट्रिक कार्य है[10]
जहां एसआई इकाइयों में बल्क प्लाज्मा आवृत्ति है
जहाँ n इलेक्ट्रॉन घनत्व है, e इलेक्ट्रॉन का इलेक्ट्रॉन आवेश है, m∗ इलेक्ट्रॉन का प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) है और मुक्त स्थान की पारगम्यता है। फैलाव (ऑप्टिक्स) संबंध चित्र 3 में प्लॉट किया गया है। कम के पर, एसपीपी फोटॉन की तरह व्यवहार करता है, किन्तु जैसे-जैसे के बढ़ता है, फैलाव संबंध झुकता है और स्पर्शोन्मुख सीमा तक पहुँच जाता है जिसे सतह प्लाज्मा आवृत्ति कहा जाता है।[lower-alpha 1] चूँकि फैलाव वक्र प्रकाश रेखा के दाईं ओर स्थित है, ω = के⋅c, एसपीपी में मुक्त-स्थान विकिरण की तुलना में कम तरंग दैर्ध्य है, जैसे कि एसपीपी तरंग सदिश का आउट-ऑफ-प्लेन घटक विशुद्ध रूप से काल्पनिक है और क्षणभंगुर प्रदर्शित करता है क्षय। सतह प्लाज्मा आवृत्ति इस वक्र की स्पर्शोन्मुख है, और इसके द्वारा दी गई है
वायु के स्थितियों में, यह परिणाम सरल हो जाता है
यदि हम मान लें कि ε2 वास्तविक है और ε2 > 0, तो यह सत्य होना चाहिए कि ε1 <0, नियम जो धातुओं में संतुष्ट है। ओमिक हानि और इलेक्ट्रॉन-कोर इंटरैक्शन के कारण धातु के अनुभव से गुजरने वाली विद्युत चुम्बकीय तरंगें। ये प्रभाव डाइलेक्ट्रिक कार्य के काल्पनिक घटक के रूप में दिखाई देते हैं। किसी धातु का परावैद्युत फलन ε व्यक्त किया जाता है1 = ई1′ + i⋅ε1″ जहां ई1' और ई1″ क्रमशः परावैद्युत फलन के वास्तविक और काल्पनिक भाग हैं। सामान्यतः |ε1′| >> इ1″ तो लहर संख्या को इसके वास्तविक और काल्पनिक घटकों के रूप में व्यक्त किया जा सकता है[8]
तरंग सदिश हमें इलेक्ट्रोमैग्नेटिक तरंग के भौतिक रूप से सार्थक गुणों जैसे कि इसकी स्थानिक सीमा और तरंग सदिश मिलान के लिए युग्मन आवश्यकताओं के बारे में जानकारी देता है।
प्रसार लंबाई और त्वचा की गहराई
जैसा कि एसपीपी सतह के साथ फैलता है, यह अवशोषण के कारण धातु को ऊर्जा खो देता है। सतह समतल की तीव्रता विद्युत क्षेत्र के वर्ग के साथ घटती है, इसलिए x दूरी पर, तीव्रता गुणक से कम हो जाती है . प्रसार लंबाई को 1/e के कारक द्वारा एसपीपी तीव्रता के क्षय के लिए दूरी के रूप में परिभाषित किया गया है। यह स्थिति लंबाई में संतुष्ट है[11]
इसी तरह, विद्युत क्षेत्र धातु की सतह पर अस्थायी रूप से लंबवत गिर जाता है। कम आवृत्तियों पर, धातु में एसपीपी पैठ गहराई सामान्यतः त्वचा की गहराई सूत्र का उपयोग करके अनुमानित की जाती है। परावैद्युत में, क्षेत्र कहीं अधिक धीरे-धीरे गिरेगा धातु और डाइलेक्ट्रिक माध्यम में क्षय की लंबाई के रूप में व्यक्त किया जा सकता है[11]
जहां मैं प्रचार के माध्यम को इंगित करता हूं। एसपीपी त्वचा की गहराई के अंदर सामान्य अस्तव्यस्तता के प्रति बहुत संवेदनशील होते हैं और इस वजह से, एसपीपी का उपयोग अधिकांशतः सतह की असमानताओं की जांच के लिए किया जाता है।
प्रायोगिक अनुप्रयोग
