गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक सेमिनोर्म एक मानक (गणित) है जिसे सकारात्मक निश्चित होने की आवश्यकता नहीं है। सेमिमानक उत्तल समुच्चय के साथ घनिष्ठ रूप से जुड़े हुए हैं: प्रत्येक सेमिमानक कुछ अवशोषित समुच्चय का मिंकोव्स्की कार्यात्मक है बिल्कुल उत्तल समुच्चय और, इसके विपरीत, ऐसे किसी भी समुच्चय का मिंकोव्स्की कार्यात्मक एक सेमिमानक है।
एक संस्थानिक सदिश समष्टि स्थानीय रूप से उत्तल होता है यदि इसकी सांस्थिति सेमिनोर्म्स के एक परिवार द्वारा प्रेरित होती है।
होने देना या तो वास्तविक संख्या पर एक सदिश समष्टि हो या जटिल संख्या संख्या एक वास्तविक मूल्यवान कार्य ए कहा जाता है सेमिनोर्म्स यदि यह निम्नलिखित दो शर्तों को पूरा करता है:
ये दो शर्तें इसका तात्पर्य हैं कि [proof 1] और वह प्रत्येक सेमिमानक निम्नलिखित संपत्ति भी है:[proof 2]
नकारात्मक: सभी के लिए कुछ लेखकों में सेमिनोर्म (और कभी-कभी मानदंड) की परिभाषा के भाग के रूप में गैर-नकारात्मकता सम्मिलित है, यद्यपि यह आवश्यक नहीं है क्योंकि यह अन्य दो गुणों से अनुसरण करता है।
परिभाषा के अनुसार, एक मानक (गणित) पर एक सेमिनोर्म है जो बिंदुओं को भी भिन्न करता है, जिसका तात्पर्य है कि इसमें निम्नलिखित अतिरिक्त गुण हैं:
सकारात्मक निश्चित / बिंदु भिन्न करना : सभी के लिए यदि फिर सेमिनोर्म्ड स्पेस जोड़ी है एक सदिश स्थान से मिलकर और एक सेमिमानक पर यदि सेमिमानक यह भी एक मानक है तो सेमिमानक स्पेस नोर्म्ड स्पेस ए कहा जाता है , चूँकि निरपेक्ष एकरूपता का तात्पर्य सकारात्मक एकरूपता से है, प्रत्येक सेमिनोर्म एक प्रकार का कार्य है जिसे एक उपरैखिक फलन कहा जाता है। एक मानचित्र कहा जाता है उपरैखिक फलन यदि यह उप-योगात्मक और सकारात्मक सजातीय है। एक सेमिमानक के विपरीत, एक उपरैखिक फलन अनिवार्य रूप से गैर-नकारात्मक नहीं है। हाहन-बनाक प्रमेय के संदर्भ में उपरैखिक कार्यों का प्रायः सामना किया जाता है। एक वास्तविक मूल्यवान कार्य एक सेमिनोर्म है यदि और केवल यदि यह एक उपरैखिक फलन और संतुलित फलन है।
उदाहरण
यहाँ पर जो निरंतर को संदर्भित करता है मानचित्र पर असतत सांस्थिति को प्रेरित करता है यदि सदिश समष्टि पर कोई रैखिक रूप है तो उसका निरपेक्ष मान द्वारा परिभाषित एक सेमिमानक है। एक उपरैखिक फलन एक वास्तविक सदिश स्थान पर एक सेमिनोर्म है यदि और केवल यदि यह एक है सममित फलन , जिसका अर्थ है कि सभी के लिए प्रत्येक वास्तविक-मूल्यवान उपरैखिक फलन एक वास्तविक सदिश स्थान पर सेमिनोर्म उत्पन्न करता है द्वारा परिभाषित [1] सेमिमानक का कोई भी परिमित योग सेमिमानक होता है। एक सदिश उप-क्षेत्र के लिए एक सेमिमानक (क्रमशः,मानदंड) का प्रतिबंध एक बार फिर से एक सेमिमानक (क्रमशः, मानदंड) है। यदि तथा सेमिमानक (क्रमशः, मानदंड) हैं तथा फिर मानचित्र द्वारा परिभाषित एक सेमिमानक (क्रमशः, एक आदर्श) है विशेष रूप से, मानचित्र पर द्वारा परिभाषित तथा दोनों सेमिनोर्म पर हैं यदि तथा सेमिनोर्म चल रहे हैं तो हैं[2]
