साहचर्य प्रतिस्थापन

From Vigyanwiki

साहचर्य प्रतिस्थापन एक मार्ग का वर्णन करता है जिसके द्वारा रासायनिक यौगिक परस्पर विनिमय लिगैंड करते हैं। शब्दावली सामान्यतः कार्बनधात्विक रसायन विज्ञान और समन्वय परिसरों पर लागू होती है, लेकिन कार्बनिक रसायन विज्ञान में Sn2 प्रतिक्रिया के समान होती है। विपरीत मार्ग Sn1 प्रतिक्रिया के अनुरूप होने के कारण, विघटनकारी प्रतिस्थापन है। शुद्ध साहचर्य और शुद्ध विघटनकारी मार्गों के बीच मध्यवर्ती मार्ग मौजूद हैं, इन्हें विनिमय तंत्र कहा जाता है।[1][2] साहचर्य पथों को हमलावर नाभिक स्नेही के आणविक बंधन द्वारा एक अलग, पता लगाने योग्य प्रतिक्रिया मध्यवर्ती देने के लिए विशेषता है, जिसके बाद एक और लिगैंड का नुकसान होता है। साहचर्य प्रतिस्थापन से गुजरने वाले परिसर या तो समन्वयात्मक रूप से असंतृप्त होते हैं या उनमें एक लिगैंड होता है जो धातु के लिए अपने रासायनिक बंध को परिवर्तित नहीं कर सकता है, उदा :- नाइट्रोजन ऑक्साइड लिगैंड (NO) की हैप्पीसिटी या झुकने में परिवर्तन। सजातीय उत्प्रेरण में, साहचर्य मार्ग वांछनीय है क्योंकि बाध्यकारी घटना, और इसलिए रासायनिक प्रतिक्रिया की चयनात्मकता, न केवल धातु उत्प्रेरण की प्रकृति पर बल्कि सब्सट्रेट रसायन विज्ञान पर भी निर्भर करती है।

साहचर्य तंत्र के उदाहरण सामान्यतयः 16e वर्ग योजनाकार प्लानर आणविक ज्यामिति धातु परिसरों के रसायन विज्ञान में पाए जाते हैं, उदा:- वास्का का परिसर और पोटेशियम टेट्राक्लोरोप्लाटिनेट । ये यौगिक (MX4) आने वाले (प्रतिस्थापन) लिगैंड Y को एपिकोफिलिसिटी मध्यवर्ती MX4Y बनाने के लिए बांधें के बाद के चरण में उनके एक लिगैंड को अलग कर देता है। Y के वियोजन से कोई पता लगाने योग्य शुद्ध प्रतिक्रिया नहीं होती है, लेकिन X के पृथक्करण से शुद्ध प्रतिस्थापन होता है, जिससे 16e जटिल MX3Y प्राप्त होता है।. पहला कदम सामान्यतयः rate-निर्धारण चरण है। इस प्रकार, सक्रियण की एन्ट्रापी नकारात्मक है, जो सिस्टम में क्रम में वृद्धि को इंगित करती है। ये प्रतिक्रियाएं दर समीकरण का पालन करती हैं दूसरे क्रम की प्रतिक्रियाएं: उत्पाद (रसायन विज्ञान) की उपस्थिति की rate MX4 और Y की एकाग्रता पर निर्भर करती है rate कानून ईजेन-विल्किन्स तंत्र द्वारा ऋणात्मक होता है|

AssveRxn.png

साहचर्य प्रतिस्थापन मार्ग

कई प्रतिस्थापन प्रतिक्रियाओं में, अच्छी तरह से परिभाषित मध्यवर्ती नहीं देखे जाते हैं, जब ऐसी प्रक्रियाओं की दर प्रवेश करने वाले लिगैंड की प्रकृति से प्रभावित होती है, तो मार्ग को सहयोगी प्रतिस्थापन कहा जाता है, संक्षेप में a.[3] संक्षेप में, प्रतिनिधि [V(H2O)6]2+ में थोक और समन्वित पानी का आदान-प्रदान है इसके विपरीत, थोड़ा अधिक कॉम्पैक्ट आयन [Ni(H2O)6]2+ आईडी के माध्यम से पानी का आदान-प्रदान करता है /d[4]