नैनोफैब्रिकेटेड प्रणाली जो एसपीपी का शोषण करते हैं, पदार्थ में प्रकाश के प्रसार को डिजाइन करने और नियंत्रित करने की क्षमता प्रदर्शित करते हैं। विशेष रूप से, एसपीपी का उपयोग प्रकाश को कुशलतापूर्वक नैनोमीटर स्केल वॉल्यूम में चैनल करने के लिए किया जा सकता है, जिससे सामान्य मोड गुणों का प्रत्यक्ष संशोधन होता है (उदाहरण के लिए प्रकाश की तरंग दैर्ध्य और प्रकाश दालों की गति को कम करना), साथ ही शक्तिशाली सक्षम करने के लिए उपयुक्त क्षेत्र संवर्द्धन अरैखिक मेटामटेरियल्स के साथ इंटरेक्शन बाहरी मापदंडों के लिए प्रकाश की परिणामी बढ़ी हुई संवेदनशीलता (उदाहरण के लिए, प्रयुक्त विद्युत क्षेत्र या अधिशोषित आणविक परत का डाइलेक्ट्रिक स्थिरांक) संवेदन और स्विचिंग में अनुप्रयोगों के लिए महान वादा दिखाता है।
वर्तमान शोध नैनोस्केल प्लास्मोनिक प्रभावों के आधार पर माप और संचार के लिए उपन्यास घटकों के डिजाइन, निर्माण और प्रयोगात्मक लक्षण वर्णन पर केंद्रित है। इन उपकरणों में बायोसेंसिंग, ऑप्टिकल पोजीशनिंग और ऑप्टिकल स्विचिंग जैसे अनुप्रयोगों के लिए अल्ट्रा-कॉम्पैक्ट प्लास्मोनिक इंटरफेरोमीटर सम्मिलित हैं, साथ ही उच्च-बैंडविड्थ, इन्फ्रारेड-आवृत्ति प्लास्मोनिक संचार लिंक को एकीकृत करने के लिए आवश्यक व्यक्तिगत बिल्डिंग ब्लॉक्स (प्लास्मोन स्रोत, तंरग निर्देश और सूचक ) सिलिकॉन चिप सम्मिलित हैं।
एसपीपी के आधार पर कार्यात्मक उपकरणों के निर्माण के अतिरिक्त यह कृत्रिम रूप से सिलवाया थोक ऑप्टिकल विशेषताओं के साथ फोटोनिक पदार्थ बनाने के लिए सीमित धातु- डाइलेक्ट्रिक स्थानों में यात्रा करने वाले एसपीपी की फैलाव विशेषताओं का दोहन करने के लिए संभव प्रतीत होता है अन्यथा फोटोनिक मेटामटेरियल्स के रूप में जाना जाता है।[5] कृत्रिम एसपीपी मोड माइक्रो तरंग और टेराहर्ट्ज विकिरण आवृत्तियों में मेटामटेरियल्स द्वारा अनुभूत किया जा सकता है; इन्हें हंसोड़ सतह प्लासमों के रूप में जाना जाता है।[12][13]
एसपीपी की उत्तेजना अधिकांशतः प्रयोगात्मक विधि में प्रयोग की जाती है जिसे सतह प्लास्मोन अनुनाद (एसपीआर) के रूप में जाना जाता है। एसपीआर में, घटना के कोण (प्रकाशिकी), तरंग दैर्ध्य या चरण (तरंगों) के कार्य के रूप में प्रिज्म युग्मक से परावर्तित शक्ति की निगरानी करके सतह के प्लास्मों की अधिकतम उत्तेजना का पता लगाया जाता है।[14]
उच्च प्रदर्शन डेटा प्रोसेसिंग नैनो उपकरणों में उपयोग के लिए फोटोनिक परिपथ की आकार सीमाओं पर काबू पाने के साधन के रूप में एसपीपी और स्थानीयकृत प्लास्मोन अनुनाद सहित सतह प्लास्मोन-आधारित परिपथ प्रस्तावित किए गए हैं।[15]