जहाँ पे तथा [3] सेमिमानक का स्थान उपरोक्त कार्यों के संबंध में सामान्यतः एक वितरण जाली नहीं है। उदाहरण के लिए, खत्म , ऐसे हैं
यदि एक रेखीय मानचित्र है और पर एक सेमिनोर्म है फिर पर एक सेमिनोर्म है सेमिमानक पर एक मानदंड होगा यदि और केवल यदि अन्तःक्षेपण और प्रतिबंध है पर एक मानक है ्श
एक सदिश स्थान पर सेमीनॉर्म्स मिंकोवस्की प्रकार्यात्मक के माध्यम से, के उपसमुच्चयों से घनिष्ठ रूप से बंधे हुए हैं जो उत्तल समुच्चय , संतुलित समुच्चय और अवशोषक समुच्चय हैं। ऐसा उपसमुच्चय दिया है का मिन्कोवस्की की कार्यात्मकता एक सेमिनोर्म है। और इसके विपरीत, एक सेमीनॉर्म दिया पर समुच्चय तथा उत्तल, संतुलित और अवशोषित हैं और इसके अतिरिक्त, इन दो समुच्चय (साथ ही उनके बीच में पड़े किसी भी समुच्चय ) का मिंकोव्स्की कार्यात्मक है [4]
बीजगणितीय गुण
प्रत्येक सेमिमानक एक उपरैखिक फलन है, और इस प्रकार सभी उपरैखिक फलन के गुण को संतुष्ट करता है, जिसमें निम्न सम्मिलित हैं:
यदि वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है तो वहाँ एक रैखिक कार्यात्मक उपलब्ध है पर ऐसा है कि [5]
यदि एक वास्तविक सदिश स्थान है, पर एक रैखिक कार्यात्मक है तथा पर एक उपरैखिक फलन है फिर पर यदि और केवल यदि [5]
सेमिनोर्म्स के अन्य गुण
प्रत्येक सेमिनार एक संतुलित कार्य है।
यदि पर एक सेमीनॉर्म है फिर:
पर एक आदर्श है यदि और केवल यदि एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है।
की सदिश उपसमष्टि है किसी के लिए [2]
यदि एक समुच्चय संतोषजनक है फिर अवशोषित कर रहा है तथा कहाँ पे से जुड़े मिन्कोव्स्की कार्यात्मक को दर्शाता है (अर्थात, का गेज ).[4] विशेष रूप से, यदि ऊपर के रूप में है और क्या कोई सेमिनार सक्रिय है फिर यदि और केवल यदि [4] यदि एक आदर्श स्थान है और फिर सभी के लिए [7] प्रत्येक मानदंड एक उत्तल कार्य है और इसके परिणामस्वरूप, मानक-आधारित उद्देश्य फलन का वैश्विक अधिकतम ढूँढ़ना कभी-कभी सुविधाजनक होता है।
अन्य मानक जैसी अवधारणाओं से संबंध
होने देना एक गैर-नकारात्मक कार्य हो। निम्नलिखित समतुल्य हैं: एक सेमिमानक है। उत्तल फलन F-सेमिमानक है-सेमिनोर्म। एक उत्तल संतुलित मेट्रिज़ेबल संस्थानिक सदिश समष्टि है | जी-सेमिमानक।[8]
यदि उपरोक्त शर्तों में से कोई भी संबद्ध होता है, तो निम्नलिखित समतुल्य हैं: एक आदर्श है;
एक गैर-तुच्छ सदिश उप-स्थान सम्मिलित नहीं है।[9]
यदि वास्तविक सदिश समष्टि पर एक उपरैखिक फलन है उसके बाद निम्न बराबर हैं:[5] एक रैखिक कार्यात्मक है;
;;
सेमीमानक्स से जुड़ी असमानताएँ