आयन जोड़ी के प्रभाव

पॉलीकेशनिक जटिल आयनों के साथ आयन जोड़े बनाते हैं और ये आयन जोड़े अक्सर /a . मार्ग के माध्यम से प्रतिक्रियाओं से गुजरते हैं । स्थिरवैधुतिक रूप से आयोजित न्यूक्लियोफाइल पहले समन्वय क्षेत्र में एक लिगैंड के साथ पदों का आदान-प्रदान कर सकता है, जिसके परिणामस्वरूप शुद्ध प्रतिस्थापन होता है। क्रोमियम (III) हेक्साक्वो कॉम्प्लेक्स के एक राष्ट्र (आयन के साथ प्रतिक्रिया) से एक उदाहरण प्रक्रिया आती है:

[Cr(H2O)6]3+ + SCN ⇌ {[Cr(H2O)6], NCS}2+
{[Cr(H2O)6], NCS}2+ ⇌ [Cr(H2O)5NCS]2+ + H2O

विशेष लिगैंड प्रभाव

विशेष परिस्थितियों में, कुछ लिगैंड प्रतिस्थापन प्रतिक्रियाओं में भाग लेते हैं जो सहयोगी मार्गों की ओर ले जाते हैं। ये लिगैंड धातु से जुड़ने के लिए कई रूपांकनों को अपना सकते हैं, जिनमें से प्रत्येक में दान किए गए इलेक्ट्रॉनों की एक अलग संख्या शामिल होती है। एक उत्कृष्ट केस इंडेनाइल प्रभाव है जिसमें एक इंडेन लिगैंड प्रतिवर्ती प्रतिक्रिया पेंटाहाप्टो (η5) समन्वय से ट्राइहाप्टो (η3) तक फिसलता है।अन्य पाई-लिगैंड इस तरह से व्यवहार करते हैं, उदा:- एलिल ग्रुप मेटल एलिल जटिल (η3 से η1) और नेफ़थलीन6 से η4) नाइट्रिक ऑक्साइड सामान्यतयः धातुओं को एक रैखिक MNO व्यवस्था बनाने के लिए बांधता है, जिसमें नाइट्रोजन ऑक्साइड को धातु को 3e दान करने के लिए कहा जाता है। प्रतिस्थापन प्रतिक्रियाओं के दौरान, MNO इकाई झुक सकती है, 3e रैखिक NO लिगैंड को 1e बेंट NO लिगैंड में परिवर्तित करना है

SN1cB तंत्र

कोबाल्ट (III) अमाइन हलाइड जटिल के जलीय संलयन की दर भ्रामक है, जो सहयोगी प्रतीत होती है लेकिन वैकल्पिक मार्ग से आगे बढ़ रही है। [Co(NH3)5Cl]2+ दूसरे क्रम के गतिज उर्जा का अनुसरण करता है: हाइड्रॉक्साइड की सांद्रता के साथ-साथ प्रारंभिक परिसर के साथ rate रैखिक रूप से बढ़ जाती है। इस जानकारी के आधार पर, कोबाल्ट पर हाइड्रॉक्साइड के न्यूक्लियोफिलिक हमले के माध्यम से प्रतिक्रियाएं आगे बढ़ती दिखाई देंगी। हालांकि, अध्ययनों से पता चलता है कि हाइड्रॉक्साइड एक NH3 . को अवक्षेपित करता है प्रारंभिक परिसर का संयुग्म आधार देने के लिए लिगैंड, [Co(NH3)5Cl]2+. इस मोनोवैलेंट आयन आयनों और धनायनों में, क्लोराइड अनायास अलग हो जाता है। इस मार्ग को SN1cB क्रियाविधि कहा जाता है।

ईजेन-विल्किन्स तंत्र

ईजेन-विल्किन्स तंत्र, जिसका नाम रसायनज्ञ मैनफ्रेड ईजेन और आर. जी . विल्किन्स के नाम पर रखा गया है,[5] अष्टभुजाकार परिसरों के सहयोगी प्रतिस्थापन प्रतिक्रियाओं को ऋणात्मक करने वाले समन्वय रसायन विज्ञान में एक तंत्र और rate कानून है। यह क्रोमियम- (III) हेक्साएक्वा जटिल के अमोनिया द्वारा प्रतिस्थापन के लिए खोजा गया था।[6][7] तंत्र की प्रमुख विशेषता एक मुठभेड़ जटिल ML6-Y बनाने के लिए प्रारंभिक rate-निर्धारण पूर्व-संतुलन है अभिकारक ML6- और आवक लिगैंड वाई। यह संतुलन निरंतर KE . द्वारा rate्शाया गया है:

ML6 + Y ⇌ ML6-Y

उत्पाद बनाने के लिए बाद में पृथक्करण rate स्थिर k द्वारा ऋणात्मक होता है:

ML6-Y → ML5Y + L

ईजेन-विल्किन्स rate कानून की एक सरल व्युत्पत्ति इस प्रकार है:[8]

[ML6-Y] = KE[ML6][Y]
[ML6-Y] = [M]tot - [ML6]
rate = k[ML6-Y]
rate = kKE[Y][ML6]

स्थिर-राज्य सन्निकटन का उपयोग करते हुए, rate कानून के अंतिम रूप की ओर अग्रसर (d[ML6-Y] / dt = 0),

rate = kKE[Y][M]tot / (1 + KE[Y])

ईजेन-फ्यूस समीकरण

पूर्व-संतुलन चरण और इसके संतुलन स्थिरांक KE . में एक और अंतर्दृष्टि ईजेन और आर. ऍम. फुओसद्वारा स्वतंत्र रूप से प्रस्तावित फुओस-ईजेन समीकरण से आता है:

KE = (4πa3/3000) x NAexp(-V/RT)

जहां a समाधान में जटिल और लिगैंड के बीच दृष्टिकोण की न्यूनतम दूरी को rate्शाता है (सेमी में), NA एवोगैड्रो स्थिरांक है, R गैस स्थिरांक है और T प्रतिक्रिया तापमान है। V उस दूरी पर आयनों की स्थिर वैद्युत स्थितिज ऊर्जा है:

V = z1z2e2/4πaε

जहाँ z प्रत्येक प्रजाति की आवेश संख्या है और निर्वात पारगम्यता है।

KE के लिए एक विशिष्ट मान 200 pm की दूरी पर तटस्थ कणों के लिए 0.0202 dm3mol-1 है।[9] rate कानून का परिणाम यह है कि वाई की उच्च सांद्रता पर, rate k[M]tot का अनुमान लगाती है जबकि कम सांद्रता पर परिणाम kKE[M]tot[Y] होता है। ईजेन-फुओस समीकरण rate्शाता है कि KE . ​​के उच्च मान (और इस प्रकार एक तेज़ पूर्व-संतुलन) समाधान में बड़े, विपरीत-आवेशित आयनों के लिए प्राप्त किया जाता है।


संrate्भ

  1. Basolo, F.; Pearson, R. G. (1967). अकार्बनिक प्रतिक्रियाओं के तंत्र. New York: John Wiley and Son. ISBN 0-471-05545-X.
  2. Wilkins, R. G. (1991). संक्रमण धातु परिसरों की प्रतिक्रियाओं का काइनेटिक्स और तंत्र (2nd ed.). Weinheim: VCH. ISBN 1-56081-125-0.
  3. Miessler, G. L.; Tarr, D. A. (2004). अकार्बनिक रसायन शास्त्र (3rd ed.). Pearson/Prentice Hall. ISBN 0-13-035471-6.
  4. Helm, Lothar; Merbach, André E. (2005). "अकार्बनिक और जैव अकार्बनिक विलायक विनिमय तंत्र". Chem. Rev. 105 (6): 1923–1959. doi:10.1021/cr030726o. PMID 15941206.
  5. M. Eigen, R. G. Wilkins: Mechanisms of Inorganic Reactions. In: Advances in Chemistry Series. Nr. 49, 1965, S. 55. American Chemical Society, Washington, D. C.
  6. Basolo, F.; Pearson, R. G. "Mechanisms of Inorganic Reactions." John Wiley and Son: New York: 1967. ISBN 047105545X
  7. R. G. Wilkins "Kinetics and Mechanism of Reactions of Transition Metal Complexes," 2nd Edition, VCH, Weinheim, 1991. ISBN 1-56081-125-0
  8. G. L. Miessler and D. A. Tarr “Inorganic Chemistry” 3rd Ed, Pearson/Prentice Hall publisher, ISBN 0-13-035471-6.
  9. Atkins, P. W. (2006). Shriver & Atkins inorganic chemistry. 4th ed. Oxford: Oxford University Press