इन नैनो-उपकरणों में पदार्थो के प्लास्मोनिक गुणों को गतिशील रूप से नियंत्रित करने की क्षमता उनके विकास की कुंजी है। प्लास्मोन-प्लास्मोन इंटरैक्शन का उपयोग करने वाला नया दृष्टिकोण में प्रदर्शित किया गया है। यहाँ प्रकाश के प्रसार में हेरफेर करने के लिए बल्क प्लास्मोन अनुनाद को प्रेरित या दबा दिया गया है।[16] इस दृष्टिकोण को नैनोस्केल प्रकाश हेरफेर और पूरी तरह से सीएमओएस-संगत इलेक्ट्रो-ऑप्टिकल प्लास्मोनिक न्यूनाधिक के विकास के लिए उच्च क्षमता के रूप में दिखाया गया है।
चिप-स्केल फोटोनिक परिपथ में सीएमओएस संगत इलेक्ट्रो-ऑप्टिक प्लास्मोनिक मॉड्यूलेटर प्रमुख घटक होंगे।[17]
सतह की दूसरी हार्मोनिक पीढ़ी में, दूसरा हार्मोनिक संकेतक विद्युत क्षेत्र के वर्ग के समानुपाती होता है। विद्युत क्षेत्र इंटरफ़ेस पर अधिक शक्तिशाली होता है क्योंकि सतह समतल के कारण नॉनलाइनियर ऑप्टिक्स | नॉन-लीनियर ऑप्टिकल प्रभाव होता है। शक्तिशाली दूसरे हार्मोनिक संकेतक का उत्पादन करने के लिए इस बड़े संकेतक का अधिकांशतः उपयोग किया जाता है।[18]
प्लास्मोन से संबंधित अवशोषण और उत्सर्जन चोटियों की तरंग दैर्ध्य और तीव्रता आणविक सोखना से प्रभावित होती है जिसका उपयोग आणविक सेंसर में किया जा सकता है। उदाहरण के लिए, दूध में कैसिइन का पता लगाने वाला पूरी तरह से चालू प्रोटोटाइप उपकरण तैयार किया गया है। उपकरण सोने की परत द्वारा प्रकाश के प्लास्मोन से संबंधित अवशोषण में परिवर्तन की निगरानी पर आधारित है।[19]
प्रयुक्त पदार्थ
सरफेस प्लास्मोन पोलरिटोन केवल सकारात्मक-विद्युत पारगम्यता पदार्थ और नकारात्मक-पारगम्यता पदार्थ के बीच इंटरफेस में उपस्थित हो सकते हैं।[20] सकारात्मक-पारगम्यता पदार्थ , जिसे अधिकांशतः डाइलेक्ट्रिक पदार्थ कहा जाता है, हवा या (दृश्यमान प्रकाश के लिए) कांच जैसी कोई भी पारदर्शी पदार्थ हो सकती है। नकारात्मक-पारगम्यता पदार्थ , जिसे अधिकांशतः प्लास्मोनिक पदार्थ कहा जाता है,[21] धातु या अन्य पदार्थ हो सकती है। यह अधिक महत्वपूर्ण है, क्योंकि यह एसपीपी के तरंग दैर्ध्य, अवशोषण लंबाई और अन्य गुणों पर बड़ा प्रभाव डालता है। कुछ प्लास्मोनिक पदार्थो पर आगे चर्चा की गई है।
धातु
दृश्यमान और निकट-अवरक्त प्रकाश के लिए, केवल प्लास्मोनिक पदार्थ धातु होती है, उनके मुक्त इलेक्ट्रॉनों की प्रचुरता के कारण,[21] जो उच्च प्लाज्मा आवृत्ति की ओर जाता है। (पदार्थ में उनके प्लाज्मा आवृत्ति के नीचे केवल नकारात्मक वास्तविक पारगम्यता होती है।)
दुर्भाग्य से, धातुएं ओमिक हानि से ग्रस्त हैं जो प्लास्मोनिक उपकरणों के प्रदर्शन को नीचा दिखा सकती हैं। कम हानि की आवश्यकता ने प्लास्मोनिक्स के लिए नई पदार्थ विकसित करने के उद्देश्य से अनुसंधान को बढ़ावा दिया है[21][22][23] और आधुनिक पदार्थ के जमाव की स्थिति का अनुकूलन[24] पदार्थ की हानि और ध्रुवीकरण दोनों ही इसके ऑप्टिकल प्रदर्शन को प्रभावित करते हैं। गुणवत्ता कारक एसपीपी के रूप में परिभाषित किया गया है .[23] नीचे दी गई तालिका चार सामान्य प्लास्मोनिक धातुओं के लिए गुणवत्ता कारक और एसपीपी प्रचार लंबाई दिखाती है; अल, एजी, एयू और क्यू अनुकूलित स्थितियों के अनुसार थर्मल वाष्पीकरण द्वारा जमा किए गए।[24] गुणवत्ता कारकों और एसपीपी प्रसार लंबाई की गणना Al, [1] =McPeaके Ag], Au और Cu फिल्में से ऑप्टिकल डेटा का उपयोग करके की गई थी।।