यदि सेमीनार चल रहे हैं फिर यदि और केवल यदि तात्पर्य [10] यदि तथा ऐसे हैं तात्पर्य फिर सभी के लिए [11] मान लीजिए कि तथा सकारात्मक वास्तविक संख्याएं हैं और सेमिनोर्म चल रहे हैं ऐसा कि प्रत्येक के लिए यदि फिर फिर [9] यदि वास्तविक से अधिक एक सदिश स्थान है और एक गैर-शून्य रैखिक कार्यात्मक है फिर यदि और केवल यदि [10] यदि पर एक सेमिनार है तथा पर एक रैखिक कार्यात्मक है फिर: पर यदि और केवल यदि पर (प्रमाण के लिए पाद टिप्पणी देखें)।[12][13] पर यदि और केवल यदि [5][10] यदि तथा ऐसे हैं तात्पर्य फिर सभी के लिए [11]
हैन-बनच प्रमेय सेमिनोर्म्स के लिए
सेमिनोर्म्स हन-बनाक प्रमेय का एक विशेष रूप से स्वच्छ सूत्रीकरण प्रदान करते हैं: यदि एक सेमिनोर्म्ड समष्टि का एक सदिश उपसमष्टि है और यदि पर एक सतत रैखिक कार्यात्मक है फिर एक सतत रैखिक कार्यात्मक तक बढ़ाया जा सकता है पर जिसका वही मानदंड है [14]
सेमीनॉर्म्स के लिए एक समान विस्तार संपत्ति भी है:
प्रमेय[15][11](विस्तार सेमिनार) — यदि की सदिश उपसमष्टि है पर एक सेमिनार है और पर एक सेमिनार है ऐसा है कि तो पर एक सेमिनॉर्म विद्यमान होता है जैसे कि और
प्रमाण : चलो का उत्तल पतवार हो फिर एक अवशोषित समुच्चय पूर्णतः उत्तल समुच्चय है और इसलिए मिन्कोव्स्की कार्यात्मक का पर एक सेमीनॉर्म है यह सेमिनार संतुष्ट करता है पर तथा पर
जैसा सकारात्मक वास्तविकताओं की सीमा होती है।
प्रत्येक अर्धवृत्ताकार स्थान जब तक अन्यथा संकेत न दिया जाए, तब तक इस सांस्थिति से संपन्न माना जाना चाहिए। एक संस्थानिक सदिश समष्टि जिसकी सांस्थिति किसी सेमिमानक से प्रेरित होती है, कहलाती है सेमिनोर्मेबल समान रूप से, प्रत्येक सदिश स्थान सेमिनोर्म के साथ भागफल स्थान प्रेरित करता है (रैखिक बीजगणित) कहाँ पे का उपक्षेत्र है सभी सदिश से मिलकर साथ फिर द्वारा परिभाषित मानदंड वहन करता है परिणामी सांस्थिति, पीछे खीचना टू ठीक से प्रेरित सांस्थिति है
कोई भी सेमिमानक-प्रेरित सांस्थिति बनाता है स्थानीय रूप से उत्तल सांस्थितिक सदिश स्थान, निम्नानुसार है। यदि पर एक सेमिनार है तथा समुच्चय को बुलाओ open ball of radius about the origin; इसी तरह त्रिज्या की बंद गेंद है सभी खुले का समुच्चय (प्रतिक्रिया बंद) -बॉल्स मूल रूप से उत्तल समुच्चय संतुलित समुच्चय का एक पड़ोस आधार बनाता है जो खुले (उत्तर बंद) में होते हैं -सांस्थिति सक्रिय
मजबूत, कमजोर, और समतुल्य सेमीमानक्स
मजबूत और कमजोर सेमीमानक्स की धारणाएं मजबूत और कमजोर मानक (गणित) की धारणाओं के समान हैं। यदि तथा सेमीनार चल रहे हैं तब हम कहते हैं है मजबूत अतिरिक्त और कि है कमज़ोर अतिरिक्त यदि निम्न में से कोई भी समतुल्य स्थिति रखती है:
सांस्थिति सक्रिय प्रेरक द्वारा प्रेरित सांस्थिति से अधिक अच्छा है
सेमिनोर्म्स तथा कहा जाता है बराबर यदि वे दोनों एक दूसरे से कमजोर (या दोनों मजबूत) हैं। ऐसा तब होता है जब वे निम्नलिखित में से किसी भी स्थिति को पूरा करते हैं:
सांस्थिति सक्रिय है प्रेरक द्वारा प्रेरित सांस्थिति के समान है से अधिक मजबूत है तथा से अधिक मजबूत है [3] यदि में क्रम है फिर यदि और केवल यदि सकारात्मक वास्तविक संख्याएं उपस्थित हैं तथा ऐसा है कि