तरंग दैर्ध्य शासन | धातु | ||
---|---|---|---|
पराबैंगनी (280 nm) | Al | 0.07 | 2.5 |
दृश्यमान (650 nm) | Ag | 1.2 | 84 |
Cu | 0.42 | 24 | |
Au | 0.4 | 20 | |
अवरक्त के पास (1000 nm) | Ag | 2.2 | 340 |
Cu | 1.1 | 190 | |
Au | 1.1 | 190 | |
दूरसंचार (1550 nm) | Ag | 5 | 1200 |
Cu | 3.4 | 820 | |
Au | 3.2 | 730 |
चांदी दृश्य, निकट-अवरक्त (एनआईआर) और दूरसंचार तरंग दैर्ध्य दोनों में वर्तमान पदार्थो की सबसे कम हानि दर्शाती है।[24] सोने और तांबे ने दृश्यमान और एनआईआर में समान रूप से अच्छा प्रदर्शन किया है, तांबे के साथ दूरसंचार तरंग दैर्ध्य में सामान्य लाभ होता है। प्राकृतिक वातावरण में रासायनिक रूप से स्थिर होने के कारण चांदी और तांबे दोनों पर सोने का लाभ है, जो इसे प्लास्मोनिक बायोसेंसर के लिए उपयुक्त बनाता है।[25] चूंकि , ~ 470 एनएम पर इंटरबैंड ट्रांज़िशन 600 एनएम से नीचे तरंग दैर्ध्य पर सोने में हानि को बहुत बढ़ा देता है।[26] एल्युमीनियम पराबैंगनी शासन (<330 एनएम) में सबसे अच्छा प्लास्मोनिक पदार्थ है और तांबे के साथ-साथ सीएमओएस भी संगत है।
अन्य पदार्थ
किसी पदार्थ में जितने कम इलेक्ट्रॉन होते हैं, उसकी प्लाज्मा आवृत्ति उतनी ही कम (अर्थात लंबी-तरंग दैर्ध्य) हो जाती है। इसलिए, इन्फ्रारेड और लंबी तरंग दैर्ध्य पर, धातुओं के अतिरिक्त कई अन्य प्लास्मोनिक पदार्थ भी उपस्थित हैं।[21] इनमें पारदर्शी संवाहक ऑक्साइड सम्मिलित हैं, जिनकी निकट अवरक्त-लघु-तरंग दैर्ध्य अवरक्त अवरक्त सीमा में विशिष्ट प्लाज्मा आवृत्ति होती है।[27] लंबी तरंग दैर्ध्य पर, अर्धचालक प्लास्मोनिक भी हो सकते हैं।
कुछ पदार्थो में प्लास्मोंस (तथाकथित रेस्ट्राहलेन प्रभाव) के अतिरिक्त फ़ोनों से संबंधित कुछ इन्फ्रारेड तरंग दैर्ध्य पर नकारात्मक पारगम्यता होती है। परिणामी तरंगों में सतह प्लास्मोन पोलरिटोन के समान ऑप्टिकल गुण होते हैं, किन्तु उन्हें अलग शब्द 'सरफेस फोनन पोलरिटोन' कहा जाता है।
खुरदरापन के प्रभाव
एसपीपी पर खुरदुरेपन के प्रभाव को समझने के लिए, पहले यह समझना लाभप्रद होता है कि एसपीपी विवर्तन ग्राटिंग या फिग2एंकर द्वारा कैसे युग्मित होता है। जब सतह पर फोटॉन की घटना होती है, तो डाइलेक्ट्रिक पदार्थ में फोटॉन का तरंग सदिश एसपीपी की तुलना में छोटा होता है। एसपीपी में फोटॉन के जोड़े के लिए, तरंग सदिश को बढ़ना चाहिए . आवधिक ग्राटिंग के ग्राटिंग हार्मोनिक्स नियमो से मेल खाने के लिए सहायक इंटरफ़ेस के समानांतर अतिरिक्त गति प्रदान करते हैं।
जहाँ ग्राटिंग का तरंग सदिश है, आने वाले फोटॉन का आपतन कोण है, a ग्राटिंग अवधि है, और n पूर्णांक है।