एक संस्थानिक सदिश समष्टि (टीवीएस) कहा जाता है एक सेमिनोर्मेबल समष्टि (क्रमशः, एक सामान्य स्थान ) यदि इसकी सांस्थिति एकल सेमिमानक (प्रतिक्रिया एकल मानदंड) से प्रेरित है।
एक टीवीएस सामान्य है यदि और केवल यदि यह सेमिनोर्मेबल है और हॉसडॉर्फ या समकक्ष है, यदि और केवल यदि यह सेमिनोर्मेबल है और टी1 है (क्योंकि एक टीवीएस हॉसडॉर्फ है यदि और केवल यदि यह एक टी 1 स्पेस है। टी1 अंतरिक्ष)।
एक स्थानीय रूप से बाउंड संस्थानिक सदिश समष्टि एक संस्थानिक सदिश समष्टि है जो मूल के एक सीमित पड़ोस के पास है।
संस्थानिक सदिश रिक्त स्थान की सामान्यता कोल्मोगोरोव की मानकता कसौटी द्वारा विशेषता है।
एक टीवीएस सेमिनोर्मेबल है यदि और केवल यदि इसकी उत्पत्ति के उत्तल बाध्य पड़ोस है।[16] इस प्रकार एक स्थानीय रूप से उत्तल टीवीएस सेमिनोर्मेबल है यदि और केवल यदि इसमें एक गैर-खाली परिबद्ध खुला समुच्चय है।[17] एक टीवीएस सामान्य है यदि और केवल यदि यह एक टी1 स्पेस | टी है1 अंतरिक्ष और मूल के एक घिरे उत्तल पड़ोस को स्वीकार करता है।
यदि एक हॉउसडॉर्फ स्थानीय रूप से उत्तल टीवीएस है तो निम्नलिखित समतुल्य हैं:
सामान्य है।
सेमिनोर्मेबल है। मूल का एक सीमाबद्ध पड़ोस है। मजबूत दोहरा का सामान्य है।[18] मजबूत दोहरा का मेट्रिजेबल संस्थानिक सदिश समष्टि है।[18] आगे, परिमित आयामी है यदि और केवल यदि सामान्य है (यहाँ अर्थ है कमजोर- * सांस्थिति से संपन्न)।
असीम रूप से कई सेमिनोर्मेबल समष्टि का उत्पाद फिर से सेमिनोर्मेबल है यदि और केवल यदि इन सभी जगहों में से कई छोटे हैं (यानी, 0-आकार )।[17]
सांस्थितिक गुण
यदि एक टीवीएस और है पर एक सतत सेमिनार है फिर बंद में के बराबर है [2] का समापन स्थानीय रूप से उत्तल स्थान में जिसका सांस्थिति निरंतर सेमिनोर्म्स के एक परिवार द्वारा परिभाषित किया गया है के बराबर है [10] एक उपसमुच्चय एक अर्धवृत्ताकार स्थान में परिबद्ध समुच्चय (संस्थानिक सदिश समष्टि ) है यदि और केवल यदि घिरा है।[19] यदि एक सेमिनोर्ड स्पेस है तो स्थानीय रूप से उत्तल सांस्थिति प्रवृत्त करता है बनाता है द्वारा दिए गए कैनोनिकल स्यूडोमेट्रिक के साथ मेट्रिजेबल संस्थानिक सदिश समष्टि में सभी के लिए [20] अनंत रूप से अनेक सेमिनोर्मेबल स्थानों का गुणनफल फिर से सेमिनोर्मेबल होता है यदि और केवल यदि इनमें से बहुत से रिक्त स्थान तुच्छ हैं (अर्थात, 0-आयामी)।[17]
सेमिनोर्म्स की निरंतरता
यदि संस्थानिक सदिश समष्टि पर एक सेमिनोर्म है उसके बाद निम्न बराबर हैं:[4] निरंतर है।
0 पर निरंतर है;[2] में खुला है ;[2] में 0 का बंद पड़ोस है ;[2] समान रूप से निरंतर है ;[2]
एक सतत सेमिमानक उपस्थित है पर ऐसा है कि [2]
विशेष रूप से, यदि एक सेमीमानक स्पेस है तो एक सेमिमानक पर निरंतर है यदि और केवल यदि के धनात्मक अदिश गुणक का प्रभुत्व है [2]