किसी न किसी सतह को विभिन्न आवधिकताओं के कई ग्राटिंग के सुपरपोजिशन सिद्धांत के रूप में माना जा सकता है। क्रेशमैन ने प्रस्तावित किया था[28] कि खुरदरी सतह के लिए सांख्यिकीय सहसंबंध कार्य परिभाषित किया जाता है
जहाँ स्थिति पर औसत सतह ऊंचाई से ऊपर की ऊंचाई है , और एकीकरण का क्षेत्र है। यह मानते हुए कि सांख्यिकीय सहसंबंध फलन प्रपत्र का गाऊसी कार्य है
जहाँ मूल औसत वर्ग ऊंचाई है, बिंदु से दूरी है , और सहसंबंध की लंबाई है, तो सहसंबंध कार्य का फूरियर रूपांतरण है
जहाँ प्रत्येक स्थानिक आवृत्ति की मात्रा का उपाय है जो युगल फोटॉनों को सतह समतल बनाने में सहायता करते हैं।
यदि सतह में खुरदरापन का केवल फूरियर घटक है (अर्थात सतह प्रोफ़ाइल साइनसोइडल है), तो असतत है और केवल पर उपस्थित है , जिसके परिणामस्वरूप युग्मन के लिए कोणों का संकीर्ण समुच्चय होता है। यदि सतह में कई फूरियर घटक होते हैं, तो कई कोणों पर युग्मन संभव हो जाता है। यादृच्छिक सतह के लिए, निरंतर हो जाता है और युग्मन कोणों की सीमा विस्तृत हो जाती है।
जैसा कि पहले कहा गया है, एसपीपी गैर-विकिरणशील हैं। जब एसपीपी खुरदरी सतह के साथ यात्रा करता है, तो यह सामान्यतः प्रकीर्णन के कारण विकिरण बन जाता है। प्रकाश का भूतल प्रकीर्णन सिद्धांत बताता है कि बिखरी हुई तीव्रता प्रति ठोस कोण प्रति घटना तीव्रता है[29]
जहाँ धातु/ डाइलेक्ट्रिक इंटरफ़ेस पर एकल द्विध्रुवीय से विकिरण प्रतिरूप है। यदि क्रेशमैन ज्योमेट्री में सतह के प्लास्मों को उत्तेजित किया जाता है और प्रकीर्णित प्रकाश घटना के विमान (चित्र 4) में देखा जाता है, तो द्विध्रुवीय कार्य बन जाता है
साथ
जहाँ ध्रुवीकरण कोण है और xz-समतल में z-अक्ष से कोण है। इन समीकरणों से दो महत्वपूर्ण परिणाम निकलते हैं। पहला यह है कि यदि (एस-ध्रुवीकरण), फिर और प्रकीर्णित प्रकाश . दूसरे, प्रकीर्णित प्रकाश का औसत अंकित का प्रोफ़ाइल होता है जो आसानी से खुरदरापन से संबंधित होता है। इस विषय को संदर्भ में अधिक विस्तार से माना जाता है।[29]
यह भी देखें
- सरफेस प्लास्मोन
- सतह प्लासमॉन अनुनाद
- स्थानीयकृत सतह समतल
- प्लास्मोनिक लेंस
- सुपरलेंस
- ग्राफीन प्लास्मोनिक्स
- भूतल तरंग
- डायकोनोव सतह तरंगें
टिप्पणियाँ
- ↑ Jump up to: 1.0 1.1 This lossless dispersion relation neglects the effects of damping factors, such as the intrinsic losses in metals. For lossy cases, the dispersion curve backbends after the reaching the surface plasmon frequency instead of asymptotically increasing.[30][31]
संदर्भ
- ↑ S.Zeng; Baillargeat, Dominique; Ho, Ho-Pui; Yong, Ken-Tye; et al. (2014). "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications" (PDF). Chemical Society Reviews. 43 (10): 3426–3452. doi:10.1039/C3CS60479A. hdl:10220/18851. PMID 24549396.
- ↑ Jump up to: 2.0 2.1 2.2
NIST researchers, Nanofabrication Research Group (2009-08-20). "Three-Dimensional Plasmonic Metamaterials". National Institute of Science and Technology. Retrieved 2011-02-15.
- NIST researchers, Nanofabrication Research Group (2010-02-11). "Opto-mechanical Devices for Measuring Nanoplasmonic Metamaterials". National Institute of Science and Technology. Retrieved 2011-02-15.
This article incorporates public domain material from Three-Dimensional Plasmonic Metamaterials. National Institute of Standards and Technology.
- ↑ Yarris, Lynn (2009-08-20). "GRIN Plasmonics…" (Online news release). U.S. Department of Energy National Laboratory Operated by the University of California. Retrieved 2011-02-15.
- ↑
Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W. (2003). "Surface plasmon subwavelength optics". Nature. 424 (6950): 824–30. Bibcode:2003Natur.424..824B. doi:10.1038/nature01937. PMID 12917696. S2CID 116017.
- Huidobro, Paloma A.; Nesterov, Maxim L.; Martín-Moreno, Luis; García-Vidal, Francisco J. (2010). "Transformation Optics for Plasmonics" (PDF). Nano Letters. 10 (6): 1985–90. arXiv:1003.1154. Bibcode:2010NanoL..10.1985H. doi:10.1021/nl100800c. hdl:10044/1/42407. PMID 20465271. S2CID 1255444. Free PDF download for these peer reviewed articles.
- PDF from arxiv.org – Transformation Optics for Plasmonics. 15 pages.
- ↑ Jump up to: 5.0 5.1
NIST researchers, Nanofabrication Research Group. "Nanoplasmonics" (Online). National Institute of Science and Technology. Retrieved 2011-02-15.
This article incorporates public domain material from Nanoplasmonics. National Institute of Standards and Technology.
- ↑ Bashevoy, M.V.; Jonsson, F.; Krasavin, A.V.; Zheludev, N.I.; Chen Y.; Stockman M.I. (2006). "मुक्त-इलेक्ट्रॉन प्रभाव द्वारा यात्रा सतह समतल तरंगों का निर्माण". Nano Letters. 6 (6): 1113–5. arXiv:physics/0604227. Bibcode:2006NanoL...6.1113B. doi:10.1021/nl060941v. PMID 16771563. S2CID 9358094.
- ↑ Zeng, Shuwen; Yu, Xia; Law, Wing-Cheung; Zhang, Yating; Hu, Rui; Dinh, Xuan-Quyen; Ho, Ho-Pui; Yong, Ken-Tye (2013). "Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement". Sensors and Actuators B: Chemical. 176: 1128–1133. doi:10.1016/j.snb.2012.09.073.
- ↑ Jump up to: 8.0 8.1 Raether, Heinz (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics 111. New York: Springer-Verlag. ISBN 978-3540173632.