यदि एक असली टीवीएस है, पर एक रैखिक कार्यात्मक है तथा एक सतत सेमिमानक (या अधिक सामान्यतः, एक उपरैखिक फलन) है फिर पर इसका आशय है कि निरंतर है।[5]
रैखिक मानचित्रों की निरंतरता
यदि सेमिनोर्म्ड रिक्त स्थान के बीच एक नक्शा है तो चलो[14]
यदि सेमिनोर्म्ड रिक्त स्थान के बीच एक रेखीय नक्शा है तो निम्नलिखित समतुल्य हैं:
निरंतर है;
यदि तब निरंतर है सभी के लिए [14]
सभी निरंतर रैखिक मानचित्रों का स्थान सेमिनोर्म्ड रिक्त स्थान के बीच स्वयं सेमिनोर्म के तहत एक सेमिनोर्मड स्थान है यह सेमिमानक एक आदर्श है यदि एक आदर्श है।[14]
सामान्यीकरण
इसकी अवधारणा नॉर्म रचना में बीजगणित करता है नहीं एक मानक के सामान्य गुणों को साझा करें।
एक रचना बीजगणित एक क्षेत्र पर एक बीजगणित के होते हैं एक समावेशन (गणित) और एक द्विघात रूप जिसे आदर्श कहते हैं। कई विषयों में एक समदैशिक द्विघात रूप है ताकि कम से कम एक अशक्त सदिश है, जो इस लेख में चर्चा किए गए सामान्य मानदंड के लिए आवश्यक बिंदुओं के पृथक्करण के विपरीत है।
एक अल्ट्रासेमिनॉर्म या ए गैर-आर्किमिडीयन सेमिनॉर्म एक सेमिनोर्म है वह भी संतुष्ट करता है
कमजोर करने वाली उप-विषमता: अर्ध-सेमिनोर्म्स
मानचित्र ए कहा जाता है अर्ध-सेमिनोर्म यदि यह (बिल्कुल) सजातीय है और कुछ उपस्थित है ऐसा है कि
का सबसे छोटा मान जिसके लिए यह धारण कहा जाता है का गुणक
बिंदुओं को भिन्न करने वाले अर्ध-सम्मेलन को कहा जाता है अर्ध-आदर्श पर
कमजोर पड़ रही एकरूपता- -सेमिनोर्म्स
मानचित्र ए कहा जाता है -सेमिनॉर्म यदि यह सहायक है और उपस्थित है ऐसा है कि और सभी के लिए और अदिश
A -बिंदुओं को भिन्न करने वाले सेमीमानक को कहते हैं -नॉर्म पर
हमारे पास अर्ध-सेमिनार और के बीच निम्नलिखित संबंध हैं -सेमिनोर्म्स:
लगता है कि एक सदिश स्थान पर अर्ध-सेमिनोर्म है गुणक के साथ यदि तो वहाँ विद्यमान है -सेमिनोर्म पर के बराबर
↑If denotes the zero vector in while denote the zero scalar, then absolute homogeneity implies that
↑Suppose is a seminorm and let Then absolute homogeneity implies The triangle inequality now implies Because was an arbitrary vector in it follows that which implies that (by subtracting from both sides). Thus which implies (by multiplying thru by ).
Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN978-3-540-08662-8. OCLC297140003.
Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN978-0-387-90081-0. OCLC878109401.
Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN978-3-642-64988-2. MR0248498. OCLC840293704.
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN978-1584888666. OCLC144216834.
Prugovečki, Eduard (1981). Quantum mechanics in Hilbert space (2nd ed.). Academic Press. p. 20. ISBN0-12-566060-X.