- ↑ Cottam, Michael G. (1989). Introduction to Surface and Superlattice Excitations. New York: Cambridge University Press. ISBN 978-0750305884.
- ↑ Kittel, Charles (1996). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
- ↑ Jump up to: 11.0 11.1 Homola, Jirí (2006). Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, 4. Berlin: Springer-Verlag. ISBN 978-3-540-33918-2.
- ↑ Pendry, J. B.; Martín-Moreno, L.; Garcia-Vidal, F. J. (6 August 2004). "Mimicking Surface Plasmons with Structured Surfaces". Science. 305 (5685): 847–848. Bibcode:2004Sci...305..847P. doi:10.1126/science.1098999. PMID 15247438. S2CID 44412157.
- ↑ Pan, Bai Cao; Liao, Zhen; Zhao, Jie; Cui, Tie Jun (2014). "Controlling rejections of spoof surface plasmon polaritons using metamaterial particles". Optics Express. 22 (11): 13940–13950. Bibcode:2014OExpr..2213940P. doi:10.1364/OE.22.013940. PMID 24921585.
- ↑ Vo-Dinh, Tuan (2017). "Chapter 13 - Biomolecule Sensing Using Surface Plasmon Resonance". Nanotechnology in Biology and Medicine Methods, Devices, and Applications, Second Edition. United States: CRC Press. pp. 259–288. ISBN 978-1439893784.
- ↑ Ozbay, E. (2006). "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions". Science. 311 (5758): 189–93. Bibcode:2006Sci...311..189O. doi:10.1126/science.1114849. hdl:11693/38263. PMID 16410515. S2CID 2107839.
- ↑ Akimov, Yu A; Chu, H S (2012). "Plasmon–plasmon interaction: Controlling light at nanoscale". Nanotechnology. 23 (44): 444004. doi:10.1088/0957-4484/23/44/444004. PMID 23080049. S2CID 5384609.
- ↑ Wenshan Cai; Justin S. White & Mark L. Brongersma (2009). "Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators". Nano Letters. 9 (12): 4403–11. Bibcode:2009NanoL...9.4403C. doi:10.1021/nl902701b. PMID 19827771.
- ↑ V. K. Valev (2012). "Characterization of Nanostructured Plasmonic Surfaces with Second Harmonic Generation". Langmuir. 28 (44): 15454–15471. doi:10.1021/la302485c. PMID 22889193.
- ↑ Minh Hiep, Ha; Endo, Tatsuro; Kerman, Kagan; Chikae, Miyuki; Kim, Do-Kyun; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi (2007). "A localized surface plasmon resonance based immunosensor for the detection of casein in milk". Science and Technology of Advanced Materials. 8 (4): 331. Bibcode:2007STAdM...8..331M. doi:10.1016/j.stam.2006.12.010.
- ↑ Pochi Yeh (3 March 2005). Optical Waves in Layered Media. Wiley. ISBN 978-0-471-73192-4.
- ↑ Jump up to: 21.0 21.1 21.2 21.3 West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. (2010). "Searching for better plasmonic materials". Laser & Photonics Reviews. 4 (6): 795–808. arXiv:0911.2737. Bibcode:2010LPRv....4..795W. doi:10.1002/lpor.200900055. ISSN 1863-8880. S2CID 16887413.
- ↑ Boltasseva, A.; Atwater, H. A. (2011). "Low-Loss Plasmonic Metamaterials". Science. 331 (6015): 290–291. Bibcode:2011Sci...331..290B. doi:10.1126/science.1198258. ISSN 0036-8075. PMID 21252335. S2CID 206530073.
- ↑ Jump up to: 23.0 23.1 Blaber, M G; Arnold, M D; Ford, M J (2010). "A review of the optical properties of alloys and intermetallics for plasmonics". Journal of Physics: Condensed Matter. 22 (14): 143201. arXiv:1001.4867. Bibcode:2010JPCM...22n3201B. doi:10.1088/0953-8984/22/14/143201. ISSN 0953-8984. PMID 21389523. S2CID 26320849.
- ↑ Jump up to: 24.0 24.1 24.2 McPeak, Kevin M.; Jayanti, Sriharsha V.; Kress, Stephan J. P.; Meyer, Stefan; Iotti, Stelio; Rossinelli, Aurelio; Norris, David J. (2015). "Plasmonic Films Can Easily Be Better: Rules and Recipes". ACS Photonics. 2 (3): 326–333. doi:10.1021/ph5004237. ISSN 2330-4022. PMC 4416469. PMID 25950012.
- ↑ Homola, Jir (2003). "Present and future of surface plasmon resonance biosensors". Analytical and Bioanalytical Chemistry. 377 (3): 528–539. doi:10.1007/s00216-003-2101-0. ISSN 1618-2642. PMID 12879189. S2CID 14370505.
- ↑ Etchegoin, P. G.; Le Ru, E. C.; Meyer, M. (2006). "An analytic model for the optical properties of gold". The Journal of Chemical Physics. 125 (16): 164705. Bibcode:2006JChPh.125p4705E. doi:10.1063/1.2360270. ISSN 0021-9606. PMID 17092118.
- ↑ Dominici, L; Michelotti, F; Brown, TM; et al. (2009). "Plasmon polaritons in the near infrared on fluorine doped tin oxide films". Optics Express. 17 (12): 10155–67. Bibcode:2009OExpr..1710155D. doi:10.1364/OE.17.010155. PMID 19506669.
- ↑ Kretschmann, E. (April 1974). "Die Bestimmung der Oberflächenrauhigkeit dünner Schichten durch Messung der Winkelabhängigkeit der Streustrahlung von Oberflächenplasmaschwingungen". Optics Communications (in Deutsch). 10 (4): 353–356. Bibcode:1974OptCo..10..353K. doi:10.1016/0030-4018(74)90362-9.
- ↑ Jump up to: 29.0 29.1 Kretschmann, E. (1972). "The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness". Optics Communications. 5 (5): 331–336. Bibcode:1972OptCo...5..331K. doi:10.1016/0030-4018(72)90026-0.
- ↑ Arakawa, E. T.; Williams, M. W.; Hamm, R. N.; Ritchie, R. H. (29 October 1973). "Effect of Damping on Surface Plasmon Dispersion". Physical Review Letters. 31 (18): 1127–1129. Bibcode:1973PhRvL..31.1127A. doi:10.1103/PhysRevLett.31.1127.
- ↑ Maier, Stefan A. (2007). Plasmonics: Fundamentals and Applications. New York: Springer Publishing. ISBN 978-0-387-33150-8.
अग्रिम पठन
- Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. (1998). "Extraordinary optical transmission through sub-wavelength hole arrays" (PDF). Nature. 391 (6668): 667. Bibcode:1998Natur.391..667E. doi:10.1038/35570. S2CID 205024396.
- Hendry, E.; Garcia-Vidal, F.; Martin-Moreno, L.; Rivas, J.; Bonn, M.; Hibbins, A.; Lockyear, M. (2008). "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture" (PDF). Physical Review Letters. 100 (12): 123901. Bibcode:2008PhRvL.100l3901H. doi:10.1103/PhysRevLett.100.123901. hdl:10036/33196. PMID 18517865. Free PDF download.
- Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W. (2003). "Surface plasmon subwavelength optics" (PDF). Nature. 424 (6950): 824–30. Bibcode:2003Natur.424..824B. doi:10.1038/nature01937. PMID 12917696. S2CID 116017. Archived from the original (PDF) on 2011-08-11. Free PDF download.
- Pitarke, J M; Silkin, V M; Chulkov, E V; Echenique, P M (2007). "Theory of surface plasmons and surface-plasmon polaritons" (PDF). Reports on Progress in Physics. 70 (1): 1. arXiv:cond-mat/0611257. Bibcode:2007RPPh...70....1P. doi:10.1088/0034-4885/70/1/R01. S2CID 46471088. Free PDF download.
बाहरी संबंध
- White, Justin (March 19, 2007). "Surface Plasmon Polaritons" (Online). Stanford University. Physics department. "Submitted as courseworके for AP272. Winter 2007".